<- previous    index    next ->

Lecture 36, Some special PDE's


From "A Collection of 2D Elliptic Problems for Testing
      Adaptive Algorithms" by William F. Mitchell

1. Solutions of the form U(x,y)=2^4p x^p (x-1)^p y^p (y-1)^p for p=4 PDE Uxx(x,y) + Uyy(x,y) = f(x,y) boundary unit square

pde22_eq.adb pde22_eq_ada.out pde22_eq_ada.dat pde22_eq_ada.plot pde22_eq_ada.sh pde22_eq.c pde22_eq_c.out pde22_eq_c.dat pde22_eq_c.plot pde22_eq_c.sh pde22_eq.java pde22_eq_java.out pde22_eq_java.dat pde22_eq_java.plot pde22_eq_java.sh pde22_eq.f90 pde22_eq_f90.out pde22_eq_f90.dat pde22_eq_f90.plot pde22_eq_f90.sh

Then U(x,y)=2^4p x^p (x-1)^p y^p (y-1)^p for p=10

pde22_eq_10.c pde22_eq_10_c.out pde22_eq_10_c.dat pde22_eq_10_c.plot pde22_eq_10_c.sh

Then U(x,y)=4*(x-1)*(x-3)*(x-3)*(y-1)*(y-3)*(y-3) p=9

pde22b_eq.java source code simeq.java source code rderiv.java source code pde22b_eq_java.out pde22b_eq_java.dat pde22b_eq_java.plot pde22b_eq_java.sh

Then U(x,y)=5*(x*x+x)*(y*y+y) p=9

pde22d_eq.java pde22d_eq_java.out pde22d_eq_java.dat pde22d_eq_java.plot pde22d_eq_java.sh

2. Solutions of the form alpha = Pi/omega r = sqrt(x^2+y^2) theta = atan2(y,x) 0..2Pi U(x,y)=r^alpha * sin(alpha*theta) PDE Uxx(x,y) + Uyy(x,y) = 0 boundary x -1..1, y -1..1

Exact solution nx=11, ny=11 uniformly spaced, computed solution corner0.adb corner0_ada.out corner0_ada.dat corner0_ada.plot corner0_ada.sh corner0.c corner0_c.out corner0_c.dat corner0_c.plot corner0_c.sh corner0.java corner0_java.out corner0_java.dat corner0_java.plot corner0_java.sh corner0.f90 corner0_f90.out corner0_f90.dat corner0_f90.plot corner0_f90.sh

Makefile and other files for programs listed above

Makefile_spde nuderiv.adb inverse.adb simeq.adb real_arrays.ads real_arrays.adb nuderiv.c inverse.c simeq.c mpf_nuderivd.c mpf_inverse.c nuderiv.java inverse.java simeq.java nuderiv.f90 inverse.f90 simeq.f90 Have gnuplot installed to get plots. Have gnat installed for .adb Have gcc installed for .c Have Java installed for .java Have gfortran installed for .f90

PDE for Turbulence and Diffusion

pde_turbulence.pdf diffusion_equation Generic_scalar_transport_equation

Unusual geometries and using all differentials

The red dot is the positive direction of the normal to the surface. Plotted with light_normal.c to be sure all surfaces have normal pointing out. This is needed to be able to determine if a point is inside the volume and process Neumann boundary conditions. poly43.txt All 4th order derivatives in 3 dimensions. pde_star3t.java Used in pde_star3t.java.
    <- previous    index    next ->

Other links

Go to top