<- previous    index    next ->

Lecture 36a, Special discretization, non uniform


We have arbitrarily scattered boundary points and DOF.
No structure is provided. The problem is to discretize
and build a system of equations, solve the equations,
and determine the values at the DOF.

Simple 1D demonstration

check_nuderiv.c just 6 points check_nuderiv_c.out check solution check_nuderiv.java just 6 points check_nuderiv_java.out check solution So far, only for 2D and 3D geometry, yet could be generalized. The basic problem is avoiding singular matrices. The worse case of arbitrarily scattered points is when they are uniformly spaced.

The basic non uniform discretization:

nuderiv2d.c use all points nuderiv2d.h test_nuderiv2d.c test_nuderiv2d_c.out nuderiv2dg.c use good points, less singular nuderiv2dg.h test_nuderiv2dg.c test_nuderiv2dg_c.out nuderiv2d.java use all points test_nuderiv2d.java test_nuderiv2d_java.out nuderiv2dg.java use good points, less singular test_nuderiv2dg.java test_nuderiv2dg_java.out Now a corner geometry test_nuderiv2dgc.c test_nuderiv2dgc_c.out

The basic 3D non uniform discretization:

nuderiv3d.c use all points nuderiv3d.h test_nuderiv3d.c test_nuderiv3d_c.out nuderiv3dg.c use good points, less singular nuderiv3dg.h test_nuderiv3dg.c test_nuderiv3dg_c.out nuderiv3dg.java use good points, less singular test_nuderiv3dg.java test_nuderiv3dg_java.out

Applying non uniform discretization to a PDE

blivet.inp zero based, regular blivet_nr.inp non regular pde_blivet.c pde_blivet_c.out pde_blivet_nr_c.out pde_blivet.java pde_blivet_java.out pde_blivet_nr_java.out
    <- previous    index    next ->

Other links

Go to top