Micro-radar Wearable Respiration Monitor

Zheng Li, Ruthvik Kukkapalli, Nilanjan Banerjee, Ryan Robucci, Yordan Kostov

Motivation: Lack of Portable Breathing Rate Monitors

Portable respiration monitoring devices are required for continuous breathing rate monitoring, which is useful in evaluating breathing disorders symptoms.

- Existing devices:
 - Nasal mask: uncomfortable and intrusive
 - Chest strap: hindering chest wall movement, might cause obstructive breathing problems
 - Radar deployed in room: interfered by environmental noise

Proposed Solution: A Radar-based Wearable System

- Micro radar
- Non-intrusive
- Wireless
- Wearable

System Architecture

- 24 GHz continuous wave Doppler radar sensor
 - Facing toward chest to minimize environmental interference
 - With I/Q channels to discriminate movement direction
- Custom active analog filter circuit
 - Targeted range: 0.2Hz - 0.6Hz (Doppler shift by extreme chest movement)
 - Design: 2.5 Hz bandwidth with a net gain of 50 dB
- Spark Core module: ADC, micro-controller, WiFi

Signal Processing

Raw radar signals of respiration captured in our system:
- Noisy but periodic pattern is visible

Using moving average filter:
- Window size is chosen to be less than or equal to half of desired signal, which typically ranges from 1.5 s to 3.5 s, to avoid losing actual data.

Breathing rate estimation with peak detection:

Frequency analysis of the respiration signal:

Not accurate by looking at the maximum since breathing period vary over time, which might generate multiple peaks

System Evaluation

- Golden standard: Neulog chest band system
- 10 adult subjects
- Subjects are sitting stably in static environment

Breathing rate estimation

<table>
<thead>
<tr>
<th>Subject ID</th>
<th>Frequency Based</th>
<th>Peak Analysis Based</th>
<th>Golden Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.50</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>16.30</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>16.02</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>16.50</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>16.62</td>
<td>16.6</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>17.94</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>16.44</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>16.50</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>16.92</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>20.40</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>