
Selectivity Estimation For Boolean Queries

Zhiyuan Chen �

Cornell University

Nick Koudas
AT&T Labs-Research

Flip Korn
AT&T Labs-Research

S. Muthukrishnan
AT&T Labs-Research

ABSTRACT
In a variety of applications ranging from optimizing queries
on alphanumeric attributes to providing approximate counts
of documents containing several query terms, there is an in-
creasing need to quickly and reliably estimate the number of
strings (tuples, documents, etc.) matching a Boolean query.
Boolean queries in this context consist of substring predi-
cates composed using Boolean operators. While there has
been some work in estimating the selectivity of substring
queries, the more general problem of estimating the selec-
tivity of Boolean queries over substring predicates has not
been studied.

Our approach is to extract selectivity estimates from rela-
tionships between the substring predicates of the Boolean
query. However, storing the correlation between all possible
predicates in order to provide an exact answer to such pred-
icates is clearly infeasible, as there is a super-exponential
number of possible combinations of these predicates. In-
stead, our novel idea is to capture correlations in a space-
e�cient but approximate manner. We employ a Monte
Carlo technique called set hashing to succinctly represent
the set of strings containing a given substring as a signature
vector of hash values. Correlations among substring predi-
cates can then be generated on-the-y by operating on these
signatures.

We formalize our approach and propose an algorithm for es-
timating the selectivity of any Boolean query using the sig-
natures of its substring predicates. We then experimentally
demonstrate the superiority of our approach over a straight-
forward approach based on the independence assumption
wherein correlations are not explicitly captured.

1. INTRODUCTION

�This work was done during the author's visit at AT&T
Labs.

Boolean queries over substring predicates, that is, logical ex-
pressions composed of keywords connected by the Boolean
operators AND, OR, and NOT, or recursively composed expres-
sions thereof, are very common. They have been employed
in Information Retrieval systems for decades [15]. Two ex-
amples of Boolean queries are peanut AND butter, which
�nds documents containing both the word peanut and the
word butter, and peanut AND NOT butter, which �nds doc-
uments containing peanut but not containing butter. Due
to the proliferation of the Internet, Boolean queries have be-
come ubiquitous, for example, in Web search engines, online
digital libraries, etc. For example, the AltaVista search en-
gine receives more than 13 million queries per day of which
more than two-thirds involve some Boolean relationship be-
tween multiple substrings [16].

It is often useful to obtain a fast and accurate estimate of
the fraction of documents matching a query. The selectiv-
ity of Boolean queries can be used by the system for query
optimization in Information Retrieval systems to �nd the
best ordering of keywords for �ltering. Selectivity estimates
may also be useful for the users to formulate more (or less)
precise Boolean queries, that is, to re�ne queries. A notori-
ous problem in Information Retrieval is that the number of
documents matching a given query is often too large for a
user to sift through. Unfortunately, ranking the documents
based on relevance is not e�ective when the search terms
are too general [4]. Providing online result sizes has been
shown to be helpful to users in re�ning queries, and has been
proposed as a remedy to the low precision problem [18; 17].
Selectivity estimation also has the potential to become a
commonplace operation as network elements diversify, and
thin clients such as palm-held devices rede�ne Web browsing
to inherently rely on query re�nement based on estimates.

Selectivity estimation techniques are well developed for nu-
merical attributes, and equality or range queries over them
[9]. Selectivity estimation for string attributes is a more re-
cently studied topic. However, all such results concern only
the substring selectivity problem, namely, determining the
number of documents or tuples that contain a query sub-
string (in one or more dimensions). A one-dimensional sub-
string selectivity query is a Boolean query with merely the
single substring predicate, and a multidimensional substring
selectivity may be thought of as a Boolean query of a sin-
gle clause comprising only conjunctions. To the best of our
knowledge, selectivity estimation of more general Boolean
queries has not been addressed thus far.

In this paper, we initiate the formal study of selectivity es-
timation problem on Boolean substring predicates. In par-
ticular, we formalize two variants of the problem, one with
a full index structure on the strings (a su�x tree, in our
case), and the other with only a pruned structure. For the
problem of substring selectivity estimation that has been
studied in the literature, the full su�x tree variant is rather
trivial, and is of no interest (in fact, exact selectivity can be
determined by walking down the su�x tree with the query
substring). However, for Boolean queries, the problem is
challenging even with the full su�x tree because one needs
to capture the correlation amongst the occurrence of sub-
string predicates as speci�ed by the Boolean relation in the
query. The set of all possible Boolean relations amongst the
substring predicates, and hence the space of possible corre-
lations, is prohibitively large to explicitly compute, or store.
Our novel contribution in this paper is the approach we de-
velop for capturing these correlations in a space-e�cient, but
approximate manner. We employ a Monte Carlo technique
called min-wise independent permutations to succinctly rep-
resent the set of strings containing a given substring as a sig-
nature vector of hash values. Correlation estimates among
substring predicates can then be generated using set hash-
ing a technique we introduce, to perform algebraic and set
operations on these signatures. Our main technical contri-
bution is a fast algorithm for estimating the selectivity of
any Boolean query using the set hashing approach for both
variants of the problem.

In practice, Boolean queries tend to be of small length (that
is, few clauses, each containing few substring predicates).
For example, 84% of the queries issued at AltaVista involve
less than four keywords [16]. Our selectivity estimation
algorithms are very e�cient for such cases. A simple ap-
proach to the Boolean selectivity estimation problem would
have been to assume independence between substring occur-
rences within a string, and thereby not attempt to capture
any correlation amongst their occurrences. Our experimen-
tal results show that our approach signi�cantly outperforms
the independence-based approach.

