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Abstract—Accessibility problems such as obstacles on sidewalks
can make navigation dangerous for the visually impaired.
Detecting these accessibility problems using embedded cam-
eras is a plausible remedy. However, current computer vision
algorithms for object detection rely on exhaustive search with
high-dimensional features that present a heavy computational
burden and incur a long latency, making them non-ideal for
real-time object detection on embedded platforms. To address
this problem, inspired by prior-based searching schemes from
human vision, we accelerate the machine vision process by
using scene-specific features to select candidate regions in the
view for further processing. Our system, PreSight achieves
speedup by trading off the workload from on-line detection to
off-line prior data collection and extraction. We demonstrate a
complete, scalable PreSight prototype to accelerate general
computer vision object detection algorithms with focus on
detecting of sidewalk accessibility problems. Our prototype
system automates the process of creating a geo-tagged database
of object-specific priors using crowdsourcing and utilizes this
prior knowledge to speedup object detection on embedded
platforms. Evaluating under two benchmark object detection
algorithms, we demonstrate that the detection latency can be
reduced by around 8 times with the aid of PreSight.

1. Introduction

A key element to improving the standard of living for
people who have a visual impairment is independence [1].
Navigation on sidewalks and other walkways comprise a
major ingredient of independent living. Unfortunately, side-
walks today are ridden with accessibility problems such as
obstacles in path and unexpected flights of stairs. Existing
systems such as smart canes [2], [3] or smart wheelchairs [4]
suffer from the limitations of sensors such as ultrasound or
infra-red used in these systems [5]. These sensors are not
suitable for detecting multiple obstacles, or for applications
that require object recognition, such as landmark detection
for navigation.

A camera-based system is a plausible solution to the
problem. Embedded cameras worn by users or built into
canes combined with computer vision algorithms can be
used for object detection and recognition. Unfortunately,
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however, current discriminative object detectors that mostly
based on [6], [7] require extensive training in a high-
dimensional feature space. During sensing and classification,
the high-dimensional feature extraction and matching can be
prohibitively expensive to compute in real time on embedded
platforms.

To address this problem, we derive insight from the
following human vision attribute: a human at a given scene
can quickly select candidate regions of an object based
on approximate descriptions of location, color, and size.
These coarse-grained selections are considered top-down
pre-attentive computation with prior knowledge [8], that can
guide a human’s attention [9], [10] into narrow regions for
further fine-grained processing. This suggests that a faster
searching scheme on limited hardware can be performed
for a given object in a given scene if the object guidance
attributes are known on a per-scene basis.

Inspired by this observation, in this paper, we propose a
system PreSight that accelerates general object searching
using per-case a priori characteristics. PreSight detects
obstacles on sidewalks accurately in real-time with limited
computational resources. The system guides its “attention”
into narrow areas by incorporating prior knowledge of indi-
vidual objects. For example, if we know a priori the color
of the object, the regions in the view that have similar
color can be pre-selected for further processing. Note that
while the detection process is accelerated with per-case
priors, additional complexity is introduced in the off-line
data collection and extraction. Fortunately, the growth of
crowdsourcing and smartphones provide a low-cost scalable
solution for this task.

The overall operation of PreSight is illustrated in
Fig. 1. In PreSight we build a priori scene specific
information using data provided by the system users. When
a user pass by an obstacle and do not get avoidance no-
tification, s/he can provide information(image) of obstacle
using preSight mobile application. These geo-tagged images
are then annotated using Amazon Mechanical Turk (AMT).
Scene specific object data such as the type, color, and
physical size of the obstacle is collected using Mechanical
Turk. The scene-specific attributes lazily populate a backend
database. In the real-time detection system, an embedded
camera retrieves data of the scene from a pre-cached local
database. It is noteworthy that the data cached per scene is as
minimal as 415 Bytes (only specific extracted features will
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Figure 1: A cartoon figure illustrating the operation of PreSight. In the pre-computing process, the blind user-A reports the scene with the accessibility problem to our system
by taking an image of the scene in the Ist step. Then our system publishes a HIT of the scene image and then the Turkers extract the parameters for the scene-specific detector
in the 2nd step. In the real time subsystem, the smartphone-based system worn in another user-B retrieves the parameters from a pre-cached local database when approaching
the scene, as shown in the 3rd step. Based on the scene attributes, the system focuses on sparse areas in the view to detect the object in real time, as shown in the 4th step.

be cached) and it can also be pre-cached when there is Wi-
Fi available. The embedded system (a generic smartphone)
utilizes the prior data to accelerate the detection process.

