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Abstract—Federated Data-as-a-Service systems are helpful in
applications that require dynamic coordination of multiple or-
ganizations, such as maritime search and rescue, disaster relief,
or contact tracing of an infectious disease. In such systems it is
often the case that users cannot be wholly trusted, and access
control conditions need to take the level of trust into account.
Most existing work on trust-based access control in web services
focuses on a single aspect of trust, like user credentials, but
trust often has multiple aspects such as users’ behavior and
their organization. In addition, most existing solutions use a
fixed threshold to determine whether a user’s trust is sufficient,
ignoring the dynamic situation where the trade-off between
benefits and risks of granting access should be considered.
We have developed a Multi-aspect and Adaptive Trust-based
Situation-aware Access Control Framework we call “MATS” for
federated data sharing systems. Our framework is built using
Semantic Web technologies and uses game theory to adjust
a system’s access decisions based on dynamic situations. We
use query rewriting to implement this framework and optimize
the system’s performance by carefully balancing efficiency and
simplicity. In this paper we present this framework in detail,
including experimental results that validate the feasibility of our
approach.

Index Terms—trust, access control, semantic web, game theory

I. INTRODUCTION

Complex applications that require dynamic coordination of
multiple organizations, such as maritime search and rescue
(SAR) operations, disaster relief, or contact tracing of an
infectious disease, can benefit from the use of federated Data-
as-a-Service systems. Such systems consist of multiple mem-
bers who own their private data but would like to exchange
information necessary for a common mission. For example,
a vessel in distress wants to share its location and direction
of movement with other vessels in a SAR mission. Each
member of the federated system has data that needs to be
kept private, as well as data that needs to be shared with other
collaborators to accomplish the mission. Current approaches
to data sharing are centered around situation-aware access
control, also called policy-based or attribute-based access
control [1]-[3]. Members may join the mission at any time,
and data access decisions depend on situations like whether a
ship is in distress or a person tests positive for a disease.

However, in such systems, we often cannot completely trust
a user in this dynamic network as there may be malicious users
or those who abuse their privileges. For example, the U.S.
Department of Justice [4] reported many types of fraud in
disaster relief, including identity theft, fraudulent solicitations
for donations and charitable giving, insurance claim fraud,
etc. It is estimated that improper and potentially fraudulent
individual assistance payments are between $600 million and
$1.4 billion in Hurricanes Katrina and Rita disaster relief [5].
Due to these factors, it is clear that access control mechanisms
need to take the level of trust into account. Existing work on
trust-based access control in web services [6] often focuses on
just a single aspect of trust, such as user’s credentials, but trust
often has multiple aspects such as users’ behavior over time or
the organization to which the user belongs. In addition, most
such solutions use a fixed threshold to determine whether a
user’s trust is sufficient, ignoring the dynamic situation where
the trade-off between the benefits and risks of granting access
should be considered. Setting the threshold too high may deny
legitimate users, while setting it too low may give access to
malicious users.

One possible solution to address this issue is to use game
theory [7]. However, integrating game theory and maintaining
trust in a federated system adds to complexity of the system
and incurs extra cost. For example, the system needs to decide
where to store the information related to trust, and reduce
the communication overhead as in some use cases, such as
maritime SAR, network bandwidth is limited.

We propose MATS, a novel Multi-aspect and Adaptive
Trust-based Situation-aware Access Control Framework for
federated data sharing systems that addresses the technical
challenges identified above. Our framework is built using
Semantic Web technologies and uses game theory to adjust
the system’s decisions based on dynamic situations. Key
contributions of the MATS framework include:

1) A multi-aspect trust-based access control framework that
integrates identity trust, behaviour trust, organization
trust, and user roles;

2) A situation-aware access control framework that inte-
grates a game theory model to dynamically update trust



and the system’s access control decisions;

3) An efficient approach to implementing the proposed
framework in a federated semantic-web based architec-
ture by using query rewriting. This allows access control
checking to be part of query evaluation and uses existing
semantic-web frameworks without the need to imple-
ment additional complex modules such as distributed
reasoning.

The remainder of the paper is organized as follows. Section
IT discusses related work. Section III describes our approach.
Experimental results are presented in Section IV and Section
V gives our conclusions.