The rest of the paper is organized as follows: In Section
2, we formalize the problem and de�ne the two variants.
In Section 3, we present our algorithm for capturing the
correlations amongst substring predicates using set hashing,
for the full su�x tree variant. In Section 4, we show how to
modify that algorithm for the pruned su�x tree variant. In
Section 5, we present experimental results. In Section 6, we
conclude with some remarks and directions for future work.

2. PROBLEM DEFINITION
Let � be the alphabet. We denote by �� the set of strings
of �nite length on �. The string � 2 �� is said to be a
substring of s 2 �� if, for some �;� 2 ��, s = ���. We
shall refer to � as a substring predicate when it is compared
with another string s to test if � is a substring of s.

A Boolean expression over substring predicates is de�ned
recursively as follows:

� Any substring predicate � is a Boolean expression.

� If p and q are Boolean expressions, then so are (p^ q),

(p _ q), and :p; here, ^, _ and : are the well known
logical operators AND, OR and NOT, respectively.

There are no Boolean expressions over �� other than those
derived from these rules. A Boolean expression is said to be
in conjunctive normal form (CNF) if it is composed of a con-
junction of clauses, where each clause contains a disjunction
of predicates, i.e., (�11_ � � � _�1`1)^ � � � ^(�k1_ � � � _�k`k). A
Boolean expression is said to be in disjunctive normal form
(DNF) if it is composed of a disjunction of clauses, where
each clause contains a conjunction of predicates, i.e.,
(�11^ � � � ^�1`1)_ � � � _(�k1^ � � � ^�k`k).

The Boolean query selectivity estimation problem is as fol-
lows. We are given a set of strings S = fs j s 2 ��g. (An
example of our input is a string attribute in a relational
database; alternatively, each string could be an HTML doc-
ument from the Web.) The goal is to determine the fraction
of strings in S for which any query q, which is a Boolean ex-
pression speci�ed at runtime, evaluates to true; this fraction
is denoted P (q). The problem is to preprocess the set S of
strings so that online estimates of P (q) can be obtained for
any q. Any practical selectivity estimation method should
provide acceptable accuracy while also being signi�cantly
more e�cient than solving the problem exactly, that is, ob-
taining the precise number of strings that satisfy q.

There are two variants of our problem, depending on the
amount of storage space that may be available. In the �rst
variant, we are allowed space linear in the size of the set
S, that is, O(

P
s2S

jsj). Hence, we can build a standard
string indexing structure such as the su�x tree which is
the trie of all su�ces of all strings in S.1 In the second
variant, we are allowed a smaller amount of space than in
the �rst variant, in particular, space sub-linear in the size
of S. This would entail pruning the su�x tree by keeping
only an appropriately sized part of the su�x tree. We refer
to the �rst variant as the Full Su�x Tree (FST) case, and
the second as the Pruned Su�x Tree (PST) case.

It is unusual to consider selectivity estimation on a domain
(be it numerical or string) using a linear amount of space.
That is because most selectivity estimation problems stud-
ied thus far are rather trivial if 100% space is allowed. For
example, the substring selectivity problem can be solved ex-
actly if the entire su�x tree were available. (Note that this
would require time proportional to the length of the query
substring and independent of the size of S.) Hence, the
problem in those cases becomes interesting only when the
space allowed is signi�cantly small, say 20% of the input
size. There are, however, a few selectivity estimation prob-
lems where the problem is nontrivial even if 100% of the
space is allowed. An example is the substring selectivity
problem on multiple string attributes. Our Boolean query
selectivity estimation problem is another example, since all
known text indexing methods for �nding documents that
satisfy a Boolean query (using bit vectors, etc.) require ei-
ther space polynomial in the input size or search time linear
in the input size [7]. Hence, it is of interest to e�ciently

1Technically, this is known as the generalized su�x tree
when we have more than one string in S, a distinction we
do not make here.

perform selectivity estimation using 100% space, which mo-
tivates our FST case.

3. PROPOSED SOLUTION USING A FST
While there has been some recent work on substring selec-
tivity estimation, the more general problem of selectivity
estimation on Boolean substring predicates has not been
studied. Of course, the special case of conjunctive queries
on k keywords (i.e., �1 ^ � � � ^ �k) can be mapped into k-
dimensional substring queries (over k replicated attributes)
and, hence, the selectivity can be estimated by any of the
previous multidimensional substring selectivity estimation
techniques. However, this special case approach is limited
to queries with exactly k substring predicates, where k is
known a priori; it is not clear how Boolean expressions over
(k+1) keywords can be handled by the same data structure
built to handle queries containing k keywords (e.g., a k-d
su�x tree). Furthermore, it is not clear how to extend this
framework to handle disjunctions and negations.

A straightforward approach that enables the previous sub-
string selectivity methods to be applied to Boolean queries
is to assume independence between substring occurrences
within the same string. (We shall henceforth refer to this
approach as ID.) For example, P (�1^�2) would be estimated
as P (�1)�P (�2), P (�1_�2) as P (�1)+P (�2)�P (�1)�P (�2),
and so forth. Unfortunately, the independence assumption
rarely holds in real data sets.

Our goal is to dispense with the crude and unrealistic inde-
pendence assumption. To do this, we propose a set-oriented
approach to capture correlations by estimating selectivity
using set operations (intersection, union, and di�erence). In
Section 3.1, we show that if we could a�ord to keep the set
of string identi�ers (SIDs) that contain every substring in
the database, then the selectivity could be exactly obtained
(without error) by manipulating these sets. In practice there
are two problems with this approach described below.