Research Contributions: The design, implementation,
and evaluation of PreSight presents two novel research
contributions.

A heuristic strategy to accelerate object detection by
utilizing case-specific a priori characteristics to pre-filter
live images: For individual scenes, this heuristic strategy
enables attentive machine vision for which machines are
able to focus the computation power on narrowed areas in
the view with the help of a priori characteristics of the
target. In another word, we offload the on-line machine
computation by performing off-line prior extraction using
human computation. This enables real-time computer vision
object detection in embedded platform.

An end-to-end implementation and evaluation of
the framework with application to accessibility prob-
lem detection: We demonstrate a functional prototype of
PreSight that can accelerate general object-detection
algorithms and achieve real-time obstacles detection in
a commercially off-the-shelf smartphone. Our prototype
PreSight system includes an interactive crowdsourcing
web interface for prior data extraction, and a fully functional
smartphone-based vision system. The evaluation shows that
PreSight gains an 8x speedup on two benchmark object
detection algorithms (HOG [6], DPM [7]) without degrading
detection accuracy.

2. Related Work

Our work builds on existing literature on accelerating
vision-based object detection, crowd-assisted vision, and
assistive systems for the visually impaired. Here we compare
and contrast our work with the most relevant literature.

Object Detection in Computer Vision: The benchmark
computer vision object detection algorithms [6], [7], which
also form the basis of a large portion of current state-of-the-
art algorithms, rely on high-dimensional feature extraction

and exhaustive matching. Such computation is prohibitively
expensive on embedded platforms. PreSight simplifies
the detection problem for a general object to scene-specific
object detection. [11] tries to simplify DPM and accelerate
with GPU, which is orthogonal to our approach while also
requires extra hardware acceleration.

Reducing Computation Burden of Computer Vision
in Mobile Systems: [12], [13] demonstrate techniques to
reduce the computational burden of computer vision algo-
rithms in mobile platforms. These include using location
information to reduce search range and off-loading compu-
tation onto a backend server. While our system also uses a
GPS unit to partition the search space, it does all the image
computation locally in real time that eliminates the need to
off-load vision computation onto a server.

Crowd-assisted Computer Vision: There is a body of
work [13], [14], [15] that utilizes crowd sourcing to assist
computer vision tasks, such as CrowdSearch or VizWiz. But
these systems require the crowd to be constantly connected
to the front-end system that largely affects the system la-
tency. ALPS [16] can detect landmark using Google Street
View images. But it propagates the GPS error, which makes
it insufficient for blind users. Our system breaks the runtime
dependency between human computation and machine com-
putation. While the computation using humans is performed
lazily in the background, the real-time object detection is
performed locally in the embedded system.

Assistive Devices for the Visually-Impaired: Current
non-camera-based assistive devices for the visually im-
paired [2], [3] utilize distance measurement sensors like
laser, infrared and ultrasound to alert users of obstacles.
These can be considered as extensions of traditional probing
tools such as a white cane. Our system uses an image
sensor to detect different objects, and can be applied to more
general cases in obstacle avoidance and applications such
as landmark localization. Current camera-based assistive
systems [17], [18], [19] either require more computational
resources to perform object detection which is impracti-



cal on embedded platforms, or only focus on very spe-
cific pattern detection. Our approach utilizes scene-specific
priors to accelerate object detection that requires reduced
computational resources and is also generalizable to other
applications that require object searching and detection.

