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Privacy has always been a great concern of patients and medical service providers. As a result of the
recent advances in information technology and the government’s push for the use of Electronic Health
Record (EHR) systems, a large amount of medical data is collected and stored electronically. This data
needs to be made available for analysis but at the same time patient privacy has to be protected through
de-identification. Although biomedical researchers often describe their research plans when they request
anonymized data, most existing anonymization methods do not use this information when de-identifying
the data. As a result, the anonymized data may not be useful for the planned research project. This paper
proposes a data recipient centered approach to tailor the de-identification method based on input from
the recipient of the data. We demonstrate our approach through an anonymization project for biomedical
researchers with specific goals to improve the utility of the anonymized data for statistical models used
for their research project. The selected algorithm improves a privacy protection method called Condensa-
tion by Aggarwal et al. Our methods were tested and validated on real cancer surveillance data provided
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1. Introduction

The advances in Information Technology and the recent push
from the federal government [1] made Electronic Health Records
(EHR) systems widespread in the United States. Based on a survey
by the American Medical Association (AMA), 42% of physicians use
some kind of EHR system, and it is estimated, that by 2015 the cov-
erage will grow to over 80% [2]. Electronically collected biomedical
data needs to be made available for research but at the same time
patient privacy must be protected. This is a major challenge for the
Healthcare Data and Knowledge Management field that has techni-
cal, management and policy implications.

Various approaches have been proposed to address privacy is-
sues regarding publicly released data. A popular solution is to mask
the original values of the attribute that could be used to identify
individuals. Perturbation based masking methods add random
noise to the original data values [3-8]. Data swapping techniques
exchange attribute values between different records [9,10]. Gener-
alization methods replace original values with more general ones
[11-13]. Suppression is a special format of generalization when
the value of an attribute is removed from the record. These mask-
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ing methods can be used by themselves or as parts of more com-
plex anonymization schemas.

Microaggregation and k-anonymity are two grouping based de-
identification approaches that gained considerable popularity in
recent years [14-17]. The main idea behind them is to partition
the data into groups of similar records and then mask the quasi
identifier attributes at group level so the records within a group
become indistinguishable. Multiple solutions have been proposed
to used as partitioning and masking methods to optimize these
anonymization methods [18,12,19,20].

The process of privacy preservation causes information loss,
which can be considered as loss of utility. To produce useful output
the data publisher has to balance the competing requirements of suf-
ficient privacy protection and maximum possible utility. Table 1
shows an example of utility loss in privacy preservation [21]. {Age,
Insurance, Zip} can be used to identify individuals in the dataset (quasi
identifiers). Diagnosis is a sensitive attribute. Screening shows
whether the individual is targeted for colon cancer screening or
not. Suppose that, in order to protect the sensitive attribute (Diagno-
sis), 2-diversity is required, so the quasi identifiers need to be modi-
fied in such a way that based on the quasi identifiers {Age, Insurance,
Zip} each individual in the dataset would be indistinguishable from at
least one other person. Tables 1(A) and (B) are both valid 2-anonymi-
zations of the original data (records sharing the same quasi identifiers
have the same Group IDs). However, Table 1(A) provides more accu-
rate results than Table 1(B) when answering the following queries:
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Table 1

Utility loss in privacy preservation.
ID Age Insurance Zip Diagnosis Screening
Original data:
1 54 No 40504 HIV Y
2 55 No 40509 HEP-B Y
3 60 HMO 40512 SM N
4 60 HMO 40517 HEP-B N
5 62 HMO 40524 HEP-B N
6 62 PPO 40525 Prostate cancer N
Group ID ID Age Insurance Zip Diagnosis Screening
De-identified data (A):
1 1 [54-55] No 4050X HIV Y
1 2 [54-55] No 4050X HEP-B Y
2 3 60 HMO 4051X SM N
2 4 60 HMO 4051X HEP-B N
3 5 62 Private 4052X HEP-B N
3 6 62 Private 4052X  Prostate cancer N
De-identified data (B):
1 1 [54-60] Any 405XX HIV Y
2 2 [55-62] Any 405XX HEP-B Y
3 3 [60-62] HMO 405XX SM N
1 4  [54-60] Any 405XX HEP-B N
3 5 [60-62] HMO 405XX HEP-B N
2 6 [55-62] Any 405XX Prostate cancer N

Q1: How many patients under age 59 are there in the data set?
Q2: Is an individual with Age =55, Insurance = No, Zip = 40509
targeted for colon cancer screening?

According to Table 1(A) the answer to Q1 is 2 and to Q2 is “Y".
But according to Table 1(B), the answer to Q1 is an interval [0, 4],
because 59 falls in the age range of record 1, 2, 4, and 6. The answer
to Q2 is “Y” or “N” with 50% probability each.

Two conclusions can be drawn from this example:

o Different anonymization leads to different information loss.
Tables 1(A) and (B) are on the same anonymization level but
Table 1(A) provides better results. Therefore, utility loss should
be minimized in privacy preserving.

e Data utility depends on the application. Q1 is an aggregate
query, so the data is more useful if the values are more accurate.
Q2 is a classification query so the utility of the data depends on
how much the classification model is preserved in the de-iden-
tified data. Utility is the quality of the data for the intended use.

