Kathleen A. Hoffman
|
|
The Forced van der Pol Equation I: The Slow Flow and its Bifurcations J. Guckenheimer, K. Hoffman, W. Weckesser Abstract: We consider the problem of minimizing the energy of an inextensible elastic strut with length 1 subject to an imposed twist angle and force. In a standard calculus of variations approach, one first locates equilibria by solving the Euler--Lagrange ODE with boundary conditions at arclength values 0 and 1. Then one classifies each equilibrium by counting conjugate points, with local minima corresponding to equilibria with no conjugate points. These conjugate points are arclength values $\sigma \le 1$ at which a second ODE (the Jacobi equation) has a solution vanishing at $0$ and $\sigma$. Finding conjugate points normally involves the numerical solution of a set of initial value problems for the Jacobi equation. For problems involving a parameter $\lambda$, such as the force or twist angle in the elastic strut, this computation must be repeated for every value of $\lambda$ of interest. Here we present an alternative approach that takes advantage of the presence of a parameter $\lambda$. Rather than search for conjugate points $\sigma \le 1$ at a fixed value of $\lambda$, we search for a set of special parameter values $\lambda_m$ (with corresponding Jacobi solution $\bfzeta^m$) for which $\sigma=1$ is a conjugate point. We show that, under appropriate assumptions, the index of an equilibrium at any $\lambda$ equals the number of these $\bfzeta^m$ for which $\langle \bfzeta^m, \Op \bfzeta^m \rangle < 0$, where $\Op$ is the Jacobi differential operator at $\lambda$. This computation is particularly simple when $\lambda$ appears linearly in $\Op$. We apply this approach to the elastic strut, in which the force appears linearly in $\Op$, and, as a result, we locate the conjugate points for any twisted unbuckled rod configuration without resorting to numerical solution of differential equations. In addition, we numerically compute two-dimensional sheets of buckled equilibria (as the two parameters of force and twist are varied) via a coordinated family of one-dimensional parameter continuation computations. Conjugate points for these buckled equilibria are determined by numerical solution of the Jacobi ODE. |
|