II. RELATED WORK

There is limited previous research on SAR mission on-
tologies. Weihong designed a maritime search and rescue
decision-making ontology to solve semantic heterogeneity of
information for SAR missions [8]. The ontology includes
Event, Ship, Incident Level, Volume of Oil Spill, and Person
classes and their subclasses to represent information about the
SAR mission. However, the ontology is limited to information
about an incident itself, without classes regarding organiza-
tional collaboration, and gives the impression that the ontology
is specific to oil spill accidents. Also, Weihong and Ruixin
developed a marine search and rescue environment ontology
to share knowledge about the search and rescue area and
establish a knowledge database [9]. However, this ontology
has the limitation that it only represents a specific portion of
SAR mission data - the environment. Oni et al. [3] developed a
SAR mission and Contact Tracing ontology to show real-world
applications of situation-aware access control in federated
systems. The SAR ontology included classes such as the
vessel in distress, organizations participating in the search
and rescue mission, assets owned by these organizations, the
rescue coordination center, and their data in the system. It also
incorporated roles, users, allowed operations (read or write),
rescue missions in which users or organizations are involved,
tasks in the mission, and others. A more sophisticated Contact
Tracing ontology was proposed in [10]-[12] which contains
slightly different classes such as electronic health records
(EHR), travel history, and healthcare-related organizations and
shared a similar structure with SAR ontology. However, all
these works only considered behavioral trust based on policy
compliance for access control. This paper introduces the game
theory element to capture more complicated human behavior
during the federated data exchange.

Yau et al. [1] propose a situation-aware access control
framework for distributed settings with a model for represent-
ing access control rules. However, trust is not considered in
their work.

There has been work on using semantic web technologies
to enforce access control or privacy preferences. Beimel and
Peleg [2] propose a situation-aware access control model based
on OWL ontology and SWRL rules. A similar semantic-based
approach was proposed by Sun et al. [13] and applied to e-
Healthcare. Kayes et al. [14] use an ontology-based solution

to represent purpose-oriented situations and use that in access
control of software services. Oulmakhzoune et al. [15] use
ontologies and query rewriting to enforce privacy preferences
for data stored at a single place. Padia et al. [16] applies a
query rewriting approach to enforce fine-grained access control
to RDF data stored at a single place. Oni et al. [3] proposes
a query rewriting method to enforce situation-aware access
control in federated systems. However, none of these works
consider trust.

The concept of trust has been used in access control systems
in previous work. Researchers in [17] propose a model that
extends traditional rule-based access control by incorporating
user trust levels. Trust and context are both considered for
assigning access rules based on context information and trust-
worthiness of users, which is evaluated using the reputation
of a user among other users [18]. However, these models do
not consider multiple factors that can affect trust.

Babhatti et. al. [6] propose a trust-based and situation-aware
access control framework for web services. Their solution
treats trust as part of authorization and uses trust credentials
to decide trust levels and roles for unknown users. Their
framework also proposes dynamic adjustment of users’ trust
levels based on users’ behavior as well as credentials. Bernal
et. al. [19] proposes a trust model for Internet of Things where
trust is computed based on reputation, quality of service, secu-
rity considerations and devices’ social relationships. However,
although both works allow users’ trust levels to be adjusted,
the threshold of required trust levels to access data is fixed,
and does not consider associated risks and benefits.

Game theory allows a system to weigh risks and benefits of
granting access to a user, and has been used to set thresholds
for trust levels [7], [20]. He et al. uses game theory to analyze
access control in a cloud environments where players include
users and cloud service providers [20]. However their utility
functions are abstract and do not provide details of how to
quantify risks. Helil et al. proposes a non-zero sum game
theory model [7] for access control. This model considers
trust, risks, and cost in the utility functions. However it focuses
on game theory in a client/server environment and does not
discuss how to integrate it with the rest of an access control
framework. Our paper integrates this model in a federated
situation-aware access control framework and evaluates the
framework’s performance in a simulation study.

Game theory has been widely used in network security [21].
In particular, game theory is used to analyze the strategic
behavior of users in access control systems in social networks
[22]. Additionally, game analysis is used to model the interac-
tion between users and the service provider in access control
systems [7], [23]. Both studies use trust-based access control
models to capture the dynamic behavior of users. The main
goal is to provide different access permissions based on the
users’ trust levels so that users with high trust can access
more resources. However, these models are mostly focused
on centralized environments where users interact directly with
the service providers. In our work, we consider a distributed
environment where members can directly query data from
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other members in a federated system.

[II. METHODOLOGY

In this section, we describe the MATS access control
framework in detail. Our framework consists of the following
five components:

MATS Access Control Model (described in III-A) that
defines the rules we have included in this framework.
Trust Management Ontology (shown in Figure 1 and
described in III-B) which takes into account a user’s and
organization’s identity-based trust scores and target data’s
benefit and risks. Users can extend this Trust ontology for
their specific scenarios.

Ontology of the Data Sharing Situation. We have used
maritime search and rescue as the situation use case in
this paper to validate our approach and have described
the maritime SAR Ontology in Section III-C.

Federated Querying across multiple participants. Section
III-D describes our approach to implementing the pro-
posed framework in federated systems.

Game theory model to dynamically adjust access deci-
sions. Section III-E describes how we use game theory
to dynamically adjust the threshold used in access control
and update users’ trust scores based on users’ behavior.

Our framework can be applied to other application domains
as well, such as disaster relief or contact tracing, and is part
of our ongoing work in this research.