To decide whether one de-identification method preserves util-
ity better than another, we need to measure utility of the de-iden-
tified data compared to the utility of the original data. In practical
terms it means that we need to define a distance measure between
the original data and the de-identified data based on utility. The
content of this distance measure depends on the use of the data.

The followings are examples of utility measures used in the
literature:

e Query answering accuracy: Answering queries such as count,
average and sum is the most common use of published data.
The quality of query answering depends on the distance of each
original value from the corresponding value in the anonymized
dataset. A quantitative measure was introduced by Xu et al.,
which uses the normalized interval size to measure the utility
loss for numeric attributes and normalized number of descen-
dants in the generalization hierarchy to measure the utility loss
for categorical attributes [22,23].

o Classification accuracy: The published data is often used to train
classifiers, therefore the data quality depends on how well the
class structure is preserved in the anonymized data. Fung
et al. propose a metric that measures entropy change during

anonymization [24,25]. Ideally, the entropy of an equivalence
class with respect to class label distribution should be mini-
mized in the published data.

Distribution similarity: Statistical distribution is an important
characteristic of a dataset. A model which measures the differ-
ence between the distribution of the original and the anony-
mized data has been developed by Kifer et al. [26].
Discernibility measure: Bayardo and Agrawal consider a discern-
ibility measure as a utility measure as they try to minimize the
equivalence class size while anonymizing the data [27]. The
more records are in an equivalence class, the less specific infor-
mation is preserved for those records.

Generalization measures include Generalization Height [28],
which measures the total number of generalization steps
applied in the anonymization process. The idea behind this
measure is that generalization causes information loss and the
total number of generalization steps represents the total
amount of loss. The Loss Metric penalizes the generalization
made in that entry according to the size of the generalized sub-
set [29,30]. Ambiguity Metric is the average size of the Cartesian
products of all generalized entries in each record in the table
[30].

Entropy based measures: Gionis and Tassa introduced entropy as
Mutual Information Utility Measure [31]. Private Mutual Infor-
mation Utility Measure builds on the previously mentioned
entropy measure and it quantifies the mutual information
between the generalized public data and the private data [19].

The same de-identified dataset might be useful for one purpose
but useless for another. When researchers request de-identified
biomedical data, they already have a plan how they want to use
it. Yet, these research plans are rarely utilized when choosing the
de-identification method. We believe that de-identification meth-
ods should be tailored to the specific needs of the data recipient
when possible and that this customization should reflect in utility
measurements as well.

We present a de-identification framework to address the need
for customized anonymization. Our approach investigates the
requirements of the data recipient and selects a suitable de-identi-
fication method that is specific to the requirements. We evaluated
our method by comparing it to three general purpose de-identifica-
tion algorithms using utility measures that were specific to the
data recipient’s requirements.

Our experiments used real cancer surveillance data provided by
the Kentucky Cancer Registry.

The rest of the paper is organized as follows: Section 2 gives a
detailed review of related work. Section 3 explains the materials
and methods used in our experiments. Section 4 describes our re-
sults. Section 5 discusses some of the issues that arose during our
experiments and Section 6 concludes the paper and provides direc-
tions for future work.

2. Related work

Most medical providers follow the Safe Harbor standard [32] in
the US when releasing data which removes 18 well defined
identifiers from the dataset. Sweeney showed that removing obvi-
ous identifiers does not provide protection against privacy attacks
[33]. As a solution, k-anonymity was proposed by Samarati and
Sweeney [11]. k-anonymity divides the data attributes into quasi
identifiers, sensitive attributes and non-sensitive attributes and
creates equivalence classes by masking quasi identifier attributes
in such a way that the quasi identifier attributes of any record
would be identical to quasi identifier attributes of at least k — 1
other records. Achieving optimal k-anonymity is NP-hard
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[34,27,35] and even though it effectively prevents identity disclo-
sure, it does not prevent attribute disclosure. To address this weak-
ness Machanavajjhala et al. introduced I-diversity [36]. [-diversity,
in addition to k-anonymity, requires each equivalence class to have
at least [ unique values for the sensitive attribute. k-anonymity and
I-diversity protect privacy effectively enough when the sensitive
attribute is a categorical variable. With a numerical sensitive attri-
bute however, an adversary might infer a “close enough” value to
jeopardize privacy. To address this issue Li et al. introduced t-close-
ness [37], which requires that, for each equivalence class, the dis-
tance between the distribution of the sensitive attribute in the
class and the distribution of the sensitive attribute in the whole
dataset must be smaller than a preset value t.

k-anonymity based techniques have multiple practical pitfalls.
They focus on datasets with categorical quasi identifier attributes
such as race or gender. When the dataset contains numerical quasi
identifier attributes, they are converted to categorical variables
(e.g. age can be converted to age intervals) [38]. Furthermore, the
quasi identifier values are generalized or suppressed to achieve
homogeneity of the equivalence classes [28,18,39]. These conver-
sions lead to considerable loss of information in the de-identified
dataset [40,26]. Implementation of k-anonymity, [-diversity and
t-closeness together leads to competing requirements resulting in
large class sizes with undesirable amount of information loss
[36,37]. Furthermore, most implementations of I-diversity and t-
closeness assume that there is only one sensitive attribute in the
dataset. Extension of these principals to multiple sensitive attri-
butes is not trivial and, again, leads to unreasonably large class
sizes with significant information loss [41-43].