3. System Overview

PreSight comprises of three key components illus-
trated in Fig. 1: (1) UserSense; (2) PreVision; and (3)
RTVision (Real-time Vision). Our system senses scenes
with accessibility issues and extracts scene-specific prior in
UserSense and PreVision, and performs realtime obstacle
detection using RT Vision. In UserSense, blind users capture
images of accessibility problems on sidewalks using the
mobile application when they find a problem on a sidewalk.
The geotagged image is transferred to a backend server. The
image is then encoded as a HIT (Human Intelligent Task)
and disseminated to AMT in PreVision. Turkers annotate ac-
cessibility problem in the image, classify them, and provide
data on the color and physical dimension of the accessibility
problem. The collected data is then aggregated to build
a geotagged database of scene-specific information. When
another user visits the scene, the front-end smartphone-
based application will utilize the prior data in the contextual
database to accelerate general object detection algorithms
to detect accessibility problems in real-time. This front-
end, called RTVision, triggers the preprocessing and object
detector only when the user is within a radius r of an
accessibility problem registered in the PreVision database.
Next, we discuss the three key components of our system
in detail.

4. UserSense: Using Mobile Users to Sense
Scenes with Accessibility Problems

In order to accelerate detection of accessibility problems,
our system requires scene specific prior information which
includes the following: an approximate location, the color
and physical dimensions of an accessibility problem on a
sidewalk. In our system, we ask users to report a scene
with accessibility problem with as simple as a single geo-
tagged image. And the rest required prior information will
be automatically generated with AMT. In UserSense, we
leverage blind users who are willing to contribute to help the
community to “sense” scenes. When a user encounters an
obstacle on a sidewalk, s/he could capture an image of that
obstacle using our mobile application. Then the system will
automatically collect data on the GPS coordinates, which
are used for geo-tagging the image. Over time, scenes with
accessibility problems will be collected and updated lazily
by the users.

5. PreVision: Extracting Scene-Specific Fea-
tures
In PreVision, the geo-tagged images collected by users

are used to automatically generate HITs (Human Intelli-
gence Tasks). The HITs are then disseminated to Amazon

Mechanical Turkers to extract scene- and object-specific fea-
tures. While data collected using Turkers can be subjective
and biased, it is possible to design HITs to control quality,
and de-bias by aggregating data from multiple Turkers. In
this section, we first describe the design of HITs. We then
describe how we aggregate data from multiple Turkers.

5.1. HIT Design

Our system (described in Section 6) uses two character-
istics that humans use in their pre-attentive vision [10] (color
and size) to accelerate object detection. Specifically, two key
attributes of the scene are used to select candidate regions by
a color segmentation and multi-scale size matching: (i) color
of the obstacle in the image; and (ii) physical dimensions
of the object. However, it is critical that the HITs should
be presented using an intuitive and easy to understand
interface [20], [21], [22]. In PreVision we provide explicit
real-time feedback to the Turker on how well s/he has
answered the HIT. Through this feedback the Turker has
the opportunity to correct his/her answer and converge to a
more precise answer. We explain this feedback mechanism
in the context of collecting the two scene-specific attributes.

HIT 1: Extracting Object Color

The first HIT focuses on extracting the color of the
obstacle in the image. Finding color of a specific object
from an image using vision algorithm is a complex task
as lots of other objects of same color may coexist in the
image. One way to get the color of an object in the image
is to tag that specific object, segment object by a color seg-
mentation algorithm, create color histogram that represents
the object. The accuracy of color information thus depends
on the segmenting accuracy. But, this process is useful only
for color retrieval process. For example, if we require the
ground color instead of background color, this process may
definitely fail. The background of an object may consist
of different type of objects, i.e., trees, sky, grass etc. We
can determine background color using the process, but it
does not guarantee us to give the ground color. We use
here the process of finding a specific feature of an object
from an image asking human to provide information about
that feature. In the first HIT, we ask human to provide best
representing color of an obstacle on the sidewalk. Instead
of directly asking the color of the obstacle (fire hydrant in
Fig. 2(a)) we have designed a HIT where the user annotates a
quadrilateral inside the object (shown in Fig. 2 (a)). Drawing
a quadrilateral has two distinct advantages. First a single
object may have more than one color, hence, a quadrilateral
inside the object helps us infer the majority color. Second,
it is easier for a Turker to annotate a shape inside the object
rather than accurately point out the color of the object.