A. MATS Access Control Model

We extended the situation-aware access control model in

(1]

to add consideration of trust, as well as users’ behavior,

benefits and risks of granting access to specific data. The new
model has the following components:

U': the set of users.

R: the set of roles. R has a hierarchical structure.

UR C U x R: the assignment of users to roles.

O: the set of data that can be shared.

PU, PO: properties of data or users.

SE: set of situation expressions typically on properties
of users or objects (PU, PO).

P: the set of permissions defined on O.

UT, RT: users’ or roles’ trust scores, which is a com-
bination of multiple aspects, including identity (e.g.,
credentials of an individual) and behavior (whether the
user has normal behavior in history).

PM: a payoff matrix of each type of data for different
players when the other player takes different actions.
Since we apply game theory to access control, the two
players are data requester and data provider. The possible



actions for provider are whether to grant access or deny
access. The possible actions for requester are normal
behavior or abusive behavior. More details can be found
in Section III-E.

e UB: users’ behavioral history, including “normal” behav-
ior and ‘“abusive” behavior. A user’s behavioral history
can often be observed by users in the system or by a
system coordinator.

o TE: expression on a user’s trust score. E.g., a user’s
combined trust score (as a weighted sum of scores on
different aspects of trust) > a user set threshold, which
often depends on the confidential level (whether the data
item is classified) and veracity (high quality/resolution
data may require higher trust threshold) of the requested
data item.

e BE: expression on a user’s behavior. E.g., a user’s
probability of abusive behavior < a threshold. A user’s
probability of abusive behavior can be computed from
a user’s behavioral history (UB). The threshold can be
computed from the payoff matrix P M using game theory.

e SEUR C 25E x UR, the set of situation-aware assign-
ment of roles to users. 257 is power set of SE.

o DTSERP C 258 x 2TE x 2BE » RP, the set of per-
mission assignments based on situation, trust, behavior,
and role of the user.

SEUR and DT SFERP can be represented as access control
rules. Here is a sample access control rule using our model:
a user can only have read access to a vessel’s location and
direction information if the user belongs to the SAR team
(role), has a trust score over 1.0, is within 100 KMs from the
vessel in distress (situation), and has the probability of abusive
behavior below a threshold computed from the payoff matrix.

B. Trust Management Ontology

Figure 1 illustrates the general trust management ontology.
The trust management ontology has three main subclasses -
Trust, Application, and Game Theory Elements.

The Trust class has three element classes: Behavioral Trust,
Identity Trust, and Trust Threshold. Identity trust represents
a user’s credentials. Organization and roles can also have
identity trust. If a user has no credential, we can also use
that user’s associated organization or role’s identity trust.

Each type of data is associated with a trust threshold which
specifies the minimal trust score needed to access the data. One
possible way to set the threshold is based on the data item’s
confidential level, which is consistent with the Bell-LaPadula
security model [24] requiring that users at a given security
level can only read data at the same or lower security level.
For example, we can set the threshold to a high value for
classified data and set it to a low value for unclassified data.

The application class has elements representing constituents
of a federated data exchange system, including organization,
role, user and data. Each data instance has associated benefits
and risks. These benefits and risks are used by the game theory
model presented in the section III-E to compute the payoff
matrix.

The game theory elements class includes three classes:
users’ behavioral history class, probability of abusive behavior,
and a threshold for abusive behavior for each data instance.
These three classes are used by a game theory model to
dynamically update trust and the system’s access control
decisions.

A user’s behavioral history is used to estimate a user’s
probability of abusive behavior. For example, a straightforward
way to do so is to divide the number of observed abusive
behaviors by the total number of observations. A user’s
behavioral history is also used to update a user’s trust score.
Using game theory, the system will also compute a threshold
for abusive behavior for each data instance from the payoff
matrix PM given in Section III-E. This threshold will be
directly used in access control such that only users whose
probability of abusive behavior is less than this threshold will
be allowed to access the associated data instance.

C. SAR Mission Ontology

As a use case example for a federated data-as-a-service
application, we modified the ontology for maritime SAR in
[3] based on the U.S. Coast Guard SAR manual [25] as well
as the general trust ontology developed in Section III-B. Figure
2 shows some major classes in the SAR ontology.

We describe a vessel in distress using following query
patterns in a SPARQL query:

?vessel rdf:type sar:Vessel .
?vessel sar:hasEmergencyPhase sar:Distress .

In the same way, we can query vessels belonging to the
Coast Guard Yard in New York as:

?vessel rdf:type sar:Vessel .
?vessel sar:hasOrganization ?0rg .
?0rg sar:isCommandedBy sar:NewYorkCoastGuardYard .

D. Trusted Federated Query Framework

We propose a Situation-Aware Trusted Federated Query
Framework to implement our access control model (shown
in Figure 3), which extends the framework proposed in [3].