Microaggregation is another privacy preserving approach
comparable to k-anonymity. Microaggregation focuses on numeri-
cal quasi identifier attributes, though categorical quasi identifier
attributes can be converted to binary dummy variables and han-
dled as numerical attributes [38]. Microaggregation clusters re-
cords in the dataset such that similarity among data points
inside the clusters is minimized and similarity among data points
in different clusters is maximized. Each cluster contains at least k
records, just like in k-anonymity. The quasi identifier values are
masked in a way that is relevant to the cluster, they can be re-
placed with the cluster averages for example [44-46]. This way
the quasi identifier values become uniform, making individuals
indistinguishable in a cluster. Achieving optimal multivariate mic-
roaggregation is NP-hard [47].

Microaggregation methods consist of two main steps, clustering
and masking. These steps can be manipulated independently to
minimize information loss. Clustering algorithms aim to achieve
optimal microaggregation and the level of information loss is usu-
ally the result of a trade-off between performance and time com-
plexity of the algorithm. Several heuristic clustering algorithms
have been proposed for microaggregation. Laszlo and Mukherjee
used a minimum spanning tree based method for clustering [44].
Chang et al. introduced a two-phase algorithm called Two Fixed
Reference Points (TFRP) [48]. Panagiotakis et al. proposed a succes-
sive group selection method based on sequential minimization of
SSE (sum of the within-partition squared error) [49]. The most
common way of masking in microaggregation is to replace the qua-
si identifier attribute values with the cluster averages [44-46]
which reduces variance and distorts covariance in the data. To ad-
dress this issue Domingo-Ferrer et al. proposed R-microhybrid, a
method that replaces the original data with synthetic data gener-
ated based on the mean and covariance of the original data in each
group. Since the mean and covariance are preserved in each group,
the mean and covariance of the entire data set are also preserved
[50]. Li et al. offer a microperturbation based solution by replacing
the data for each group using a statistical distribution with the
mean equal to the group average and some random noise that

represents the distortion in variance-covariance statistics caused
by the group average substitution [20].

There has been some research on privacy protection techniques
specialized for medical data and e-health. El Emam et al. published
extensively about privacy protection in the medical field
[51-53,15,54,16,55-59,17]. Benitez et al. described a lattice based
automatic policy discovery algorithm which creates optimal de-
identification policies to replace HIPAA’s static Safe Harbor [60].
A specialized anonymization technique was proposed to prevent
patient re-identification through linking standard diagnosis codes
by Chen et al. [61]. Durham et al. published about their research
on using cryptographic techniques to link data across different
health care providers [62]. There is little privacy research in the
medical field that shows interest in the utility of the de-identified
data based on the needs of the data recipient.

3. Material and methods

To evaluate our data recipient centered framework we selected
a test project where we worked together with biomedical
researchers at the University of Kentucky. These researchers
requested de-identified cancer surveillance data to evaluate risk
factors in cancer. Together with the researchers we created a set
of requirements to measure utility. These requirements were
very specific to the statistical analyses outlined in their research
plans:

e The de-identified data should be in the same data space and
should use the same dimensions as the original dataset. Many
anonymization techniques transform the data into new data
space using PCA [63,64]. While the reduced dimensionality
might make data mining easier for a data mining specialist, it
adds an extra layer of complexity that makes the dataset useless
for the medical researcher. They prefer to use their standard
variables with their original permissible values.

Basic statistics (average, sum, median) should not differ signif-

icantly after de-identification.

e Selected statistical analysis should give similar results when
performed on the original data and on the anonymized data.
The definition of similar in this case is the following:

o Variables should not change significance in a statistical

model. In other words, if a variable is significant when
an analysis is performed on the original data, it should
remain significant when the same analysis is performed
on the anonymized data. The same way, if a variable was
not significant for the original data, it should not be signif-
icant for the de-identified data either when the same anal-
ysis is performed.
Coefficients should not change direction for significant
variables. This means that if a coefficient is positive for a
significant variable when the targeted statistical analysis
is performed on the original dataset, it should be positive
when the same analysis is performed on the de-identified
dataset. It should be true the same way for negative
coefficients.

o The values of the corresponding coefficients should be
“close” for significant variables when the same analysis
performed on the original and on the de-identified data.
The definition of “close” is arbitrary in this case and
depends on the actual value of the coefficient. In our
experimental evaluation we checked whether the value
of a coefficient from the statistical analysis performed on
the de-identified data was in the 95% confidence interval
of the corresponding coefficient from the same statistical
analysis performed on the original data.

(o}
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Following the research plans of the data recipients, three statis-
tical methods were examined:

e Linear regression
e Logistic regression
e Cox’s proportional hazards model

These models are frequently used in biomedical research.

We considered k-anonymity and microaggregation based
methods when designing the customized de-identification ap-
proach for this project. k-anonymity based methods use general-
ization and suppression to mask data values, it was unacceptable
based on our requirements. We decided to use a modified version
of the Condensation method introduced by Aggarwal et al. [46].
Condensation clusters similar records into groups just like micro-
aggregation techniques do. However, instead of masking only the
values of quasi identifier attributes in the groups, condensation
replaces the values of all attributes with synthetic data that
was randomly generated based on the statistical attributes of
the original data. This decision is justified by the observation that
the traditional classification of attributes as Quasi Identifiers, Sen-
sitive Attributes and Non-Sensitive Attributes is not always triv-
ial. For example, let us imagine a scenario where a celebrity is
admitted to a hospital. Let us also imagine that a pre-existing
medical condition of this celebrity is public knowledge. If a data-
set, that was de-identified using a k-anonymity or microaggrega-
tion based method, is released from the hospital for this time
period, we would probably be able to find the group where the
celebrity belongs based on the publicly known demographics of
the celebrity. If both the known pre-existing condition and the
new diagnosis are listed in the dataset without masking then
we could infer the cause of the hospitalization with high
probability.

