
Situation-Aware Access Control in Federated Data-as-a-Service for Maritime Search
And Rescue

Samson Oni∗, Zhiyuan Chen∗, Adina Crainiceanu†, Karuna Joshi∗ and Don Needham†
∗ University of Maryland Baltimore County, Baltimore, MD

Email: {soni5, zhchen, kjoshi1}@umbc.edu
†US Naval Academy, Annapolis, MD
Email: {adina, needham}@usna.edu

Abstract—Maritime Search and Rescue missions involve
complex operations in which multiple entities, playing different
roles in dynamic situations, benefit from sharing mission-
dependent data. We propose an approach to support situation-
aware access control in a federated Data-as-a-Service architec-
ture. We develop an ontology and rules to represent access
control policies and a distributed reasoning framework to
enforce these policies. We implement our proposed solution
in a proof-of-concept system.

Keywords-Maritime Search and Rescue, Ontology, Federated
Systems, Data-as-a-Service, Semantic Web, Access Control

I. INTRODUCTION

The United States Coast Guard carries out nearly 20,000

Maritime Search and Rescue (SAR) missions per year [1].

Maritime SAR missions often involve close collaboration

between multiple entities such as private, military, or gov-

ernment agencies or vessels, and even foreign vessels.

Each entity has data that needs to be kept private, as well

as data that needs to be shared to accomplish the SAR

mission. Suitable solutions center around situation-aware

access control [2], [3] since entities may join the mission

at any time and data access decisions may depend on the

situation.

Most existing work [2], [3] only considers context-

awareness within a single organization, whereas maritime

SAR operations typically require collaboration between mul-

tiple organizations.

We propose an approach to support situation-aware access

control in a federated Data-as-a-Service architecture for mar-

itime search and rescue missions. We have made the follow-

ing contributions: 1) an ontology and a set of rules to help

define access control policies for maritime search and rescue;

2) a distributed reasoning framework that enforces these

rules and can be easily integrated with existing systems.

Distributed reasoning is needed since some rules reason over

data from multiple members. Existing work to support dis-

tributed reasoning [4] requires special systems. We propose a

query rewriting approach that converts distributed reasoning

to federated queries. This allows seamless integration of the

access control policies into existing query interfaces such as

SPARQL without implementing a specialized system. We

implement our solution in a proof-of-concept system using

the Apache Jena Fuseki SPARQL server.

II. SYSTEM ARCHITECTURE

Figure 1. System Architecture

Figure 1 illustrates the overall architecture of our pro-

posed system, which consists of federated members, their

own storage infrastructure, and users. Data-as-a-Service is

implemented in our architecture as a middleware layer.

We use an existing web-based RDF storage and query

interface (Apache Jena Fuseki) and use query rewriting

to add situation-aware access control. We first develop an

ontology to represent access control rules for each member.

These rules can be stored at each member or, the rules

common to all members can be stored in the cloud to allow

every member to have access. Next, we go over the key

components in our system.

A. Ontology and Rules
Situation-aware access control policies typically can be

represented using the following components [2]:

• U : the set of users.

• R: the set of roles. R has a hierarchical structure.

• UR ⊆ U ×R: the assignment of users to roles.

• O: the set of data that can be shared.

• PU, PO: properties of data or users.

• SE: set of situation expressions typically on properties

of users or objects (PU, PO).

• P : the set of permissions defined on O.

• RP ⊆ R× P : the assignment of permissions to roles.

• SEUR ⊆ 2SE × UR, the set of situation-aware

assignment of roles to users. 2SE is power set of SE.

228

2019 IEEE International Conference on Services Computing (SCC)

2474-2473/19/$31.00 ©2019 IEEE
DOI 10.1109/SCC.2019.00046

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on June 15,2020 at 17:24:30 UTC from IEEE Xplore. Restrictions apply.

Root

User Role
SARTeam
Member Task ResponseSARTeam

Data Mission

hasRole

Vessel
InDistress

Mission
Data

VesselInDistress
Data

isMemberOf

contactTo

owns

owns

hasRequest

hasResponse

inMision
canAccess

isMemberOf

hasData

inMision

Figure 2. Ontology Overview

• SERP ⊆ 2SE × RP , the set of situation-aware role

permission assignments.