Our proposed framework is efficient yet relatively straight-
forward. We use query rewriting to allow access control
checking to be a part of query evaluation, which can allow
users to access many data objects at a time. We also use an ex-
isting semantic-web framework without the need to implement
additional complex modules such as distributed reasoning. In
addition, we varied the architecture (whether trust-related data
is stored distributed or centralized) to optimize the system’s
performance.

We adopt a framework which consists of a mission coordi-
nator (MC) and trusted middleware (TM) at each member of
the system. The primary purpose of the Mission Coordinator
(MC) is to maintain the data access policy and a master
copy of trust scores of users and organizations, as well as
users’ behavioral data. In our implementation, this copy is
stored in an Apache Jena Fuseki SPARQL server [26]. Trusted
Middleware at each member can query this master copy
when they do not have corresponding information. Trusted
Middleware (TM) controls access to data when a user queries



Note Trust J
s Arrows: object properties
= Dots in side box: data properties User Data
» |dentity Trust Score = Type
SAR
Mission, Vessel » Behavior History » Unit
Mission & Availability » Behavioral Trust Score * Value
T
has task » Emergency_FPhase « Abusive Behavior Probability » Benefit
Task e License # Risk
* Assets — » Veracity Score
Organization
= Location Lafitude « Trust threshold
» |dentity Trust Score
+ Location Longitude = Abusive Behavior
Threshold
Fig. 2. Major Classes in SAR Ontology
Update Trust Score
MC Metwork

Mission Coordinator (MC)

Policy/TrustiBehavior
Propagation Module
Trust Score Evaluation
Module

| Game Theory Module ‘

Local Agent Network

Trusted Middleware

Fuseki Server ‘

Update data access policy,
trust, behavioral information

Behavior

Identity

Trust Scores

Trust Threshold

| Data Access Policy ‘

Behavior history, abusive
prob, abusive threshold

Query Construction Module
=
Federated Query Module
Federated
query
- A
Fuseki Server
b1

Distributed Data

Trust Scores

Data Access Policy

Abusive prob, abusive
threshold

Fig. 3. Trusted Federated Query Framework

data and sends appropriate federated queries to other TMs
when the requested data is not available in the local server
(Apache Jena Fuseki server in our implementation).

The reason for having this architecture is two-fold: 1) it
simplifies management of trust and access control policies
by having a centralized mission coordinator; 2) in many
applications such as maritime SAR, there is often already
a coordinator in the system which can serve as Mission
Coordinator. For example, each SAR mission is typically
led by a SAR coordinator, who can verify credentials of
members, assign trust scores, and gather behavioral data about
each member, either by the coordinator itself or reported by
members. Next we describe components in MC and TM.

Mission Coordinator: Mission Coordinator has a trust
evaluation module which assigns identity and behavioral trust

scores to users based on their credentials and behavioral
history.

Mission coordinator also uses a game theory model to
compute an estimated probability of abusive behavior for each
user and a threshold for this probability for all data items, and
updates trust scores based on newly observed user behavior.
Details can be found in Section III-E. This threshold can be
computed offline because it only depends on the payoff matrix,
which is static. The probability of abusive behavior, however,
needs to be recomputed after each observed user behavior.

The propagation module provides the latest data access
policy set by data owners, and propagates changes to access
policies, trust scores, or probabilities of abusive behavior and
associated threshold to different members.

Trusted Middleware: TM consists of two modules: Query



Construction Module and Federated Query Module. TM also
has a local Fuseki server which stores local data and a local
copy of trust scores, data access policy, probability of abusive
behavior and thresholds for users belonging to that member.

Centralized vs. distributed storage of trust and behav-
ioral data: trust and behavioral data can be stored centralized
at the MC or distributed at each TM.

Centralized storage simplifies updates of such data, but may
make the mission coordinator a bottleneck at query execution
time because all TMs will need to retrieve trust and behavioral
information from the coordinator. On the other hand, a purely
distributed solution will not have a bottleneck but will make
updating of trust and behavioral data more complex because
only the MC is authorized to make such updates (e.g., a
member cannot update its own trust scores).

In this paper we use a hybrid solution where MC still
maintains a master copy of trust and behavioral data for all
users in the system. However, each member’s TM stores a
local copy of trust scores and derived behavioral information
(i.e., probability of abusive behavior and the threshold of this
probability computed using game theory) associated with its
local users. At querying time, TMs can work together to
answer a query without the involvement of MC. When the
trust and behavioral data of a specific user changes, the MC
will update the master copy first and then push the update to
the corresponding MC.

Query rewriting: The Query Construction Module rewrites
a query in the following steps. First, it adds conditions
in data access policies (i.e., sets of situation expressions,
trust expressions, and behavioral expressions) set by the data
owners to the where clause of the original query. Second,
since data to answer each condition may be stored at different
members, it looks for the locations of the requested data using
ASK queries. Once the locations containing requested data
are found, subqueries with SERVICE keywords are added to
retrieve data from those locations. The results will then be
merged using the UNION operator. Finally it returns requested
data in the SELECT clause.