A key component of PreVision is that it provides real-
time feedback to Turkers while they perform the annotation.
This serves two purposes. First, it allows the worker to
correct for mistakes by allowing them to see the impact
of their input. In the most obvious case where they misun-
derstood the directions, the results of the feedback should



Figure 2: Amazon Mechanical Turk task for collecting data on color. (left) selecting
object area and (right) corresponding feedback on the selection to the Turker.

make the error obvious. For example, in the color extrac-
tion HIT, the system computes a segmentation immediately
using the input and returns a visual result to the worker. If
the Turker accidentally selected a region misrepresenting
the color of the object then the feedback results make
the mistake obvious — the Turker is simply allowed to
make the correction before completing the HIT. This feature
minimizes the bias when aggregating data from multiple
Turkers. Thus, a human that does not necessarily understand
the image processing operations (a non-expert) may still
work to produce a result meaningful for the machine-vision
system. The Turker can modify the annotations as many
times as he wants. Fig. 3 shows three iterations where the
Turker annotates the image, observes the segmented image,
and then modifies the annotations to provide more accurate
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Figure 3: Interactive color selection of an object by a Turker. (1% column) is the
first attempt the Turker made and s/he can see the segmented image on the bottom. In
(2"d column), s/he tried to correct her/his annotation based on the feedback shown
on the bottom. When s/he is satisfied with her/his annotation (STd column), then s/he
submits the response.

HIT 2: Annotating Physical Dimension.

Another attribute that the real-time detection algorithm
used is the physical dimensions (height and width) of the
vertical object. To elicit this data, we have designed another
HIT. In this task, the Turker draws a bounding box around
the object and provides the physical height and width of
that bounding box. However, it is difficult for common
Turkers to accurately provide the absolute dimensions of
the object. Humans are better at relative rather than ab-
solute measurements [23]. So, to this end, we provide a
reference object, a United States 100-dollar bill, which
measures 6.14 inx2.61 in. When the Turker selects an object
and provides the dimension, the selected part or object is
cropped from the image and is displayed side by side with
the dollar bill. The object is transformed to a new dimension
using a perspective transform of the object using the height
and width provided by the user. For example, if a Turker
provides the dimension of an object as 22in X 9in, then
in the preview mode the Turker will see an object image,

Color Selection

Feedback

juxtaposed to a dollar bill and scaled to about 3 times the
size of the dollar bill. In Fig. 4, we can see that one of the
Turker annotation together with the preview image wherein
the Turker provided 34 in as the height of the vertical pole.
So, the vertical pole looks almost 5 times longer than the one
dollar-bill. Based on this feedback, the Turker can change
the dimensions he provided for the object dimensions.

Figure 4: Interactive physical dimension estimation. Turker selects an object using
a bounding box (left) and provides height and width, gets the feedback (right side).
The feedback is the comparison of the dimensions between a US 100-dollar bill and
the selected object which is rescaled based on the Turker’s provided dimension.
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Figure 5: Color extraction from user annotation. Histograms of annotation for all
three channels are generated by PreVision. From the histograms, three peak values
are extracted as the representing color of that annotated area.

5.2. Data Aggregation

The PreVision subsystem of PreSight uses Turkers to
extract a priori scene-specific data in the form of approxi-
mate geolocation of the accessibility problem, the color and
physical dimensions of the object. For a single image this
annotation is provided by multiple Turkers, and for a single
scene, multiple volunteers may provide an image of the
scene from different perspectives. This data, therefore, must
be aggregated for the front-end RTVision system described
in the next section. On average, we received 15 responses
from Turkers for each HIT.

PreVision aggregates data from Turkers responding to
HIT 1 (object color). For this HIT the Turkers select an
area within the object of interest (accessibility problem).
The RTVision algorithm described in the next section uses
a color value in the CIELAB color space. To extract the
representative color of the object, we first crop the image
based on the Turker selection and then generate a distribu-
tion of the pixel color values in the CIELAB color space
for the cropped image. Fig. 5 illustrates a histogram for a
single Turker selection. From the histogram, we pick the
mode color value in each of the color channels. This color
represents the most frequently occurring color value for
pixels in the selection made by the Turker. This algorithm
is robust to poor selections made by the Turkers. Because



of the color channel histogram mechanism, the algorithm
will always return the object color unless the selected area
is dominated by objects other than its background. We
aggregate the results across Turkers by taking an average
of the pixel color values selected by each Turker.