First, the size of the SID sets could be on the order of the
number of strings in the database, which is infeasible in lim-
ited space. To solve this problem, we present a technique in
Section 3.2 to succinctly represent the set of strings contain-
ing a given substring as a �xed-length signature of this set;
the selectivity of any Boolean query can be estimated by
manipulating these signatures, as shown in Sections 3.3 and
3.4. Our approach is space-e�cient, requiring only O(m)

space to capture, theoretically, up to 22
m

Boolean relation-
ships between substring predicates, where m is the number
of substrings stored in the data structure. In Section 3.5,
we present a general algorithm based on this approach.

The second problem is that in practice we cannot a�ord to
store every substring, that is, space allowed may be signif-
icantly smaller than the size of the input. This is the PST
variation which we address in Section 4 using pruning and
parsing strategies. We proceed with the description of our
approach.

3.1 Set-Oriented Approach
For exposition, let us �rst ignore any space constraints and
assume that an unpruned su�x tree has been built from the
collection of strings. We denote the string labeling the jth

node as wj. This is the string that spells the path from the
root of the su�x tree to its jth node. We augment each
node j with a base set Sj of the SIDs for each string con-
taining wj as a substring. The set of strings satisfying any
Boolean query and its cardinality can then be computed via
set operations on the base sets corresponding to the sub-
string predicates of the query.

Consider the following example. Figure 1 presents part of
the su�x tree constructed from a toy data set, in which each
substring node is augmented with its corresponding set of
SIDs. Suppose the query q = ab ^ 12. Then the nodes j
and k in the tree are located such that wj = ab and wk =
12 and jSj \ Sk j = jf1; 2; 4g \ f1; 2; 3gj = jf1; 2gj = 2 gives
the result size.

3
(ab,{1,2,4})

4
(b,{1,2,3,4})

2
(c,{2,3})

2
(bc,{2,3})

1
(abc,{2})

3 4
(3,{2,3,4})

3
(23,{2,3,4})

2

(123,{2,3})

3

(2,{1,2,3,4})

(12,{1,2,3})

...

Figure 1: Set-oriented approach illustrated with
a toy example with 4 strings fab12, abc123, bc123,
ab23g.

Let N be the number of strings in the collection S; the in-
put size is O(

P
s2S

jsj) which is also the number of nodes
in the FST. If we could store the base sets associated with
each substring, our problem would be solved | any Boolean
query over substring predicates is a set operation on the base
sets (and their complements). However, storing all the base
sets requires space �((

P
s2S

jsj)N), which is much larger
than the linear space we are allowed in the FST variant. Fur-
thermore, answering any query requires time
(N), which
is undesirable.

Our key idea is to employ the Monte Carlo technique of min-
wise independent permutations [2; 5]. This technique pro-
vides an unbiased estimator of the resemblance of two sets,
which is the ratio of the size of the intersection over the size
of the union of the sets. Min-wise independent permutations
employ a collection of hash functions to obtain a compacted
representation of the sets. We use hash functions to store
the sets associated with each node. The hash functions will
serve two purposes. First, the hash value of a set can be
stored in much smaller space (typically 100 to 400 bytes)
than the set itself. Second, the hash functions will serve to
compute the result size of set operations over base sets. The
catch, however, is that no hash functions exist that both
use small space (signi�cantly less than N) and provide ex-
act count of the operations of any two sets.2 Hence, we must
settle for hash functions that allow some approximation in
estimating the sizes for results of set operations. We use set
hash signatures, as described in Section 3.2 for this purpose.

2This has been formalized and proved in the area of Com-
munication Complexity [12].

This approach based on set hashing uses only O(
P

s2S jsj)
space, and estimates the selectivity of any Boolean substring
query by manipulating set hash signatures.

3.2 Estimating Set Resemblance
Min-wise independent permutations is a well known Monte
Carlo technique which can be used as an unbiased estimator
of the set resemblance (denoted �) of two sets A and B, that
is,

� =
jA
T
Bj

jA
S
Bj

;

where, for a set S, the notation jSj represents its cardinality.
It was introduced by Cohen [5] and Broder et. al., [2]. This
technique has been used for �nding Web page duplicates [1],
for data mining [6], and for estimating the size of transitive
closure [5]

Suppose that \darts" are thrown randomly at the universe
U . If two sets have high resemblance, then it is more likely
that the �rst dart to hit one set will simultaneously hit the
other; for low resemblance, the converse is true. Figure 2
illustrates this concept for two sets A and B.

To simulate this, we create signature vectors sigA and sigB .
These signatures can be operated on directly to estimate �.
The idea is to throw darts at universe U until an element
of A is hit. When this occurs, the value of this element is
recorded as a component value in the signature sigA. This is
repeated for each component. Using the same dart throws,
we repeat the experiment now with B to generate sigB .
Finally, �̂, an estimate for �, is determined from the number
of respective signature vector components in sigA and sigB
that match.

Following is a more detailed description of how we imple-
ment the set hash signature sigA of A. For each signature
vector component, we randomly permute the elements of the
Universe (U) from which the sets are drawn and record the
value of the �rst element of the permutation which is also
an element of A.