Users can specify access control policies by describing sit-
uations - e.g., locations of the data requester - and customized
rules consisting of situation, trust, and behavior expressions.
For example, a data owner can require the user’s trust score
to be greater or equal to the trust threshold of each requested
data. Also, the owner can dictate that the user’s probability of
abusive behavior be less or equal to the threshold of abusive
behavior computed using game theory.

Source Code 1 is an example constructed query for our SAR
use case that returns the current direction of a target vessel if
the requester (User_073) has a probability of abusive behavior
less than 0.2, and a trust score of over 2, or a trust score of
over 1 if the requester’s vessel has a towing license, or the
target’s vessel is within 110 kms of the vessel in distress. These
conditions are checked in a FILTER clause. There are three
possible vessels so three subqueries with SERVICE keywords
are sent to these vessels and results from these vessels are
combined using the union operator.

SELECT DISTINCT ?t_vessel,
WHERE ({

sar:User 073 sar:Identity Trust_Score ?user_idt
sar:User_ 073 sar:Behavioral Trust_Score ?user_bhv .
sar:User 073 sar:belongsTo ?org .

?org sar:Identity Trust_Score ?org_idt .
sar:User_073 sar:Abuse_Prob ?prob .

sar:User 073 sar:isCrewOf ?u_vessel

?u_vessel sar:License ?license .

?u_vessel sar:Location_Latitude ?v_lat

?u_vessel sar:Location_Longitude ?v_long .
?t_vessel rdf:type sar:Vessel .

?data, ?value

BIND ("37"" "xsd:integer AS ?d_lat)

BIND ("-72"" "xsd:integer AS ?d_long)

BIND (0.2 = ?user_idt + 0.3 % ?2user_idt + 0.5 =
— ?2o0rg_idt AS ?tscore)

BIND ((?d_lat-?v_lat)*(?d_lat-?v_lat) +

[ (?d_long-?v_long) * (?d_long-2?v_long) AS

— ?distance)

{
?t_vessel sar:hasData ?data .
?data sar:Type "Current_Direction”
?data sar:Value ?value .
} UNION {
SERVICE <http: _1:3030/hmm> {
?t_vessel sar:hasData ?data .
?data sar:Type "Current_Direction"
?data sar:Value ?value .

}

} UNION {
SERVICE <httr fuseki_3:3030/uscg> {
?t_vessel sar:hasData ?data .
?data sar:Type "Current_Direction”
?data sar:Value ?value .
}
} UNION {
SERVICE <ht fuseki_4:3030/usna {

?t_vessel sar:hasData ?data .
?data sar:Type "Current_Direction"
?data sar:Value ?value .

}

FILTER ((?tscore > 2 && ?prob < 0.2) |

— (?license="Towing"  "xsd:string && ?tscore > 1 &&
— ?prob < 0.2) || (?distance <= 110 && ?prob <

- 0.2))

FILTER (!isBlank (?data))

}

Source Code 1. Federated SPARQL query example

Query Execution: Since Jena Fuseki servers already sup-
port federated query execution, the federated query module
just needs to send the rewritten query to the local Jena Fuseki
server, which will coordinate with other Jena Fuseki servers
specified in the service clauses to execute the query. More
specifically, the portion of queries with a SERVICE keyword
is sent to the corresponding member for execution. The results
are then combined at the local server and returned to users.

Since the rewritten query already contains conditions to
enforce access control rules, users can only see results that
they are allowed to see.



E. Game Theory Model

We use game theory to model access control scenarios
in a federated data-as-a-service environment, and describe a
game model for dynamic access control. We will then present
how to compute a threshold for abusive behavior, which will
be directly used in access control such that only users with
probability of abusive behavior lower than the threshold will
be allowed to access a data instance. Finally we will show
how to update a user’s trust score after each access.

Our game model analyzes the interaction between two
players, including the user, who requests data from another
party in the federation, and the data provider. Allowing the
user to access the data can result in benefits or risks to the
data provider, depending on the behavior choice of the user. A
user might choose to behave in a normal way and have normal
access, which can bring benefits to both players, namely the
user and the provider. On the other hand, there might be some
temptations for the user to abuse their access privileges to gain
extra benefits.

The data provider can maintain the security of the requested
data by considering both the benefits and risks of allowing
access to the data. For example, sharing the location of a
ship in distress can have high benefits to the rescue mission,
and at the same time, the risk of sharing such data might be
low. However, sharing personal data about crew members of
the ship can be highly risky, and may not be necessary for
the mission. Therefore, access decisions should consider the
benefits and risks of sharing data.

