

LastStep: Vision-based Bus Stop Localization and Mapping for Improving Accessibility for Blind Riders

Research Cluster

Zheng Li zhengli1@umbc.edu

Mahbubur Rahman mahbub1@umbc.edu

Ryan Robucci Nilanjan Banerjee robucci@umbc.edu nilanb@umbc.edu

eclipse.umbc.edu

Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County

Front-end

Capture images

Localize on maps

Detect signs

Smartphone

Estimate 3D projection

Estimate gravity vector

Provide verbal feedback

Problem: Blind Riders Need Accurate Localization Tools

We propose a computer vision-based system, LastStep, that can localize bus stops with a step-level accuracy.

- Minimizing manual search effort
- Utilizing exsiting infrastrutures
- It complements RF-based systems where deployment is infeasible.
- In conjunction with RF anchors, it potentially increases system reliability and/or accuracy.

Existing systems:

- GPS-based: large variance (5m), extra manual search required
- RF-based: environmental modification required

System Architecture

Back-end

Contextual Databas

- Key points of signs
- Physical size of signs
- Fine-grained maps

Web Interface

- Display GE and GSV Label objects
- Generate bus stop

- fine-grained maps
- The entire front-end is in one COTS smartphone.
- Minimal setup: parameters of signs can be shared between the same type (in a city/county).
- Scalable: using a combination of Google Earth and Google Street View data to generate bus stop maps.

Crowdsourcing: Annotate the Topology Map

Human workers annotate objects in a bus stop with Google Earth data.

• They can "zoom in" to Google Street View to identify the objects.

Comparing the results obtained from Amazon Mechanical Turk to experts' annotations.

Bus Stop	Location	Difference	Direction Difference		
	median (m)	average (m)	median (')	average (')	
1	0.42	0.47	40.16'	41.17'	
2	0.79	3.06	2.35'	1.04'	
3	0.27	0.79	17.51'	3.18'	
4	0.51	0.68	5.16'	8.92'	
5	2.67	3.23	9.00'	10.32'	
6	2.07	3.17	64.58'	19.32'	

Computer Vision: Detect, Match, and Localize

1. Detect a bus stop sign with SIFT feature

3. Position a user onto the map

Estimated position in the map:

$$oldsymbol{p}_{m}=rac{k_{w}}{k_{m}}\left(oldsymbol{R}_{ heta}oldsymbol{A}oldsymbol{P}\left(-oldsymbol{R}^{T}
ight)oldsymbol{t}_{w_{c}}+oldsymbol{t}_{w_{m}}
ight)$$

where

$$oldsymbol{p}_{c_i} = oldsymbol{K}[oldsymbol{R}|oldsymbol{t}_{w_c}]oldsymbol{p}_{w_i}$$

based on bus stop sign matching;

 \boldsymbol{P} is the orthogonal projection matrix from 3D world coordinate to the 2D ground plane:

$$oldsymbol{g} \cdot oldsymbol{v} = 0$$
 s from gravity vector estimation

which comes from gravity vector estimation.

2. Estimate translation (distance), rotation matrix, and gravity vector

Two examples of positioning user's locations onto the annotated map

Our system estimates the distance with a smaller error and variance.

Test on Emulated Human Participants

- Evaluating on three participants, emulated (blind-folded)
- Participants perform searching in 6 sites, with or without our system. Search time is recorded in unit of minute.

Participant		Sites						
Participant		_	=	Ш	IV	V	VI	
Α	W	2.3	4.1	1.2	2.1	1.7	3.5	
	w/o	X	X	8.7	10.5	X	X	
В	W	1.6	3.5	1.3	1.9	2.3	3.1	
	w/o	X	X	12.3	X	11.6	X	
С	W	X	2.5	3.8	2.7	4.5	2.3	
	w/o	X	X	X	X	X	5.4	

- "X" means that participant admitted failure after 10 min.
- It shows a higher success rate (17/18) and higher speed (4 times faster) with our system.

Conclusion

- We present LastStep, an accurate and infrastructure-modification-free localization system for blind riders.
- It performs localization with an step-level accuracy. (less than 0.5 meters error)
- With LastStep, participants can perform localization with a higher success rate and 4 times faster than manual searching.