Kathleen A. Hoffman

Publications:

Articles in Refereed Journals:

  • K. Hoffman and T. Seidman, A Variational Characterization of a Hyperelastic Rod with Hard Self-contact, Nonlinear Analysis A: Theory, Methods and Applications, vol. 74, no. 16, p. 5388-5401, DOI:10.1016/j.na.2011.05.022, November 2011 [ abstract]
     
  • G. Clapp and K.A Hoffman, Entrainment Ranges for a Neural Model, UMBC Review,vol 12, p. 10-25, 2011
     
  • K. Hoffman and T. Seidman, A Variational Rod Model with a Singular Nonlocal Potential, Arch. Rat. Mech. Anal., vol 200, no 1, p 255-284, (DOI) 10\ .1007/s00205-010-0368-9, 2011 [ abstract]
     
  • J.P. Previte, N. Sheils, K.A. Hoffman, T. Kiemel, E. Tytell, Entrainment Ranges of Forced Phase Oscillators, J. Math. Bio., vol 62, p 589-603, DOI: 10.1007/s00285-010-0348-6, 2011 [ abstract]
     
  • K. Hoffman and R. Manning, An Extended Conjugate Point Theory with Application to the Stability of Planar Buckling of an Elastic Rod Subject to a Repulsive Self-potential, SIAM Mathematical Analysis, vol 41, 465-494, 2009 [ pdf ] [ abstract]
     
  • P. V\'arkonyi, T. Kiemel, K. Hoffman, A. H. Cohen and P. Holmes, On the Derivation and Tuning of Phase Oscillator Models for Lamprey Central Pattern Generators, Journal Computational Neural Science, vol 25, no 2 , 245-261, 2008 [ abstract]
     
  • J. Guckenheimer, K. Hoffman, W. Weckesser, Bifurcations of Relaxation Oscillations near Folded Saddles, International J. of Bifurcations and Chaos, vol 15, no 11, 34 11-3421, 2005 [ abstract]
     
  • K. Hoffman, Stability Results for Constrained Calculus of Variations Problems: An Analysis of the Twisted Elastic Loop , Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, vol. 461, 1357-1381, 2005 [ abstract]
     
  • K.A. Hoffman, Methods for Determining Stability in Continuum Elastic Rod Models of DNA , Phil. Trans. Roy.Soc.,362(1820) p. 1301-1315, 2004. [pdf][ abstract]
     
  • K. Bold, C. Edwards, J. Guckenheimer, K. Hoffman, R. Oliva, W. Weckesser, The forced van der Pol Equation II: Canards in the Reduced System, SIAM Journal on Applied Dynamical Systems} 2(4), 570-608, 2003. [pdf][ abstract]
     
  • K.A. Hoffman, J.H. Maddocks, and R.Manning, Biological Interpretations of Bifurcation Digrams for DNA Loops, Biopolymers, vol.70, no 2, p.145-157, 2003. [ pdf ] [ abstract]
     
  • K. Hoffman and F. Santosa, A Simple Model of Sheet Metal Assembly, SIAM Review, vol 45 No 3, 558-573, 2003. [pdf] [ abstract]
     
  • J. Guckenheimer, K. Hoffman, W. Weckesser, The Forced van der Pol Equation I: The Slow Flow and its Bifurcations, SIAM J. on Applied Dynamical Systems}, Vol 2, No. 1, p.1-35, 2003. [pdf] [ abstract]
     
  • K. Hoffman, R. Manning and R. Paffenroth, Stability of the Twisted Elastic Strut subject to Endloading, SIAM J. on Applied Dynamical Systems, vol.1, no. 1, p.115-145, 2002. [pdf] [ abstract]
     
  • R. Manning and K. Hoffman, Stability of n-Covered Circles for Elastic Rods with Constant Planar Intrinsic Curvature, Journal of Elasticity, 62, 1-23, 2001.[pdf] [ abstract]
     
  • J. Guckenheimer, K. Hoffman and W. Weckesser, Numerical Computation of Canards, International Journal for Bifurcation and Chaos, 10, 2669-2688, Dec 2000. [pdf] [ abstract]
     
  • L. Greenberg, J.H. Maddocks, and K.A. (Rogers) Hoffman, The Bordered Operator and the Index of a Constrained Critical Point, Mathematische Nachrichten, 219, 109-124, 2000. [gzipped ps] [ abstract]
     
  • R.S. Manning, K.A. Rogers, and J.H. Maddocks, Isoperimetric Conjugate Points with Applications to the Stability of DNA Minicircles, Proceedings of the Royal Society of London: Mathematical, Physical and Engineering Sciences, 454, 3047-3074, 1998.[pdf] [ abstract]
     
  • J.H. Maddocks, R.S. Manning, R.C. Paffenroth, K.A. Rogers, and J.A. Warner, Iteractive Computation, Parameter Continuation, and Visualization, International Journal of Bifurcation and Chaos}, 7, 1699-1715, 1997. [pdf] [ abstract]
     
  • Book Chapters:

  • J. Guckenheimer, K. Hoffman, and W. Weckesser, Global Bifurcations of Periodic Orbits in the Forced Van der Pol Equation, in Global Analysis of Dynamical Systems, eds H.W. Broer, B. Krauskopf and G. Vegter, Institute of Physics Publishing, Dirac House, 2001. [pdf]
     
  • Proceedings Papers

  • H.V.Ly, G.A. Pinter, K.A.Rogers, R.C. del Rosario, and D.E. Vaughan, Modeling the Chimera Domain Decomposition Approach to Solving Conservation Laws, Proceedings for the Industrial Mathematical Modeling Workshop for Graduate Students, Editors B.G. Fitzpatrick and H.T.Tran, Center for Research in Scientific Computation, Technical Report CRSC-TR96-7, February 1996.
     
  • Other Publications

  • M. Gobbert, K.A. Hoffman and J. Shen, The Conference ``Advances in Control of Partial Differential Equations'' in Honor in Prof. Thomas Seidman, IEEE Control Systems Magazine, 27(2), 92-93, 2007. [pdf]
     
  • Maintained by: Kathleen A. Hoffman (khoffman@math.umbc.edu).