Formally, let U = f1; : : : ; ng. If � is a permutation of U
and A � S, we de�ne minf�(A)g = minf�(x)jx 2 Ag. We
choose �1; : : : ; �`, namely ` uniform, random permutations
of U . For any set A, we de�ne its signature vector as

sigA = (minf�1(A)g;minf�2(A)g; : : : ;minf�`(A)g):

Implementation of min-wise permutations requires genera-
tion of random permutations of a universe. E�ciently per-
muting the elements of the universe is impractical. In prac-
tice, for each signature vector component, we independently
seed a hash function and generate the hash image h(a) of
each element a 2 A; the minimum h(a) is recorded in the
signature. Figure 3(a) and 3(b) illustrates this for sets A and
B, respectively. Unfortunately, as reported in [2], there is
no tractable class of hash functions which guarantees equal
likelihood for any element to be chosen as the minimum el-
ement of a permutation (aka min-wise independence); this
property is needed in order to properly use hashing to sim-
ulate permutations. However, we use linear hash functions
because they turn out to be good enough in practice [1] and

it is easy to generate a number of independent hash func-
tions. Of course, each hash function h should be chosen so
that the probability of collisions are low.

Our approach will be dependent on the resemblancemeasure
de�ned as follows:

�k =
jA1 \ � � � \Akj

jA1 [� � � [Akj

We can obtain �̂k, an estimate for �k, using the formula

�̂k =
jfijminf�i(A1)g = � � � = minf�i(Ak)ggj

`
;

where ` is the number of hash functions we use in the de�-
nition of the signature vector for any set. It is not di�cult
to convince oneself of the following observation for any i:

Pr(minf�i(A1)g = � � � = minf�i(Ak)g) = �k:

Using this observation, it can be shown as in [5] that �̂k is
a good estimator for �k for su�ciently large `.

3.3 Extracting Result Sizes for Set Operations
Using Set Hashing

Using the set signature described in the previous section, we
will show how to estimate result sizes of set operations (in-
tersection, union, and complements). More precisely, given
sets Ai over Universe U , we wish to calculate sizes of the
union, intersection or complements of the sets. Say the sig-
nature of each set Ai has been computed and we know the
size of U , denoted jU j, as well as jAij for each i. Our ap-
plication scenario (of Boolean query selectivity estimation)
will satisfy these assumptions.

The signature sigA1[���[Ak of A1[� � �[Ak can be computed
from the signature sigAj for sets Aj as follows. For any i,
1 � i � `,

sigA1[���[Ak [i] = minfsigA1
[i]; � � � ; sigAk [i]g:

That is, for each component, we choose the minimal value
of the signatures of all the sets in that component. This
is because, when computing each signature component of
A1 [� � � [Ak, the minimum hash value over all elements
in A1 [� � � [Ak, for a given hash function h, is precisely
minfmin h(a1); : : : ;min h(ak)g; where a1 2 A1; � � � ; ak 2
Ak.

Estimating union without complements. Our procedure for
estimating jA1[� � �[Akj is as follows. Say Aj has the largest
size of all Ai's.

3 We �rst calculate sigA1[���Ak as described
above. Using that, we obtain an estimate ̂ for

 =
jAjj

jA1 [� � � [Akj

using our method for estimating resemblance on sigAj and
sigA1[���[Ak . Then

jA1 [� � � [Akj =
jAjj

where we use ̂ for for estimation and jAjj is known.

3This is only a technicality. Any one of the sets will do, but
the largest gives the best performance.

A BA B A B
B

A

(a) (b) (c)

Figure 2: The main idea behind set resemblance: (a) high overlap, high resemblance; (b) low overlap, low
resemblance; (c) high overlap, low resemblance.

Signature
of A

1
1
2
1

1 2 4
h1 1 3 4
h2 3 1 2
h3 2 4 3
h4 4 2 1

Hash functions h1, h2, h3, h4

(h1(1) = 1, h1(2) = 3,
h1(4) = 4, etc.)

Set A = {1, 2, 4}

Signature
of B

2
1
1
2

2 3
h1 3 2
h2 1 4
h3 4 1
h4 2 3
Hash functions

Set B = {2, 3}
Signature

of A
1
1

2

1

Signature
of B

2
1

1

2

1 Match

Figure 3: The generation and intersection of signatures of sets A and B.

Estimation intersection without complements. Our proce-
dure for estimating jA1 \ � � � \Akj is as follows:

jA1 \ � � � \Akj = �k jA1 [� � � [Akj =
�kjAjj

:

We can estimate �k as described in the previous section,
as above, and jAjj's are known as we assumed.

Estimating union/intersection with complements. We �rst
consider estimating the size of jA1\� � �\Ak\Ak+1\� � �A`j.
We estimate it using set di�erence as jA1 \ � � �\Akj� jA1 \
� � �\Ak\Ak+1\� � �A`j, where each of the two terms can be
estimated as above. We estimate jA1[� � �[Ak[Ak+1[� � �A`j
as its complement jA1 \ � � � \Ak \Ak+1 \ � � �A`j, which we
have already described how to estimate.

That completes the description of how to estimate set oper-
ations of our interest; these will be used in the next section
for Boolean query selectivity estimation.

3.4 Estimating theSelectivity of Boolean Queries
In this section, we show how to compute the selectivity of
any general Boolean query q. Let T be the full su�x tree
constructed on the collection of strings S. We wish to com-
pute the selectivity of q. We consider the following two
cases:

1. q does not contain negations: We convert q to the
CNF expression q0 = (�11 _ � � � _ �1k1) ^ � � � ^ (�n1 _
� � �_�nkn). Each �ij in q, 1 � i � n; 1 � j � ki will be
located in T . Let sig�ij be the signature at the node
that �ij is located. From these signatures, we can de-
rive the signature sig(�i1_���_�iki) for each disjunctive

clause (�i1 _ � � � _ �iki) and then estimate the selec-
tivity of q from their intersection size, which we can
determine as described in the previous section.