The goal of the second HIT is to extract the physi-
cal dimensions of the object. For aggregating data from
multiple Turkers, we can calculate the arithmetic mean
of the dimension values, however, arithmetic mean is not
robust to outliers. The Harmonic mean can handle outliers
but it requires a large set of samples. We can also use
a pruning-based outlier removal technique if we have a
large training data. But, in our case the cost of recruiting
Turkers prohibits the collection of a large training sample.
In PreVision, therefore, we use the geometric mean of the
dimension values to aggregate data from multiple Turkers.
The geometric mean can handle a small training sample
size and produces favorable results for our vision algorithm.
The aggregate value of the dimensions populates a backend
contextual database in PreVision and used in the RTVision
subsystem. The RT Vision system is described below.

6. RTVision: Real-time Accessibility Problem
Detection and Localization

Smartphone :
mounted on waist

Figure 6: Prototype of the front-end system, RT Vision. It is implemented in a generic
smartphone and utilizes the camera, the GPS sensor which is used to trigger the
camera, and the Wi-Fi module used to download the contextual database.

Our front-end system, RTVision, is implemented on a
smartphone as shown in Fig. 6. RT Vision takes GPS read-
ings and queries a locally cached version of the PreVision
database for accessibility problems in the vicinity of the
GPS coordinates. It then uses the embedded camera to take
images and uses the scene-specific features to preprocess the
images, which will select a set of regions in the images for
further processing. Then, general object detection algorithms
can be run on only specific regions instead of the entire
image to detect the accessibility problems. The underlying
RTVision preprocessing algorithm comprises two parts: (1)
segmenting the image using the color information; and (2)
searching for a target in possible scales. We describe each
part in detail below.

6.1. Color Image Segmentation

Based on the color information provided by the PreVi-
sion system, a typical way to segment the colored image is
transforming the image from RGB into HSV and segmenting
the image in a certain range in the Hue-Saturation plane.
However, the reference image might be taken with another
user’s mobile device. The HSV color value might drift or
scatter across different devices. Thus, instead of using HSV

Figure 7: Example of image segmentation across 4 different scenes with a consistent
threshold in each color space. (a) images taken in the four scene with different types
of accessibility problems. (b) the segmentation result in HSV space with a consistent
dissimilarity threshold. (c) the segmentation result in LAB space with a consistent
dissimilarity threshold. The figure shows segmenting in LAB space based on the color
similarity is invariant cross different scenes. In the first column, the object is included
in the segmentation in LAB, though the background trees with similar color are also
included. For the object with salient color (2nd-4th rows), less background pixels are
included in the segmentation in LAB while most of the objects pixels are included.

value, our system segments the color image in CIELAB
space which is device independent. Fig. 7 shows an example
of image segmentation across four different scenes with a
consistent threshold in each color space. It is difficult to
obtain acceptable segmentation in HSV with a fixed thresh-
old across different devices. Also, as CIELAB is designed
to mimic the color response of human eyes that uses three
color opponents, the perceptual color dissimilarity can be
measured by the Euclidean distance in the CIELAB space.
The final segmented image is generated as:
1, |(L,a,b)— (L', a',b")||3 < €rap

Loy = ’ .
seg 0, otherwise

where (L,a,b) is the color channels of the image in
CIELAB space and (L', a’,b") is the target color from the
reference image. The output of this algorithm is a binary
segmented image.

6.2. Distance-based Multi-Scale Searching

By knowing the aspect ratio of the target, we can also se-
lect regions with reasonable scales by multi-scale searching.
Traditional scale-space [24] searching approaches down-
sample the image by a scaling factor ¢ into sufficient levels
to construct an image pyramid. Then a fixed size feature
template is used to match across the entire image in each
layer of the pyramid. This method searches several scales
of the object exhaustively. While it might get all possible
matching, it also generates more false positives areas at
different scales. This will produce more candidate areas for
a following expensive detection operation and so degrade
the acceleration.