Our new anonymization techniques were evaluated by creating
de-identified datasets and performing the above listed statistical
analyses both on the original and the de-identified datasets. The
results of the analyses were compared.

3.1. The original condensation method

Aggarwal described the condensation method in [46]. The tech-
nique generates a synthetic dataset based on the distribution of the
original dataset. Similarly to previously discussed models the con-
densation algorithm creates groups in which the records would be
indistinguishable. Instead of masking the values inside the groups,
the condensation model creates synthetic random data based on
the statistical characteristics of the original data.

Definition 1 (Indistinguishability level [65]). A pseudo-dataset D
generated from the original dataset D is said to be k-indistinguish-
able, if every record X in D can be mapped to at least K records M(X)
in D. The record X is generated from M(X) using a randomized
algorithm which treats all records in M(X) symmetrically. There-
fore, X is equally related to all records in M(X).

Next, we will describe the algorithm. It consists of two main

steps.

o First, the data is condensed into multiple groups with size of at
least K,which is referred to as the indistinguishability level. The
greater the indistinguishability level, the greater the amount
of privacy. At the same time, a greater amount of information
is lost because of the condensation of a larger number of records

into a single statistical group entity. The groups need to be cre-
ated in such way that the data points in the same group are
close to each other.

e Second, mean and covariance statistics are computed for each
cluster (condensation unit). The statistics of the cluster are used
to create pseudo data that preserves the mean and covariance
statistics of the original data.

Generalization of the group creation problem: We would like
to create groups of records in such way that each group represents
a tight cluster of data points, with each cluster containing at least K
data points. We would like to minimize an objective function W()
which measures the average tightness within the clusters. An
example of such function could be the average intra-cluster dis-
tance between the data points, or the average centroid radius of
the clusters. For a given database D, partition it into s = |[N/K]
groups C; ... C; of at least K data points each, so that the objective
function W(C; ...Cs) is minimized.

Theorem 1 (Condensation Problem). The condensation problem is
NP-hard.

Proof. This is an instance of the balanced clustering problem, which
is NP- hard [66,67], even for K = 3 for minimizing the intra-cluster
distance.

A heuristic algorithm has been designed to overcome the hard-
ness problem [65]. The method is shown in Algorithm 1. The input
of the algorithm is the dataset D and indistinguishability level K. In
step 2a, a random seed is chosen from D to start a group. In step 2b
the K — 1 closest data points are added to the group. In step 2c the
group is removed from the dataset. This process is repeated
s = |[N/K| times until the dataset is empty. Note, that a maximum
of K — 1 records can remain after the last iteration. In step 4 these
records are added to their closest clusters. In step 5 the mean and
covariance statistics are calculated for each cluster and in step 6
the pseudo data is generated based on those statistics. Note, that
step 7 was added to transform the resulted pseudo data to the
same format as the original data, which is a requirement in our
experiments.

Algorithm 1. The original Condensation Algorithm [46,65]

Condensation (dataset D,K)

1. Let n be the size of D. Let s = |[n/K| be the number of
clusters
2.Fori=0tos

(a) Randomly select X; seed from the D. Move X; to C;
cluster.

(b) Select K — 1 data points closest to X;. Move them to C;
cluster.

(C) D=D - Ci
3. End For
4, Add the remaining (max K — 1) data points to their
closest cluster.
5. Compute mean and covariance statistics for each cluster.
6. Generate synthetic data for all attributes in each cluster
using the computed statistics.
7. (Addition by our requirements): Transform the data
values in the synthetic data to their original permissible
values.
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Categorical variables: Aggarwal et al. extend the model to
datasets with categorical attributes by using histograms instead
of means and frequencies of co-occurrences instead of covariance
[65]. However, this method assumes, that all attributes are cate-
gorical in the dataset because it is not possible to mix scalar covar-
iances with categorical frequencies to calculate dataset wide
statistics. Therefore, even though our data included categorical
attributes, we did not use this method. Instead, we converted the
categorical attributes to binary dummy variables which were after-
wards used as numerical attributes both at synthetic data genera-
tion and in our empirical evaluation with the regression models.

3.2. The improved method

To be able to design a de-identification algorithm that preserves
data utility specific to the statistical models listed previously, we
need to examine those models closely. We would like to find the
statistical attributes which need to be preserved so these models
would give similar results when run on both the original data
and on the synthetic data.

e Linear regression is an approach to model the relationship
between a scalar variable y and one or more variables denoted
as X. Let us suppose that we have a patient dataset which con-
tains a number of attributes (m) about patients, such as age,
gender, race, geographic location, cancer stage, etc. (indepen-
dent variables). Let us also suppose, that we have a scalar vari-
able y, such as one that measures a diagnostic bio-marker in the
blood. We are interested in the relationship between the inde-
pendent variables and this diagnostic variable. In linear regres-
sion, the model is:

y=Xp+e¢ (1)

where:
oy is the observations of the dependent response variable,
oX is a N x m data matrix as observations of independent
variables,
o B is the coefficient of the model that we are trying to find,
o ¢ is the error.