2. q contains negations: We convert q to the DNF
expression q0 = (�11 ^ � � � ^ �1li) _ � � � _ (�m1 ^ � � � ^
�mlm). In order to eliminate the negation operators,
we use the set inclusion-exclusion formula to convert
q0 to an algebraic expression without negations that
yields the same cardinality. Let Ci = (C1 _ � � � _ Cm)
be a disjunction clause in q0. Then jq0j = jC1j+ � � �+
jCmj�(jC1\C2j+jC1\C3j � � �) � � �+(�1)

m�1jC1\� � �\
Cmj. After the application of this formula, q0 contains
only conjunctions. Let D be a conjunction expression
in q0. We can rewrite D by keeping all negations in the
end. Thus, D = y1^y2^� � �^yr^:z1^� � �^:zt, where
yi; zj; 1 � i � r; 1 � j � t are substrings. Then the
selectivity of D can be estimated as: jDj = jy1 ^ y2 ^
� � �^ yr j� jy1 ^y2 ^ � � � ^ yr ^ z1 ^ � � � ^ ztj. Both terms
can be estimated as described in Section 3.3.

3.5 Entire Algorithm for the FST Case
We can now summarize the entire algorithm for Boolean
query estimation for the FST case.

1. Preprocessing. We construct the FST T of the set S
of strings. For each node v in T , we store the signa-
ture sig�v for the set of all SIDs that contain �v as a
substring. We also store the cardinality of this set in
node v.

2. Query processing. Any Boolean query q gets compiled
into an algebraic equation of result sizes of various set

operations on the set of SIDs at nodes of T , as de-
scribed in Section 3.4. These result sizes can be esti-
mated using the signatures of these sets via set hash-
ing, as described in Section 3.3.

Let us consider the complexity of the algorithm. Construc-
tion of the su�x tree takes time O(

P
s2S jsj), a classical

result [13]; its size, that is, the number of nodes in it, is
also O(

P
s2S jsj). We can calculate jS�v j for each v in

O(
P

s2S jsj) time altogether in a bottom-up traversal of T .
It takes the reader a little thought to realize that the signa-
ture vectors too can be computed by a bottom-up traversal
of T , combining the signature vectors of the children at each
node. This takes O(`(

P
s2S jsj)) time where the signature

for any set has ` components. Thus the overall running time
of Step 1 is O(`(

P
s2S

jsj)) which is also the space used in the
data structure. In Step 2, say the query q has L predicates;
the size of the CNF or DNF formula is at most L2L. The
time to estimate a CNF formula is thus 2O(L). For a DNF
formula, it is expensive to employ the inclusion-exclusion
formula in its entirety; however, it would su�ce to consider
only the intersections of a constant number of a clauses in
Section 3.3, in which case, the time taken is 2O(L); this is
the overall complexity of Step 2.

Theorem 1. The algorithm in Section 3.4 for estimating
Boolean query selectivity with set S in the FST case takes
time and space O(`(

P
s2S

jsj)) for preprocessing; here ` is

the size of a signature vector. A query on L predicates can
be estimated in time 2O(L).

In practice, L is very small. Furthermore, any user-speci�ed
query can be expanded quite simply to remove nesting, if
any, and the resultant queries are likely to be linear in the
original query size. Any such nested-free Boolean query can
be estimated using Section 3.3 very e�ciently. Also, in prac-
tice, it su�ces to use ` � 200 bytes. For a more detailed
experimental study of this algorithm, see Section 5.

4. PROPOSED SOLUTION USING A PST
This section presents our solution to the second variant of
our problem, the pruned su�x tree (PST) case. What dif-
ferentiates this variant with the FST case is that some sub-
strings from the query may not be located in the su�x tree.
Thus, we must rely on parsing the query into subqueries on
substring predicates that can be located in the tree to re-
duce the problem to the FST case; the selectivity of these
subqueries can then be algebraically combined via the pre-
viously proposed probabilistic formulae [19; 10] to estimate
the overall selectivity of the query.

The previous study in substring selectivity estimation [11;
19; 10; 8] presents two parsing techniques, greedy parsing
and maximal overlap parsing (MO), to parse substring pred-
icates to a set of substrings present in a PST. We generalize
MO in this paper because it has been shown to be superior
than greedy parsing [10; 8]. The detail of MO parsing can
be found in [10; 8]. The algorithm is as follows.

4.1 The Algorithm

The input is a Boolean substring query q and a pruned su�x
tree T . We write q as a function on substring predicates,
i.e., q(�1; : : : ; �L), which contains substring predicates �i
and logical connectives ^;_;:. The PST T is built on all
strings in S applying known pruning strategies in [19; 8].
With each node in the PST, we store the exact count of the
number of string IDs of that substring (labeling the path
from the root to that node). We also store the signature of
the set of all string IDs which contain that substring. The
output is an estimate of the selectivity of q. The algorithm
is shown in Figure 4.

1. Parse predicates into substrings located in T . Each
predicate �i is parsed independently into substrings
�i(1); : : : ; �i(ji), that match nodes in the PST.

2. Rewrite q to remove negations. If q contains nega-
tions, apply the inclusion-exclusion formula from
Section 3.4 case 2 to rewrite q as a set of terms
t1; : : : ; tn, where each term is free of negations. Oth-
erwise, return q as the only term t1.

3. Estimate the selectivity for each term.
For each term th

� Generate a set of subqueries. We generate
th(�1(j1); : : : �L(jL)), that is, for each substring
predicate �i in term th, we substitute the pred-
icate with the corresponding parsed substring
�i(ji) and form a subquery containing only
predicates located in the PST.