As the scale is varied with the distance to the target, the
search time can be reduced significantly by only searching
one scale at a specific distance. In order to retrieve the
distance (depth) information in the image pixels, the smart-
phone is mounted onto the waist of the user with a fixed
height. With pre-calibration for each user, the height can
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Figure 8: Multi-scale searching in the scale-space pyramid and our distance-based
pyramid. (a) the image to be searched in. (b) the scale-space pyramid in which the
target template is searched across both directions. (c) the geometry relation of the
mounted camera, target and the projections of that in the image. (d) the narrow band
needed to be searched in a specific layer in the pyramid. Compared to using a scale-
space pyramid, our method only requires searching in much narrower area, hence it
incurs less false positives and is faster.
be used for computing the distance based on the geometry
relation. As illustrated in Fig. 8, the distance value can be
warped onto the image pixels with the assumption that the
ground between the camera and the target is parallel to the
look-at vector of the camera. Using this approach, the false
positives at unreasonable distance-scales can be eliminated.
Also, the computation time for this preprocess itself will
also decrease since less convolution is needed compared to
scale-space method.

Specifically, RTVision generates the matching template
T for the obstacle in its lowest scale based on the physical
height and width of the obstacle provided by the PreVision
system. The template is a center-surround box filter that
emphasizes the central part and penalizes the surrounding.
The size of the central part k % [Wpy,,, Hpny) is calculated
from the physical size of the trash can [Wphy, Hpny|, where
k is the warping factor related to camera parameters (focal
length, height of the camera to the ground, pixel resolution
and the distance-map). The camera parameters are obtained
through calibration. Then this template is convolved with the
segmented image in our distance-based multi-scale method
and the output is shown in Fig. 9.

\

Figure 9: An example of distance-based multi-scale matching. The first one is the
image to be searched in. The second image is the segmented image generated by
the approach described in the previous section. The last one is the final response
of convolving the custom template in the segmented image in distance-based scales.
The convolved output provides a likelihood map in which further detection can be
operated on high-probability areas only.

After convolution, there might be a large concatenated
region in the map with high likelihood value caused by the
scaling effect, as shown in Fig. 9(c). However, the possible
target will only be in the area around the local maxima.
Here, we conduct non-maximum suppression to select the
area only related to the local maxima.

7. System Evaluation

In this section, we first evaluate the acceleration of our
system over two benchmark object detection algorithms,
HOG and DPM. Then we evaluate the RTVision and Pre-
Vision subsystems respectively.

Experimental Setup

We perform PreSight’s evaluation using data col-
lected with our prototype system. We identified 10 scenes
with “obstacles-in-the-path” type of accessibility prob-
lems [25] around our university campus for our experiments.
We collect videos of these scenes by walking on sidewalks
with our system. To take account for the variance in real-
world luminance and viewing angle, we also collect video
clips at different times of the day and different approaching
directions. Totally, 40 video clips from the 10 scenes are
collected for the evaluation. All the videos are collected
with a frame rate of 25 fps and a resolution of 1024 x 768.

To evaluate the latency while also demonstrating that
PreSight can enable real-time object detection in em-
bedded platform, we implement and evaluate the prototype
on a generic smartphone with a 1.3-GHz quad-core ARM
Cortex-A7 processor which was released on 2014.

Latency and Accuracy of Detection with PreSight

In our first set of experiments, we evaluate PreSight
over two benchmark object detectors, HOG and DPM. We
trained detectors for HOG and DPM respectively using the
same methods authors described in the original paper. The
detectors are trained with a set of images that consists of 270
images obtained using Google’s image search utility. And
we use the OpenCV implementation of HOG and DPM.
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Figure 10: The latency and accuracy of HOG and DPM with or w/o using
PreSight. The figure shows that PreSight can achieve an average 8x speedup
to HOG and DPM without degrading the accuracy by more than 5%.

Fig. 10(a) illustrates the speedup of PreSight. With
the preprocessing of PreSight, the average operating time
of HOG and DPM on the dataset is decreased in about 1/12.
The overhead of preprocessing (as pre_color and pre_size in
the figure) is small compared to the time of the standalone
detection process without the aid of PreSight, which
is 1/14 of the time required in HOG and 1/58 of that
in DPM respectively. The overhead is the same in both
cases since it is independent to the process of detectors.
Overall, with PreSight, the total latencies of detection
using HOG and DPM are reduced by about 1/7 and 1/10
respectively. It’s noteworthy that although there are several
ways to enhance the real-time performance of HOG or DPM
by exploring hardware capability [26], [27], they require



expensive or dedicated devices and PreSight would show
similar performance improvements on these platforms.