In addition, trust is a key factor for access decisions in a
federated environment. Users with high trust can access more
confidential data compared to users with low trust. Trust can
change according to users’ access behavior. Users with normal
access behavior are rewarded by increasing their trust scores,
resulting in more future access. On the other hand, users may
lose their access privileges because of their abuse of access
permissions. Users with abusive access behavior are penalized
by decreasing their trust scores, which can restrict their future
access.

Game Model for dynamic access control: For dynamic
access decisions in federated data-as-service systems, we
model the access control scenario using a non-zero-sum co-
operative game, in which both players, the user and the data
provider, can win if the user chooses normal access [7]. The
access control game model can be defined using the following
components:

o u: the user who requests data.

e d: the data provider.

o A,={N, A} is the action set of the user, who can choose
normal (V) or abuse (A) access behavior.

o A4={G, D} is the action set of the data provider, who
can choose to grant (G) or deny (D) an access request.

Table I shows the payoff matrix for the federated access
control game. In each cell the first payoff is for data provider
and the second payoff is for user (data requester). Below are
notations used in the table:

TABLE I
PAYOFF MATRIX FOR SAR ACCESS CONTROL
| | User |
| Data Provider | Normal | Abuse |
Grant Benefitg, —Riskq, Benefit,+
Reward,, ExtraBenefit, — Penalty,
| Deny | —Costq,0 | 0,0 ‘

o Benefit,: the benefit that the data provider receives from
the user’s normal access.

o Benefit,: the benefit that the user receives from having
normal access.

e Riskgy: the risk to the data provider as a result of the
user’s access abuse.

o FExtraBenefit,: the extra benefit that the user receives
for access abuse.

o Costg: the cost to the data provider as a result of denying
access to a normal user.

e Reward,: the reward to the user for choosing normal
access.

o Penalty,: the punishment to the user for choosing access
abuse.

In the federated access game, the user’s payoff depends on
the reward and penalty, which change dynamically with every
access permission. Therefore, there is no pure strategy for the
game. However, we can obtain the Nash Equilibrium (i.e., no
party can increase the expected payoff by using a different
strategy) by using mixed strategies (i.e., each party takes an
action with a certain probability). Assuming that the data
provider grants access with probability p and denies access
with probability 1 — p, then the mixed strategy for the data
provider is (p, 1 — p). Additionally, if we assume that the user
chooses access abuse with probability ¢, and normal access
with probability 1 — ¢, then the mixed strategy for the user is
(¢,1 — q). The total expected utility of the data provider is:

Uq = plg(—Riskq) + (1 — q) Benefity|+
(I=p)gx 0+ (1—gq)(=Costg)] (1)

To maximize data sharing, the data provider can make
access decisions using the Nash Equilibrium of the mixed
strategies of the user (¢*,1 — ¢*).

. (Benefitq + Costq) )
= (Riskq + Benefity + Costq)

Computing threshold for abusive behavior: In practice,
the ¢* for Nash Equilibrium may still lead to negative overall
payoff for the data provider. So the data provider can use a
threshold ¢, that guarantees positive payoff.

—q¢ X Riskq + (1 — q;)Benefitg =0 (3)

The threshold ¢; = % can be pre-computed

for each data item by the data provider. When a user sends
an access request to a data item, we compare the user’s
probability of abuse and compare it to the threshold of the



requested data item. If the probability of the user’s abuse is
less than the threshold (¢ < ¢;), then the access is granted;
otherwise, the access is denied. A condition to check whether
a user’s probability of abusive behavior is less than ¢; will be
added in the query rewriting process.

The threshold depends on the benefit and risk of granting
access to the data. As the data confidentiality increases, the
risk of granting access to the data grows; hence, the access
threshold decreases, and the access decision becomes less
tolerant.

We estimate a user’s probability of abuse q based on the
user’s access history. The abuse probability of the user is
measured as the number of times the user chooses to abuse
access out of the entire access history of the user.

Trust Update: The trust of the user is updated after each
access based on the user’s behavior as well as the risk or
benefit utility of the data provider. Assume x and y represent
the total number of times the user chooses abuse or normal
use, respectively. We use the trust update function proposed
by [7] to adjust the user behavioral trust 7'(u) for the z*" time
of abuse and the 3" time of normal use.

T(w) {

Where ¢ and () are functions of the times of abuse and

normal use.
{ () = 32°
0(y) =2y

¢ is quadratic but ) is linear because we want to penalize
abusive behavior more.

max (T'(u) — p(x)Riskq,0)
T(u) + O(y)Benefitq

abuse
normal

“4)

IV. RESULTS
A. Experiment Setup

Dataset: Since there are no publicly available data sets for
maritime SAR, we generated synthetic SAR datasets in four
different sizes based on the Global Ocean Current Database
(GOCD) provided by National Centers for Environmental In-
formation (NCEI), and the National Oceanic and Atmospheric
Administration (NOAA) [27]. GOCD integrates ocean current
data from various capture methods, resolutions, and formats.
We generated four categories of the data - current speed,
current directions, east-west component speed, north-south
component speed.