We use the W3C Web Ontology Language (OWL) to

define an ontology for maritime search and rescue. We

examined current regulations [5] as well as existing on-

tologies for maritime vessels [6]. Figure 2 shows major

classes and relationships (red arrows) between classes. The

major classes include the vessel in distress and SAR team

members, their data to be shared in the system, roles, users,

allowed operations (read or write), rescue missions in which

they are involved, tasks in the mission, etc.

The rules define the situation-aware assignment of per-

missions (RP and SERP) or roles (SEUR). Consider

an example of situation-aware assignment of permissions.

Suppose the shipmaster of a vessel in distress can get

locations of nearby search and rescue ships.

Rule 1: User(?U) ∧ hasRole(?U, DistressShipMaster)

∧ isMemberOf(?U, ?I) ∧ VesselInDistress(?I)

∧ hasLocationPlace(?I, ?x1)∧ SARTeamMember(?S)

∧ hasLocationPlace(?S, ?x2) ∧ isWithinRangeOf(?x1, ?x2)

→ hasLocationAccess(?U, ?S)

Note that this rule depends on a dynamic situation that

the vessel in distress and the other ship are close by

(isWithinRangeOf(?x1, ?x2)).

B. Distributed Reasoning
We propose a query rewriting method that supports dis-

tributed reasoning, which is needed in federated Data-as-a-

Service systems. E.g., suppose “John” is the shipmaster of a

vessel in distress “Atlanta” and requests access to locations

of rescue ships. This requires data from both the vessel in

distress (to verify that John is the shipmaster) and the rescue

ships. The following SPARQL query Q1 will be sent to a

rescue ship:

PREFIX sar: <$http://sar.com/0.1/>
SELECT ?location
WHERE {
?S rdf:type sar:SARTeamMember .
?S sar:hasLocationPlace ?location . }

We assume that policy rules are not recursive. Algorithm

1 shows a query rewriting algorithm that enforces access

control rules. Q is a SPARQL query, RS is the set of access

control rules, u is the user issuing the query. We also assume

there are m query endpoints. I is the set of predicates that

do not appear in data (i.e., they need to be inferred). DL is

the set of predicates contained in local data. DRj is the set

of predicates contained at the j-th remote endpoint and DR

be the union of all remote predicates.

Algorithm 1 : queryRewriting(Q, RS, u)

1: repeat
2: for r ∈ RS do
3: for p ∈ r’s condition and p ∈ I do
4: Find rules r′1, r

′
2, . . . , r

′
k ∈ RS that has p in

consequence

5: Replace p in r with disjunction of conditions of

r′1, r
′
2, . . . , r

′
k

6: end for
7: end for
8: until No more rules are rewritten

9: Add a predicate pc to Q to check whether user u has

access to query result

10: for each rule ri ∈ RS that has pc as consequence do
11: Generate a new query Qi which is the same as Q but

replace pc with query patterns checking condition of

ri
12: For those query patterns checking predicates in DRj ,

generate a subquery Qij to query the j-th query

endpoint

13: end for
14: Return union of all generated Qi

The algorithm rewrites the rules such that any predicate

in I in the condition part of a rule will be replaced with

predicates in DL ∪DR. This is done similarly to backward

chaining, i.e., repeatedly replacing such a predicate p with

predicates in the condition part of a rule where p appears in

the consequence part (lines 1 to 9). E.g., suppose there is

another rule, Rule 2, which defines two locations as with-

inRangeOf if their Euclidean distance is within a threshold,

then isWithinRangeOf in Rule 1 will be replaced by the

conditions of Rule 2.

In the second phase of the algorithm, the method rewrites

the SPARQL query to check whether the user sending the

query has access to the result. In the above example, we add

query pattern “sar:John sar:hasLocationAccess ?S .” to the

229

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on June 15,2020 at 17:24:30 UTC from IEEE Xplore. Restrictions apply.

query to check whether John has access to the location of ?S.

This pattern matches the consequence of Rule 1 rewritten by

the first phase. So it will be replaced by the conditions in the

left hand side of Rule 1. After the first phase, all predicates in

left hand side of a rule can be found in DR∪DU . Predicates

from remote members are sent as a subquery to the remote

member’s service endpoint. In the above example, query Q1,

the rewritten query, looks like:

PREFIX sar: <http://sar.com/0.1/>
SELECT ?location
WHERE {
SERVICE <http://192.168.56.103:3030/sar
{sar:John rdf:type sar:User ;

sar:hasRole sar:DistressShipMaster ;
sar:isMemberOf sar:Atlanta .

sar:Atlanta rdf:type sar:VesselInDistress ;
sar:hasLocationPlace ?x1 .}

?S rdf:type sar:SARTeamMember .
?S sar:hasLocationPlace ?location .
?x1 sar:isWithinRangeOf ?location .}

Predicates have been added to the query to check whether

John has access to the rescue ship’s location. The subquery

inside the SERVICE keyword will be sent to the vessel in

distress and the remaining part will be executed locally.