If ordinary least square method is used, the estimated

B= (XTX)AXTy. Here X"X is the covariance matrix of the data
if the mean of each variable is set to zero. X"y is the covariance
between every column vector of X and the response variable
column y. So if we can preserve the covariance of the whole
data set (which includes both independent and response vari-
ables), we can preserve the linear regression model.

o Logistic regression model can be used in similar situations as the
linear regression model, the difference being that the
the response variable is binary (with value 0 or 1). Let p; be
the probability of response 1 for patient i with independent var-
iable vector X;. The logistic model is:

logit(p;) = In <1§—> —Xif+e 2)

1

This can be seen as a modified linear regression model so the
requirement is the same as for the linear regression model.

e Cox’s proportional hazards model is widely used in biostatistics. It
allows analysis of the effect of several risk factors on survival.
Let us suppose, that we have a patient dataset which contains
a number of attributes (m) about patients, such as age, gender,
race, geographic location, cancer stage, etc. (independent

variables). Let us also suppose, that the dataset also contains
survival status and survival time. The attribute values, exclud-
ing survival status and survival time, for a patient i are repre-
sented by an m x n matrix X. The probability of the endpoint
(death, or any other event of interest, e.g. recurrence of disease)
is called the hazard. The hazard is modeled as:

h(t|X) = ho(t)e"'X 3)

where:
o t is the time of the endpoint (survival time),
o h(t) is the hazard of dying at time ¢,
o X is the matrix of the independent variables (covariates)
that affect the hazard,
o B is the coefficient of the model that we are trying to find,
o ho(t) is the baseline hazard. It indicates the instantaneous
risk for the respective individual when all independent var-
iable values (X;) are equal to zero.

We can easily linearize this model:

hit) _ o
In—==p8X 4
ho(t) " @
We now have a fairly “simple” linear model that can be readily
estimated.

Assumptions. While no assumptions are made about the shape of
the underlying hazard function, the model equations shown above
do imply two assumptions.

o They specify a multiplicative relationship between the under-
lying hazard function and the log-linear function of the covari-
ates. This assumption is also called the proportionality
assumption. In practical terms, it is assumed that, given two
observations with different values for the independent vari-
ables, the ratio of the hazard functions for those two observa-
tions does not depend on time.

Consider, two observations i and i’ that differ in their X values,
with the corresponding linear predictors:

ni=>y pXi (5)
ieD
and
ne =Y _pX; (6)
ieD

The hazard ratio for these two observations is:

hi(t) _ ho(t)e" e’

hy (¢) B ho(t)e' ey ™)

As we can see, the ratio of the hazard functions for those two obser-
vations does not depend on time.

o The second assumption of course, is that there is a log-linear

relationship between the independent variables and the
underlying hazard function.
To build the model we need to compute . Suppose R; is the
set of patients who are at risk at time j (i.e., they died at some
time t;, > t;) and patient i died at time ¢;. The conditional prob-
ability of patient i died at time t; given one of the patients at
risk at t; died equals



T.S. Gal et al./Journal of Biomedical Informatics 50 (2014) 32-45 37

. ) hi(t) ef'Xi
P(i died at t;|someone died at t;) = NG = S
€R; [eR;

It is important to note that the baseline hazard function is can-
celed out. We can find the coefficient vector p that maximizes
the product of these conditional probabilities (i.e., maximum like-
lihood). To approximately preserve the model (f), we need to en-
sure that:

1. The risk set R; is preserved.

2. The relative distance (similarity) between at risk patients

are approximately preserved.

The first condition is straightforward because R; is used in comput-
ing the conditional probability. Preserving the risk set R; means
that the survival status and survival time attributes need to remain
unchanged.
We use an example to illustrate the second condition. Consider
three patients P;, P,, and P;. Suppose their survival times
are 12 months, 13 months, and 30 months, respectively.
Patient P; and P, also have more similar attributes compared
to P;. Clearly, when we anonymize the data, we can blur the
difference between P; and P, which will not introduce much
distortion, but we should not blur the difference between P;and
Ps.

3.3. Implementation of our model

We developed the following privacy protection method
(Algorithm 2) that achieves the above conditions. This method first
divides the data set into two subsets Dy and D;, where D, contains
the patients who died and D; contains those who are still alive.
Only patient records in Dy will have impact on the proportional
hazard model because we do not know the outcome for
those who are still alive. Thus, it does not make sense to mix pa-
tients in Dy with D; and the method will anonymize Dy and D;
separately.

The method then runs the k-means clustering algorithm [68] to
generate |n;/k| clusters on each subset D; (i =0, 1). The objective
of k-means clustering is to minimize the average squared Euclid-
ean distance of data points from their cluster centers, where a clus-
ter center is defined as the mean or centroid of the data points in a
cluster.