We also evaluate how PreSight’s preprocessing af-
fects detection accuracy. Our primary evaluation metric for
accuracy is F-score (575 21P =~ )» Which considers the
true positives (1'P), false positives (F£'P), and false negatives
(F'N). Fig. 10(b) compares the F-scores in cases of with
or without PreSight. They are less than 5% difference
in both detectors. In HOG, the F-score of the case of
“with PreSight” is slightly higher than that of “without
PreSight”. This is because the preprocessing filters out
areas which will generate false positives in HOG detection.
In DPM, the F-score of the case of “with PreSight” is
slightly lower. This is because that DPM is more accurate
than that in the coarse-grained preprocessing. The miss cases
of the preprocessing decrease the detector’s performance
slightly. Details of the performance of PreSight’s pre-
processing will be demonstrated below.

Distance-based Multi-Scale Preprocessing

Here we evaluate the performance of PreSight’s pre-
processing, while also comparing our distance-based multi-
scale searching to general scale-space searching. Our pri-
mary evaluation metrics are precision and recall. Precision
is defined as the portion of detections representing true
positives (TPT+7PFP), which relates to the latency of follow-
up detection, as more areas are filtered out less areas need
to be searched. Recall is defined as the portion of the
true positives actually found (TPZ%), which relates to
how PreSight affects detection accuracy of follow-up
detectors. A lenient threshold is needed for coarse-grained
preprocessing in order to preserve target area in the inter-
mediate output. In Fig. 11 we show that our distance-based
searching scheme (denoted as DB in the figure) can provide
a similar recall rate (detection accuracy) with lower false
positive areas (lower latency) when compared to a typical
scale-space pyramid scheme (denoted by SS in the figure).
Besides, our algorithm performs computation 2 times faster
than the multi-scale pyramid as it only searches different
scales at specific distances.
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Figure 11: The Precision-threshold and Recall-threshold curves of matching in scale
space pyramid and our distance-based scheme. The figure shows similar recall rate
of two preprocessing approaches. But at the same recall point, there will be less false
positives in distance-based (DB) method so that the precision of DB is much higher
than that of the scale space (SS) method.

Analysis of Turkers Data
We next evaluate data provided by Turkers that has been
used to generate contextual database off-line. The obstacle

detection algorithm depends on three different features of an
object. The PreVision thus has two different HITs to collect
information about those two features from human crowd
of Amazon Mechanical Turk. To evaluate PreVision data,
we take images from 10 different sites around the campus
and publish those to Amazon Mechanical Turk for human
annotation. The color that largely represents the object is
obtained from those responses using the process described in
Section 5. The graph (see Fig. 12) shows that the differences
between human responses and actual color is very small.
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Figure 12: Turkers’ responses of object color in L*a*b color space. The distance from
solid line to circular points represent the differences between Turkers’ and experts’
responses.

The aggregated colors of obstacles (see Fig. 13) show
that for channels a and b in L*a*b color space, the human
provided and expert provided colors are almost equal all the
time. The only difference is the L-channel value. L-channel
represents the luminosity of that object. In our designed
HITs, the turkers select an area of their choice from the
object in order to find its color. The brightness of the object
is not equal all over its surface though the color of the
object looks the same. And, there is no guarantee that both
turkers and experts select the same area of that object. So,
the L-channel value in turkers’ annotation differs from that
in experts’.
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Figure 13: Aggregated color value from Turkers’ and experts’ responses in three
different channels (L, a and b).

Our HIT of finding object dimension takes responses of
human crowds for the object’s height and width from an
image. Human being has the intelligence of understanding
object’s dimensions if they ever have seen those objects in
real world by their own; or at least an object is present in
the image that they are familiar with. If so, they will be able
to compare the unknown objects to the known one to guess
the dimensions of unknown object. But they cannot guess
dimensions of an object if they never see that object which
is present in the image even with the feedback. But, most



of the objects are known to the human crowds which are
generally presents on sidewalks. To evaluate the correctness
of Turkers’ responses, we measured the objects height and
width using a measuring tape. We also use geometric mean
to aggregate human provided height and width of that object.
The graph of the object’s height and width (see Fig. 14)
shows that most of the Turkers can correctly provide the
object’s height and width if the objects are familiar to them
or if any other familiar object is present in that image.
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Figure 14: Turkers’ responses of object height and width. The distance from solid
line to circular points represent the differences between Turkers’ responses and the
ground truth of that object.