� Estimate the selectivity for each subquery.
Since each subquery only contains substring
predicates located in the PST, we can estimate
the selectivity as described in Section 3.4 Case
1.

� Algebraically combine the selectivities via prob-
abilistic formula. We apply a probabilistic for-
mula to combine selectivities of the subqueries
formed from th.

4. Perform arithmetic on selectivities of terms. If more
than one term is present, add and subtract terms (as
described in Section 3.4 Case 2) to derive the overall
selectivity of q.

Figure 4: Estimating Selectivities of Boolean queries
using a PST

Example: Assume q = (abc ^ 12) _ :23. In step 1, MO
parsing parses abc into ab and bc, and their overlap is b.
Both 12 and 23 are located in T . In Step 2, since q contains
negations, two terms t1 = 23 and t2 = abc ^ 12 ^ 23 are
generated, where jqj = 1�j23j+ jabc^ 12^ 23j. Now Step 3
estimates the selectivity for terms t1 and t2. The substring
in t1 happens to be stored in the PST, so we lookup the
associated count in the node. To estimate the selectivity for
t2, we �rst generate subqueries by replacing each substring
predicate in t2 with a parsed substring or overlap. There
are three subqueries: t21 = t2(ab; 12; 23) = ab ^ 12 ^ 23,
t22 = t2(bc; 12; 23) = bc ^ 12 ^ 23, and t23 = t2(b; 12; 23) =
b ^ 12 ^ 23. Since each subquery only contains substring

predicates located in T, we can use the technique described
in section 3.4 case 1, to derive their selectivities. Suppose
the estimates are 0.24, 0.6, and 0.55. Then we combine
them by conditioning on the subquery containing overlap of
parsed substrings (t23). That is,

P (t2) = P (t21)� P (t22jt21) ' P (t21) � P (t22jt23)

= P (t21)
P (t22)

P (t23)
= 0:24 � 0:6=0:55 = 0:26:

Finally, step 4 combines the selectivities for terms to the
selectivity of q. jqj = 1 � j23j+ jabc ^ 12 ^ 23j = 1� 0:75 +
0:26 = 0:51.

5. EXPERIMENTAL RESULTS
In order to assess the bene�ts of our proposed estimation
framework for Boolean queries, we performed an experimen-
tal evaluation of the proposed method based on set hash-
ing (SH) compared to an approach that assumes indepen-
dence between the selectivities of the substring predicates
in the Boolean query (ID). For both estimation methods
we keep the count of substrings associated with each su�x
tree node (in both pruned and unpruned su�x tree cases
we consider). More speci�cally, for ID, in the case of the
full su�x tree, the selectivity of each clause is estimated via
inclusion-exclusion, with the selectivity of a negated predi-
cate Prf:Pg = 1 � PrfPg, and these selectivities are mul-
tiplied together. In the case of pruned su�x tree, for the
ID method, we follow the algorithm of �gure 4 to parse
the query into subqueries and make the independence as-
sumption for each subquery. For both methods, we build
a count-su�x tree on a set of strings and we report exper-
imental results for the following two cases: (a) the su�x
tree is fully materialized; and (b) the su�x tree is pruned to
satisfy a speci�ed space constraint. In the SH method, the
nodes are also augmented with signature vectors.

5.1 Experimental Setup
Data Sets: Due to space limitations, we report only some
of our experimental results. We give results from an AT&T
data set of 130K strings (2.5MB) which we refer to as SER-
VICE; the strings contain brief English descriptions of ser-
vice provided to AT&T customers.

Queries: We tested the accuracy of both positive queries
(i.e., matching at least one string in the database) and neg-
ative queries (i.e., no matches). We varied the number of
substring predicates as well as the number of clauses in the
queries in order to evaluate the impact of these parameters
on selectivity estimation. Our Boolean queries are derived
from the following templates: T1 = (A _ B) ^ (C _ D),
T2 = (A _ B) ^ (C _ D) ^ (E _ F) ^ (H _ I) and T3 =
(A_B_C_D)^(E_F_H_I) where A;B;C;D;E;F;H; I
are substring predicates uniformly chosen from the database,
with length uniformly chosen between 2 and 7 characters.
These templates were chosen because they cover a variety of
common queries. Each predicate is preceded with a negation
with certain probability in order to investigate the accuracy
of our technique in the presence of negations; the negation
probability was varied in our experiments.

Error Measures: Our workload Q consists of 1000 queries
according to each query template. Let Sq be the true selec-
tivity of a query in Q, S0q the estimate and N the number of
strings in S. We use the average-absolute-relative-error to
quantify the accuracy for positive queries:

Eabs =
1

N

X
q2Q

jSq � S0q j

Sq
;

We use the root-mean-square-error to quantify the accuracy
of negative queries:

Estd =

s
1

N

X
q2Q

(Sq � S0q)2:

Both measures are standard in the substring selectivity es-
timation literature.

Implementation: All experiments were run on a 350 Mhz
Pentium II PC. We implemented the SH and ID methods in
C++. For the pruned su�x tree (PST) case, we used MO
parsing in both methods. The set hash signature sizes were
set at 50 with a hash space of 217.

5.2 Estimation Accuracy Using A FST
We allowed the su�x trees employed by the competing meth-
ods to store all substrings occurring in the database, that
is, they were fully materialized and unpruned.4 Figure 5(a)
presents the accuracy of the competing methods as a func-
tion of the probability of negations appearing in predicates;
the curves represent workloads of positive queries from dif-
ferent query template classes. The runtime was well below 1
millisecond for both methods, on all queries. In these exper-
iments, SH was signi�cantly more accurate than ID, almost
10 times better when the number of predicates per clause is
two and 5 times better when there are four predicates per
clause.