III. PROTOTYPE IMPLEMENTATION AND EVALUATION

We have implemented a proof-of-concept system in which

the ontology and rules are developed using Protege. We used

Apache Jena Fuseki to store data as RDF triples and provide

a web service interface to support SPARQL 1.1. queries over

multiple endpoints. Each member of the federated system

was implemented as an Apache Jena Fuseki server.

We have validated our proposed ontology with SAR

domain experts from the U.S. Coast Guard and U.S. Navy.

These experts confirmed that the domain assumptions,

classes, properties, and relationships defined by our ontology

support the extraction, aggregation, and sharing of SAR

information.

We also conducted preliminary experiments to evalu-

ate the performance of our proposed distributed reasoning

framework. We ran a sample query asked by shipmaster of

a vessel in distress to return medical equipment available

on a SAR ship. We simulated both a centralized case when

data and rules were stored in one place and a distributed

case when data was stored in two different sites. We used

our proposed method to rewrite the original query to check

for permission. The rewritten query requires data from both

sites. We simulated a network delay of 50 ms (typical in a

4G network) and 500 ms (typical in satellite communica-

tion) between the two sites. We also varied the number of

conditions in the access control rule used in this query from

0 (i.e., no permission check) to 4.

Table I shows the execution time of various cases. The

results show that the overhead of checking for permissions

(the difference between 0 condition and non zero conditions)

is quite small (no more than 20% when there are 4 condi-

tions) and scales linearly with the number of conditions.

The execution time in distributed settings is higher than the

centralized setting due to network delay but the difference

is still acceptable (around 45%-65% for 500 ms delay and

around 17%-32% for 50 ms delay).

IV. CONCLUSION AND FUTURE WORK

In this paper we propose an approach to support situation-

aware access control for a federated Data-as-a-Service archi-

tecture for maritime search and rescue.
As future work, we will conduct more extensive experi-

ments examining the performance of our solution. We also

plan to develop distributed trust management, as data sharing

in SAR depends on trust between members. One possible

approach is to dynamically recompute a member’s trust level

based on its behavior (e.g., if a member’s behavior deviates

from most peers, its trust level will be reduced).

ACKNOWLEDGEMENT

This work was partially supported by Office of Naval

Research grant# N00014-18-1-2452.

REFERENCES

[1] United States Coast Guard Facts,
“http://www.uscgboating.org/content/us-coast-guard-
facts.php.”

[2] S. S. Yau, Y. Yao, and V. Banga, “Situation-aware access con-
trol for service-oriented autonomous decentralized systems,” in
Autonomous Decentralized Systems. IEEE, 2005, pp. 17–24.

[3] D. Beimel and M. Peleg, “Using owl and swrl to represent
and reason with situation-based access control policies,” Data
& Knowledge Engineering, vol. 70, no. 6, pp. 596–615, 2011.

[4] E. Oren, S. Kotoulas, G. Anadiotis, R. Siebes, A. ten Teije, and
F. van Harmelen, “Marvin: Distributed reasoning over large-
scale semantic web data,” Web Semantics: Science, Services
and Agents on the World Wide Web, vol. 7, no. 4, pp. 305–
316, 2009.

[5] International Maritime Organization (IMO), “International con-
vention on maritime search and rescue,” 1979.

[6] S. Brüggemann, K. Bereta, G. Xiao, and M. Koubarakis,
“Ontology-based data access for maritime security,” in Inter-
national Semantic Web Conference. Springer, 2016, pp. 741–
757.

No. Exe. Time (sec) Exe. Time (sec) Exe. Time (sec)
Rule Con-
ditions

Centralized Distributed
(50 ms delay)

Distributed
(500 ms delay)

0 2.84 3.33 4.15
1 2.87 3.47 4.26
2 2.91 3.76 4.63
3 3.02 3.83 4.67
4 3.04 4.00 4.99

Table I
EXECUTION TIME BY VARYING NUMBER OF RULE CONDITIONS

230

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on June 15,2020 at 17:24:30 UTC from IEEE Xplore. Restrictions apply.