This is obvious when we see the aggregated responses
for all the objects. The results (see Fig. 15) from human
crowd comes close to actual values for each object if that ob-
ject is known to turkers, i.e, trash cans and fire hydrant. But
if the object is an unknown one or a known one with variable
dimensions such as poles, there is no definite dimension
where turkers would fail to guess correct dimensions most
of the time.
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Figure 15: Aggregation of height and width from Turkers’ responses.

PreSight uses human crowds to collect information
for building contextual database. But data from human
crowds have a cost in the form of money and time. In
Amazon Mechanical Turk, we pay at least 1 US cent to
get a single response. If we want at least 15 responses for
unbiased data, it costs approximately 15 cents for each ob-
stacle. We take into account the time to obtain 15 responses
of each request to calculate the annotation time and can see
that it takes almost a day (see Fig. 16) to get 15 responses
for a request.

Detection Trajectory

Since our algorithm has low latency, it is possible to
perform real-time detection on a per-frame basis with a
usable update rate. This method can be used to improve the
precision and recall by analyzing the detection results across
a series of frames. In Fig. 17, we show the detection result

Time to get results(hours)
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Trash Trash  Fire Pole1t  Pole2  Fire
cani can2 hydrant 1 Hydrant 2

Figure 16: The time of collecting 15 responses from Amazon Mechanical Turk.

in each frame in a 25-FPS video. The video was taken as
the camera approached a fire hydrant. The three dimensions
in the graph represent time, space, and scale. For clarity,
we annotate the data by performing a 3D-point-linking rule
to create color-coded clusters, based on time-space-scale
locality and length of chains. While some false detections
occur on individual frames, most of these false detections
cannot be linked over a few frames. On the other hand, the
detection points clustered and annotated in red, representing
the actual fire hydrant detection, present a plausible path for
an object relative to the approaching camera system.
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Figure 17: Detection points in time-space-scale, showing both false positives and
true positives. The true detection of an object in a forward collision path obeys an
expected trajectory model, increasing in scale with time with a high continuity in
position near the middle of the frame.

The detection path of the fire hydrant shows the expected
trend in the trajectory, moving from a small scale (long
distance) to a large scale (short distance) over time. The
vibration of camera system rolling along a rough side-walk
path causes expected noise in the detection scale between
adjacent scales. A contiguous path of detection is seen from
a smoothed version of the data. False detections might be
eliminated by evaluating the continuity in detection across
frames, at least at a rate of one frame per second for our
presented system. As shown in Fig. 17, the reddish portion
of the image is a car twice briefly captured near Frames 159
and 194; while in Frame 119 the incorrect scale is detected
in a few frames. More advanced application of Kalman



filters to track the object position, optionally combined with
inertial sensor data, could be used to improve estimation of
distance, and eliminate implausible detection sequences and
trajectories irrelevant to obstacles.

8. Conclusions

TABLE 1: Summary of cost and automation of processes in PreSight

Component Description Automated | Cost per Scene
UserSense Collect scenes X One image
Generate HITs v < 1 sec
PreVision Turkers annotate v $0.15, < 24 hr
Aggregate data 7 < 1 sec
RTvision Cache database [ 415 Byte
Preprocess o 0.23 sec

In this paper, we present PreSight, a prior-based
vision system for speeding up general object detection and
enabling real-time obstacle detection in a smartphone plat-
form. The key idea behind PreSight is to preprocess the
image with scene specific a priori information to select
smaller areas for detection. The a priori used in PreSight
includes color of the object and dimensions of the object.
This scene-specific a priori information is collected in our
system using mobile user “sensors” who take images of ac-
cessibility problems on sidewalks and Turkers who annotate
information on the images. We have implemented a full
functional prototype and automate most processes in low
cost, as shown in TABLE 1. In the evaluation, we show
that PreSight can accelerate general object detection
algorithms, like HOG or DPM, in an average of 8§ times
faster without degrading the detection accuracy by much.
While we demonstrate the feasibility of our approach in
the context of sidewalk accessibility problem detection, we
believe that such a strategy could be applied to navigation,
indoor location, and augmented reality.
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