SH experiences a small increase in estimation error as the
number of predicates per clause and the probability of nega-
tions increases, since, due to DNF conversion, more set hash
signatures are involved in the estimation. As the probability
of negation increases, ID constantly overestimates the true
selectivity of each clause, and tends to underestimate the
true selectivity due to multiplication of individual estima-
tions. As a result the overall estimation error could have
varying trends depending on the relative error terms intro-
duced by over and under estimation. In Figure 5(a) the
curve appears at since the contribution of over and under
estimation seem to cancel out. As the number of predi-
cates per clause increases, the gap between the estimation
accuracy of SH and ID decreases. Having more predicates
per clause forces the disjunctions to become less correlated;
thus the accuracy of the independent estimation method in-
creases. The e�ect of increasing the number of clauses in
the query (T2) is not shown in Figure 5(a) because ID in-
curs error which is out of the scale of the �gure (above 2.5).
As the number of clauses increases, the overall selectivity
is expected to decrease; since ID makes the independence

4Note that the su�x tree for the SH method will consume
a constant factor more space than that for the ID method,
since the tree nodes for the SH method are augmented with
signature vectors as well as counts.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00 0.05 0.10
Prob. of negations

error

SH-T1
ID-T1
SH-T3
ID-T3

0

5000

10000

15000

20000

25000

30000

0.00 0.05 0.10
Prob. of negations

error

SH-T1
ID-T1
SH-T2
ID-T2
SH-T3
ID-T3

(a) Queries generated by T1 and T3 (b) Accuracy for Negative Queries

Figure 5: Accuracy for positive and negative queries (FST)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

0.20% 0.40% 0.60% 0.80% 1.00%
space

error

SH-T1
ID-T1
SH-T2
ID-T2
SH-T3
ID-T3

0

5000

10000

15000

20000

25000

30000

0.20% 0.40% 0.60% 0.80% 1.00%
space

error

SH-T1
ID-T1
SH-T2
ID-T2
SH-T3
ID-T3

(a) Positive Queries (b) Negative Queries

Figure 6: Accuracy for positive and negative queries (PST)

assumption (which not is true in this case) its accuracy gets
penalized by large factors. In contrast, SH experiences a
small decrease in accuracy in this case, since it is able to
preserve correlations better.

Figure 5(b) presents the results of the same experiment for
negative queries. SH in all cases o�ers very accurate esti-
mation, in contrast with ID. The estimation bene�ts of SH
are evident, with SH outperforming ID by many orders of
magnitude. Note that the three curves for the SH methods
are all overlapping at the bottom near 0.

5.3 Estimation Accuracy Using A PST
We pruned both su�x trees to the same amount of space
and we report on the estimation accuracy of the methods.
Figure 6 presents the accuracy of the methods, when we vary
the space allowed to the su�x tree from 0.2% (5 KB) to 1%
(25 KB) of the data set size. Figure 6(a) presents curves for
each method, for positive queries and each query template.
In all cases, the probability of negations being present in
a predicate is 0.05. At very small amounts of space, both
methods yield large errors because there is a storage over-
head before enough information is in the PST to be useful.
As the space increases, the overall trends in estimation er-
ror of both methods are similar with the unpruned case. SH
outperforms ID consistently (by up to 6 times) as the num-
ber of predicates per clause increases and as the number of

clauses in the query increases.

Figure 6(b) presents the results of the same experiment but
for negative queries. As space increases, the overall trends
become similar to those of the unpruned case. SH o�ers ex-
cellent accuracy outperforming ID by several orders of mag-
nitude for all query templates.

Surprisingly, our experimental results show similar accuracy
for both the FST and PST cases. This seems to imply that
MO parsing does not contribute much to the error, and that
PST is just as good as FST for obtaining accurate selectivity.
However, in other experiments, not included here due to lack
of space, this was not the case.

6. RELATED WORK
The problem of estimating substring selectivities is de�ned
as follows: Given p1; : : : pk substring predicates and a re-
lation R with k columns containing N k-dimensional tu-
ples, we are interested in estimating the selectivity of Q =
p1^: : :^pk, that is, the fraction of tuples from R that satisfy
Q. Selectivity estimation tailored to alphanumeric strings
has been the subject of recent work in which the problem of
estimating the selectivity of both one- and two-dimensional
substrings has been studied [11; 10; 19; 8].

In [11], the problem of substring selectivity estimation was

introduced. An approach based on pruned su�x trees was
presented wherein queries are parsed via a greedy strat-
egy into substrings retained in the pruned su�x tree, and
the selectivities of these substrings are multiplied based on
the independence assumption to derive selectivity estimates.
In [10], the concept of conditioning based on maximal over-
lap parsing was introduced for improved estimation. Selec-
tivity estimation of substrings over multiple attributes was
�rst considered in [19], and was later improved upon in [8].
Although in principle the approaches of [19; 8] extend to
multiple dimensions, only experiments with 2 dimensional
string data were reported.

In [3], we addressed the multidimensional substring selectiv-
ity estimation problem, and initiated the use of the set hash-
ing technique for selectivity estimation. There, set hashing
was used to capture the co-occurrences of substrings across
attributes. We showed experimentally that our approach is
superior to the approaches of [19; 8] both in accuracy and
scalability to the number of dimensions. The work presented
in [3] essentially deals only with conjunctions of predicates.
In this paper, the set hashing framework is considered in a
more general context. We extend it to deal with additional
logical connectives and in particular, we consider the prob-
lem of estimating the selectivity of Boolean queries contain-
ing conjunctions, disjunctions and negations. From a theo-
retical point of view, we expand the power of set hashing to
its full potential.