Our dataset design includes five different vessels from
different organizations. Table III gives the attributes of vessels
belonging to various organizations. Situation-aware access
control policies, which we cover in the following section,
refer to these attributes to describe the precise contexts of
data access. Each vessel also records ocean current data such
as its direction and speed, which is a time series and useful
in SAR missions. Each vessel has 25 users and an evenly
distributed amount of ocean current data for every data size,
e.g., 250, 2,500, and 25,000. So we generated three data sets
with around 1250, 12500, and 125000 triples.

Queries: We ran a query where the rewritten query is as
given in Source code 1. The original query is asked by a user
of a rescue ship to return current direction data of all vessels in
the same mission. This query is quite expensive and returns
around 70% of data in the database. Also, the shapes of a
rewritten query vary in each experimental system structure -
centralized, fed-central, or hybrid - because the trust scores
and data distributions are different.

Access Control Rules: To demonstrate a situation-aware
access control policy, we provide three data access policies
that cover organizations and users’ reputations and behavioral
trust of users while considering the context of the data request
- in this case, the location of the data requester’s vessel. The
FILTER clause in source code 1 enforces the access control
policy of the experiments:

o Rule 1: The weighted sum of trust scores is more signifi-

cant than two, and the user’s abusive behavior probability
is less than 0.2 (?tscore > 2 && ?prob < 0.2)

o Rule 2: The user’s vessel has a towing license, and the
weighted sum of the trust score is greater than one,
and the user’s abusive behavior probability is less than
0.2 (?license="Towing"  “xsd:string && 2tscore > 1

0.2)

o Rule 3: The distance between the user’s vessel and
the vessel in distress is less than 110, and the
user’s abusive behavior probability is less than 0.2
(?distance <= 110 && ?prob < 0.2)

Metrics: We measure the query execution time of running

a batch of 100 queries, each from a random user. Each TM
created ten threads to run these queries simultaneously. The
execution time can be divided into time for query rewriting,
which is dominated by using ASK queries to find out vessels
that contain relevant data, and the time for executing the
rewritten query. We ran each query batch three times and
report the average time. We restarted all the TMs between
each run to minimize the impact of caching. We did not notice
much fluctuation of execution time between the runs.

Since we need to update the trust score and behavioral data
about the user who asked the query, we also report the time for
trust/behavioral data update. These updates were implemented
using SPARQL delete and insert statements (SPARQL does
not have update statements).

Assuming that there will be a new observation of a user’s
behavior for each query the user asks, we also report overall
time as the sum of time for query rewriting, execution, and
for updating the trust and behavior of the user who asks the
query.

Experiment Design: We consider three cases.

1) Centralized: this is a traditional server-client model for
data exchange. In this network, MC has all trust scores
and data. This is not a federated system. We use this
as a baseline to show the overhead of using a federated
system.

2) Fed-central: this case has data stored distributed in a
federated system but the trust and behavioral data are
stored at MC.

&& ?prob <



TABLE II
EXPERIMENTAL RESULTS

Data Size (triples) 1,250 12,500 125,000
| System | Centralized Fed-Central Hybrid | Centralized Fed-Central ~Hybrid | Centralized ~Fed-Central ~ Hybrid |
Query Rewriting(sec) 0 20.93 20.53 0 232 22.54 0 27.57 31.87
Query Execution(sec) 1.95 49 4.45 9.58 15.47 10.42 124 95.67 105
Trust Update(sec) 7.05 10.77 10.11 26.38 31.9 18.46 236.33 238.67 128
Overall(sec) 9 36.6 35.09 43.716 70.57 51.42 360.33 361.9 265.2
Query rewriting+execution(sec) 1.95 25.83 24.98 9.58 38.67 32.96 124 123.24 136.87
TABLE III probably due to fact that the centralized case has data from
VESSEL INFORMATION all members, so it is much larger than the data at each
Oreaniza Emergency . Latinde  Longitud member and takes more time to update the trust scores. A
t ‘ tit t . . .
reanizaion Phase feense  maHude  monsfude federated system like Hybrid allows multiple members to work
NOAA None None 46.3 -63.4 in parallel.
1 . .
HMM None None 29.5 -65.2 Between the two federated solutions, Hybrid leads to shorter
US Navy None Towing  31.7 -79.8 R
US Coast Guard  None None 432 815 overall time than Fed-Central for all data sets, and the query
MSsc? Distress None 37 72 execution time of both approaches is similar. Interestingly, we

3) Hybrid: this case has distributed data and hybrid storage
of trust scores and behavioral data (i.e., TMs have a local
copy of trust scores and behavioral information, and MC
has a master copy).