Survival time is the response variable in survival analysis
with proportional hazards model and it is important that pa-
tients with similar survival time be clustered together. For that
reason, we used weighted Euclidean distance function to calcu-
late the distances among the data points, with weight w as-
signed to survival time and the rest of the weight evenly
distributed across other attributes. Here, w is a parameter that
can be fine tuned to perfect the clustering process. In our exper-
iments, w = 0.5 gave good results. Different models with differ-
ent response variables might need to set the weights
accordingly.

Since some clusters may have fewer than k points and some
may have more, in step 2c¢ the method moves points from larger
clusters to smaller ones to make sure each cluster has at least k
points. Step 2d ensures privacy protection by generating synthetic
data preserving the mean and covariance statistics of each cluster.
Thus, the difference between patients in the same cluster is
blurred. Since there are at least k patients in each cluster k-ano-
nymity (or k level indistinguishability by Definition 1) is satisfied.
Next, we show that this method satisfies the two conditions
necessary to approximately preserve the proportional hazard
model.

Algorithm 2. Improved Anonymization Algorithm for Proportional
Hazards Analysis

Improved-Condensation (dataset D, k)
1. Divide D into two data sets Dy and D; such that Dy
contains patient records with survival status equals 0 and
D¢ contains patient records with survival status equals 1.
Let ng and n; be the size of Dy and D;.
2.Fori=0to1

(a) Run k-means clustering on D; to generate |n;/k|
clusters using weighted Euclidean distance, where weight
w is assigned to the response variable in the statistical
model targeted, and the rest of the attributes receive equal
weight.

(b) Sort the clusters in ascending order of cluster size. Let
them be Cq,C5,...,Cs.

(c) For each cluster C; that contains less than k patients,
find k — |C;| patients closest to the center of (; that lie in
clusters that contain more than k patients. Move these
patients to cluster C;.

(d) For each cluster G;

i. Synthetic-Data-Generation: Compute mean and
covariance statistics. Generate synthetic data for all
attributes in each cluster using the computed
statistics except that the survival status attribute is
not changed. (See Algorithm 3)

ii. Sort the newly created synthetic data clusters by
Survival Time. Also sort the original Survival Time
values the same way. Assign back the original
Survival Time values to the synthetic dataset,
replacing the smallest synthetic Survival Time value
with the smallest original Survival Time, so on. This
way we ensure that the synthetic dataset preserves
the original Survival Time values and also the
correlations are preserved in the synthetic dataset.

iii. Transform the data values in the synthetic data to
their original permissible values.

(e) End For
3. End For

Note, that for proportional hazards analysis, the risk set R;
depends on both survival status (only those patients who already
deceased are in the risk set) and survival time (any patient in the
risk set who survives longer than time ¢; belongs to R;). The above
algorithm does not modify survival status and survival time, thus
the risk set R; is preserved. For condition 2, the distance function
used in the clustering step considers both the similarity based on
survival time and the similarity based on other attributes, so pa-
tients with similar survival time and other similar attributes are
more likely to be assigned to the same cluster. Thus this condition
is satisfied as well. For example, using the example from the previ-
ous section, patients P; and P, are likely to be assigned to the same
cluster while P; is likely to be assigned to another.

Our method bears some similarity with the condensation ap-
proach [46,65]. However, the condensation approach has three
drawbacks that needed to be improved:

e The condensation algorithm picks cluster centers randomly, so
it may generate inferior clusters. We improved the algorithm
by using k-means clustering, which is reasonably efficient in
the sense of within-class variance [68]

e The condensation algorithm assigns equal weight to all attri-
butes, including survival time, so patients with similar survival
time may not be assigned to the same cluster. Our algorithm
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uses weighted Euclidean distance at clustering, with signifi-
cantly larger weight assigned to survival time than other attri-
butes to ensure that records with similar survival time are
clustered together.

e The condensation algorithm does not consider the difference
between patients who are in the risk set (deceased) and patients
who are not (alive). Our algorithm separates these two classes
and de-identifies them independently.

The synthetic data generation method (point 2di in Algorithm
2) is described in Algorithm 3. The input is a cluster that contains
similar data points. In step 1 the data in the cluster is shifted to a
new data space using Principal Component Analysis (PCA). In this
space, the data components Z,Z,,...Z, are independent. In step
2 random data Z; is generated with the statistical characteristics
of Zi. In step 3 the random independent Z},Z,,...Z, components
are combined into one dataset Z'. Finally in step 4 Z' is shifted back
to the original data space using reverse PCA and CJ’. is created. CJ’- has
the same attributes as C; had. The means and the covariances
among the attributes are preserved.

Algorithm 3. Synthetic Data Generation

Synthetic-Data-Generation ((;)
1. Using Principal Component Analysis (PCA) shift the data
in the cluster into a new space (C; — Z), creating
independent components Zy,Z, ...Zp.
2. For each independent component Z;
(a) Generate random data Z; with normal distribution
such way that
\Zi| = |Zi,
Mz, = liz, and
UZ; =0z
3. Combine 77,7, ...
manner
4, Using reverse PCA shift Z’ back to the original data space
(2~
5. Return C;

Z, into one dataset Z' in an orderly

The algorithm was implemented using the R statistical soft-
ware. The data was stored in a MySQL database.