Search methods for text retrieval systems have been a topic
of interest for many years. These methods provide indexing
capabilities to retrieve the actual strings satisfying a Boolean
query (and thus the exact count). However, they either use
super-linear space, or take time proportional to the number
of strings in S for answering any query [14; 7]. In contrast,
our approach can be tuned to any given space constraint
and it provides good approximate answers in time dependent
only on the query size, and not on the size of S; it takes less
than a millisecond per query.

7. CONCLUSIONS
In this paper, we generalize the problem of substring selec-
tivity estimation for Boolean predicates. Our novel idea is
to capture correlations between Boolean query predicates
in a space-e�cient but approximate manner. We employ a
Monte Carlo technique called set hashing to succinctly repre-
sent the set of strings containing a given substring predicate
as a signature vector of hash values. Correlations among
substring predicates can then be generated by operating on
these signatures. We present an algorithm to estimate the
selectivity of any Boolean query and experimentally demon-
strate the superiority of our approach.

Several important issues are raised by this study. First, al-
though we consider only one-dimensional strings in this pa-
per for simplicity, our approach can be extended to multiple
string dimensions in a straightforward manner; the e�ective-
ness in multiple dimensions remains to be seen. Second, we
do not consider even more general query algebras, such as
Boolean queries over string predicates with regular expres-
sions, though they may be of interest. For example, one may
seek documents in which the words (or substrings) �1 and �2
are separated by white space, that is, matching the pattern

�1[< space > j < tab > j < newline >]��2. Third, it would
be worthwhile to extend this framework to allow positional
constraints between predicates (e.g., the keywords appear
near each other in the document), as is employed in many
current systems [14].

Acknowledgments
We would like to thank Derek Jeter, Chuck Knoblauch, and
Mariano Rivera.

8. REFERENCES
[1] A. Broder. On the Resemblance and Containment of

Documents. IEEE SEQUENCES '97, pages 21{29,
1998.

[2] A. Broder, M. Charkar, A. Frieze, and
M. Mitzenmacher. Minwise Independent
Permutations. Proceedings of STOC, pages 327{336,
1998.

[3] Z. Chen, F. Korn, N. Koudas, and S. Muthukrishnan.
Approximating Cross-Counts: A Practical, Space
E�cient Approach For Multidimensional Substring
Selectivity Estimation. AT&T Labs Technical Report,
Oct. 1999.

[4] C. Clarke and G. Cormack. Relevance Ranking For
One To Three Term Queries. Information Processing
And Management, page to appear, May 1999.

[5] E. Cohen. Size-Estimation Framework With
Applications To Transitive Closure And Reachability.
Journal Of Comput. Syst. Sciences, 55, pages
441{453, 1997.

[6] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk,
R. . Motwani, J. Ullman, and C. Yang. Finding
Interesting Associations Without Support Prunning.
Proceedings of the 16th Annual IEEE Conference on
Data Engineering (ICDE 2000), page to appear, Feb.
2000.

[7] W. Frakes and R. Baeza-Yates. Information Retrieval:
Data Structures and Algorithms. Prentice-Hall, 1992.

[8] H. V. Jagadish, O. Kapitskaia, R. Ng, and
D. Srivastava. Multidimensional Substring Selectivity
Estimation. Proceedings of VLDB, Endiburgh,
Scotland, pages 287{398, Sept. 1999.

[9] H. V. Jagadish, N. Koudas, S. Muthukrishnan,
V. Poosala, K. C. Sevcik, and T. Suel. Optimal
Histograms with Quality Guarantees. Proceedings of
VLDB, pages 275{286, Aug. 1998.

[10] H. V. Jagadish, R. Ng, and D. Srivastava. Substring
Selectivity Estimation. ACM Principles of Database
Systems (PODS), pages 249{260, June 1999.

[11] P. Krishnan, J. S. Vitter, and B. Iyer. Estimating
Alphanumeric Selectivity In The Presense Of
Wildcards. Proceedings of SIGMOD, Montreal
Canada, pages 282{293, June 1996.

[12] L. Lovasz. Communication complexity: a survey.
Paths, Flows and VLSI Layout, B. Korte, L. Lovasz,
H. Promel and A. Schrijver, Ed., Springer-Verlag,
1990.

[13] E. M. McCreight. A Space-Economical Su�x Tree
Construction Algorithm. Journal of the ACM Vol 23.,
pages 262{272, Dec. 1976.

[14] A. Salminen and F. W. Tompa. PAT Expressions: An
Algebra For Text Search. Acta Linguistica Hungarica,
41-4, pages 177{306, May 1994.

[15] G. Salton and M. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, 1983.

[16] C. Silverstein, M. Henzinger, and H. Marais. Analysis
of a very large altavista query log. Technical note
#1998-014, Digital SRC, Oct. 1998.

[17] E. Tanin, R. Beigel, and B. Shneiderman. Design and
evaluation of incremental data structures and
algorithms for dynamic query interfaces. In
Proceedings of IEEE InvoViz '97, Phoenix, AZ, Oct.
1997.

[18] B. V�elez, R. Weiss, M. Sheldon, and D. Gi�ord. Fast
and e�ective query re�nement. In ACM SIGIR'97,
Philadelphia, PA, July 1997.

[19] M. Wang, J. S. Vitter, and B. Iyer. Selectivity
Estimation In The Presence Of Alphanumeric
Correlations. Proceedings of ICDE, pages 169{180,
1997.