We employed a Docker container for each TM and Apache
Jena Fuseki server to simulate five trusted middlewares simul-
taneously. Each Docker container has a minimum of 3 GB and
a maximum of 6 GB RAM capacity. We uploaded data to each
Jena Fuseki server with the API provided by Jena Fuseki. One
of the TM also serves as the mission coordinator.

B. System Performance Results

Table II shows the time to execute a batch of 100 queries
for the Centralized, Fed-central, and Hybrid cases.

The results show that the Centralized case is the most
efficient in terms of query execution, which is expected
because data is at one place without the overhead of running
queries remotely. The centralized case also does not require
ASK queries because all data is at one place so its query
rewriting time is negligible so we reported zero.

The gap between Hybrid and Centralized is not drastic
though. For the largest data set, if we count both the query
rewriting and execution time, Hybrid took 136.87 seconds
and Centralized took 124 seconds. The ratio is higher for
smaller data sets due to the overhead of query rewriting and
federated queries but the absolute differences are within 30
seconds. Note that the time reported is the time to execute 100
concurrent queries, so the overhead of implementing access
control and query answering in a federated system is often
acceptable.

Interestingly, for the largest data set, Centralized has higher
trust update time and overall time than Hybrid. This is

'Hyundai Merchant Marine
2MSC Industrial Direct

observed that Fed-Central was much slower on trust updates
than Hybrid. This is unexpected as the Hybrid solution needs
to update both the master copy at the MC and the local copy
at TM. We find that this is likely because in Hybrid, queries
are distributed at TMs without the involvement of MC but in
Fed-Central all query patterns related to trust scores are sent
to MC. So MC became a bottleneck in Fed-Central because it
needs to query and update many trust scores at the same time,
which significantly slows down the updates. This indicates that
it is more efficient to keep a local copy of trust and behavioral
data at each member to avoid having the MC as a bottleneck.

C. Game Simulation Analysis

O L N WA U O N ® O

Average Utility of the Data Provider

1 2 3 4 5 6 7 8 9 10 11 12

Access Sequence

e Dynamic Static

Fig. 4. Comparing Utility between Dynamic and Static Access Control

We have generated data for the SAR scenario to validate the
dynamic access control model. We randomly initialize trust
data for 1,000 users with 50 consecutive access processes for
each user. Access requests are randomly sent to one of four
data items that we have defined with different low and high
levels of benefit and risk. Assuming users are rational players
who try to maximize their payoffs, we can estimate users’
choice of abuse or normal use for each access process. The



trust data is updated after each access stage based on the access
behavior of users.

We compare our dynamic access control with a static model
that uses trust levels to assign access privileges via access
rules. Similar to the simulation of the dynamic access, we
use random trust scores to generate data for 1,000 users, who
can request access to the same data with varying degrees of
benefits and risks. However, users’ trust cannot be updated
in the static access model. To protect the data from users
who abuse their access privileges, we apply the grim-trigger
strategy, in which we always grant users requests as long as
they do not abuse their access permissions. If they do, then
all their future access will be denied.

We select a random sample of 100 users with 12 consecutive
access stages for each access model. Then we calculate the
average utility of the data provider at each access stage
and compare the results between the dynamic and the static
access model. Figure 4 shows that the average utility of the
data provider is higher in the dynamic access model than
the static model for all stages of the access process. With
dynamic access control, all users can participate in each access
stage; however, their access privileges vary depending on their
updated trust scores after each access process. If users lose
some trust points because they abuse their access privileges,
they will not be allowed to access highly confidential data.
However, they can still access low-risk data, which can bring
more benefits to the data provider. On the other hand, the
number of users who can request data declines with the static
model at each access stage. In this model, the access control
strategy prevents users who abuse their access privileges from
accessing any more data regardless of the benefits to the data
provider or the rescue mission.

In addition, the results indicate that the utility of the data
provider consistently increases with each access stage in the
dynamic access control compared to the static access model.
The access threshold in the dynamic access control ensures the
Nash Equilibrium for each access decision based on the benefit
and risk of the requested data. However, the access control
strategy in the static model grants all access permissions for
users with trust levels that satisfy the access rules without
considering the benefits and risks they could bring to the data
provider.

V. CONCLUSION

This paper proposes a multi-aspect and adaptive trust-
based situation-aware access control framework for federated
Data-as-a-Service systems. This framework is applicable to
applications such as disaster relief, maritime SAR, or contact
tracing. The main contributions are threefold: 1) we propose a
trust model that considers multiple aspects including users and
organizations’ identity as well as users’ behavior; 2) we use
a game model to set thresholds in the access control model
and dynamically adjust trust scores based on users’ behavior;
3) we show that the proposed framework can be implemented
efficiently using a semantic-web based architecture. Experi-
mental results show that this solution is efficient and that the

dynamic game model leads to a higher payoff for the data
provider than a static model.

As future work, we will apply our solution to other use
cases such as contact tracing. It will be also interesting to
compare query rewriting based solutions with solutions using
distributed reasoning.
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