3.4. Complexity of our model

Let n be the number of records, m be the number of attributes
and s = |n/K] the number of clusters. The cost of k-means cluster-
ing is O(Isnm) [69], where I is the number of iterations run to refine
clustering. Even though the complexity is linear to the number if
iterations, the number of clusters, the number of records and the
number of attributes, it can be costly if the number of iterations gets
out of control, so statistical software packages usually offer a
parameter to set the maximum number of iterations to a reasonable
limit. In the R statistical software it is set to 10 by default. The cost
of PCA for one cluster is O(Km?), as K is the approximate number of
records in the cluster. This needs to be done s times, so the cost of
computing PCA for the whole dataset is O(skm?) = O(nm?). So the
cost of the whole algorithm is O(Isnm + nm?) = O((m + Is)nm).

PCA is causing the algorithm to be square in terms of the num-
ber of attributes. This is usually not a problem in patient datasets
where n>>m. For high dimensional datasets where n<m, such
as genetic or imaging data, we can use a method that is referred
to as the PCA transpose trick and has been used when generating
eigenfaces [70-72]:

Proposition 1. Let us suppose that we have an m x n observation
matrix A, where n<<m. To find the PCA of A, we need to compute the
eigenvectors of the large m x m covariance matrix ATA, which is
computationally difficult. Instead, we can compute the eigenvectors of
the n x n matrix AAT, because if v is an eigenvector of AA”, then AT v is
an eigenvector of ATA.

Proof. Let v be an eigenvector of AA” with eigenvalue /. Then

(AATYv = v

AT(AATv) = AT ()

(ATAYATv) = 1(ATv)

so ATv is an eigenvector of ATA, with eigenvalue . Therefore,
instead of computing the eigenvectors of ATA directly, we can
compute the eigenvectors of AA” and multiply those from the left
by A”.

This way the complexity of PCA can either be O(nm?) or O(n®>m),
depending on the dimensionality of the data. So the cost of the
whole algorithm is either O((m + Is)nm) or O((n + Is)nm).

3.5. Experimental evaluation

We developed a utility based de-identification method based on
the preservation of specific statistical qualities of the data. The
promise of doing this is that statistical models based on these pre-
served statistics would return comparable results when run on the
anonymized dataset, as if they were run on the original data. In the
experimental evaluation we prove that our model:

e Works reliably and is able to produce statistically consistent
output.

o Is scalable in terms of cluster size (K).

o Is scalable in terms of the number of attributes.

o Is scalable in terms of the size of the dataset.

The experimental evaluation was conducted with the following
setup:

o The computational environment: The tests were run on a vir-
tual machine in a Dell PowerEdge R610 virtual environment
with 4 CPU cores and 8 GB RAM assigned to the virtual machine.
The operating system was Ubuntu Linux 10.04 Server. The algo-
rithms were implemented in the R Statistical Package. The data
was stored in a MySQL database.

o The data: Two cancer surveillance datasets were used for testing.
The first contained data of colon cancer (N = 9,552), and the sec-
ond of lung cancer (N = 17,421) patients who were diagnosed
between 2004 and 2009. The variables in the datasets were:

o VitalStat (vital status): Whether the patient was alive at
the time of last contact (categorical)

o Survinterval (survival time): The time elapsed between the
time of the diagnosis and either the time of death or the
time of last contact (scalar - integer)

o DiagAge (diagnosis age): Age at diagnosis (scalar - integer)

o Gender: The gender of the patient (categorical)

o Race: The race of the patient (categorical)

o Stage: Cancer stage at the time of the diagnosis (categorical)

o Appalachia: Whether the patient lives in Kentucky’s Appa-
lachian region. The Appalachian region is a predominantly
rural area with high poverty rate, lower education levels
and less access to health care. Cancer rates are the highest
in the Appalachian region in the whole United States
(categorical)

o TobaccoUse (tobacco usage): Whether the patient used
tobacco products or not (categorical)
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o PrimaryPayor: Who pays for the patient’s medical care.
Permissible values include {private insurance, federal pro-
gram, uninsured}.

o Statistical models: The following statistical models were used
in the R statistical software:

o Linear regression:

Stage, Gender, Race, Appalachia, TobaccoUse and Primar-

yPayor were used as predicting variables with Survinterval

(survival time) as the response variable. The research

question was: How do cancer stage, gender, race, geographic

location, tobacco usage and health insurance status affect the
survival time of the patients? Categorical attributes (Stage,

Race and PrimaryPayor) were changed to binary dummy

variables. Only the records where VitalStat =0 (deceased

patients) were used for this analysis.

Logistic regression:

The same variables were used as for linear regression with

the difference of variable SurvInterval, which was con-

verted to binary variable here (low or high survival time).

The rational here is to build a model that predicts whether

a patient would have low or high survival time. Only the

records of deceased patients were used for this analysis

as well.

Cox’s Proportional Hazards Model:

DiagAge, Gender, Race, Appalachia, Stage, TobaccoUse and

PrimaryPayor were used to build a model to assess the risk

factors contributing to the death of cancer patients. Surv-

Interval (survival time) and VitalStat (vital status) form a

survival object in this survival analysis.

e Metrics: Our requirement was to preserve information in the
data, such that specific statistical analyses would yield similar
results when run on the original and the de-identified data.
We evaluated our method by measuring the change in the
parameters of the statistical models (coefficients) before and
after anonymization. The followings metrics were reported after
the statistical models were built based on both the original and
the synthetic datasets:

o Percentage of coefficients changed significance.

o Percentage of significant coefficients changed direction.

o Percentage of the new coefficients were out of the 95% con-
fidence interval of the original coefficients.

(o]

[e]

We used conditional privacy to measure the privacy of the de-
identified data [73]. Conditional privacy is an average measure
of privacy that was originally proposed in context of distribu-
tion reconstruction after additive perturbation. The measure is
based on the differential entropy of a random variable. The dif-
ferential entropy of A, given B = b is:

h(AB) = — / fu5(a.b)log,fys_(@)dadb 9)

Qnp

where A is a random variable describing the data, and B is another
random variable giving information on A. 2, defines the domain of
A and B.

The average conditional privacy of a random variable A, given B, is:

II(AB) = 2"4B) (10

This measure will be used in the context of A to be a random vari-
able in the original data and B the corresponding random variable in
the de-identified data. If conditional entropy between A (original
data) and B (synthetic data) is zero then A and B are identical so
there is no privacy preserved. The greater the conditional privacy,
the greater the privacy protection is.

o Algorithms: We compare our algorithm to a commercially
available anonymization system, the original condensation
method and the TFRP algorithm. The following naming conven-
tions were used:

o Commercial: We used a commercially available de-identifi-
cation software which achieves k-anonymity through a
heuristic algorithm using generalization and suppression.
Condensation: The original condensation algorithm [46,65].
o TFRP: Two Fixed Reference Points (TFRP) method [48]. We

chose TFRP in our comparison as it is one of the fastest
microaggregation algorithms that achieved similar utility
as other slower algorithms in the field. TFRP is a two-phase
method for microaggregation. In the first phase, TFRP uses
the pre-computing and median-of-medians techniques to
shorten its running time. In the second phase, TFRP gener-
ates variable-size groups by removing the lower homoge-
neous groups to reduce the number of groups and to
improve the data quality. The time complexity of this algo-
rithm is O(n?/k).

o Improved: This is our algorithm, which is an improved ver-
sion of the condensation method.

o

To make sure that our algorithm performs consistently and that
the resulting datasets are similar, we repeated each test cycle
one hundred times including the synthetic data generation.
Each cycle was evaluated independently and the averages are
reported here.

4. Results
4.1. Utility preservation

For this first test we used K = 100. We ran the three statistical
analyses on all original and de-identified datasets and compared
the coefficients from the models resulted by analyses run on
the original datasets to the coefficients from the models resulted
by analyses run on the anonymized datasets. For the proportional
hazards model we compared the exp(coef) values (the exponen-
tial values of the coefficients) as they give the hazard ratios and
those are the parameters from the model that are used in
practice.

o The percentages of the coefficients that changed signifi-
cance: Fig. 1 shows the percentages of coefficients that changed
significance when anonymized. For this measure, the smaller
percentage means better utility preservation. Preserving signif-
icance is important for researchers to decide which variables
have real effect on the outcome.

As Fig. 1 shows, our improved algorithm performed the best,
with performance between 1.85% and 26%.

The percentage of the significant coefficients that changed
direction: Fig. 2 shows the percentages of significant coeffi-
cients that changed direction after de-identification. For this
measure again, the smaller percentage means better utility
preservation. The direction of a coefficient gives information
about the direction of the change in the outcome given the cor-
responding attribute changes and as such it is important to pre-
serve after de-identification. It would tell us for example,
whether smoking has positive or negative effect on survival
time. For the proportional hazards model the exp (coef) values
are used in practice. The exp (coef) values show how the change
of an attribute affects the overall risk. When the coefficients
change direction in this case, the exp (coef) values change
whether they are smaller or larger than one. Since the hazards
are proportional to the exp (coef) values, they change the risk
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Fig. 1. Coefficients changed significance.

in a positive way if they are larger than one and negative way if
they are smaller.

As Fig. 2 shows, our improved method performs best among the
de-identification methods, and it works significantly better for
the lung cancer datasets. A possible explanation is that since
lung cancer is much more aggressive and shorter in duration,
these effects might be more exaggerated with less co-morbid-
ity. Therefore the relations are clearer and they are easier to
pick up for analysis.

The percentage of the coefficients that were outside of the
95% confidence intervals of the original coefficients: The
actual value of the coefficients tell the multiplicative effect of
the variable on the outcome (Again, the smaller the percentage,
the better the utility preservation). We consider it significant
distortion in the statistical model if a coefficient in the de-iden-
tified model deviates from its twin coefficient in the original
model by more than the 95% confidence interval of the original
coefficient. Fig. 3 shows, that our improved method performs
best among the algorithms.

Although TFRP and our improved method have similar utility

for linear regression and logistic regression, our method signifi-
cantly outperforms TFRP for the Cox regression model, probably
because our clustering algorithm is specifically tuned to preserve
Cox regression model (e.g., our method puts more weight on sur-

vival status and survival interval and never puts patients with dif-
ferent survival status into the same cluster).

e Privacy: Fig. 4 shows the conditional privacy measures for the
de-identified datasets. Based on this measure the Condensation,
TFRP and Improved algorithms provide similar privacy
protection.

4.2. Scalability

We compared the scalability of the tested de-identification
methods in three areas:

e Cluster size (varying K)
o Number of variables (varying m)
e Number of records in the dataset (varying n)

o Scalability in terms of cluster size
In this test, we varied the cluster size (K = {10, 20, 50, 100, 200,
500}), while keeping the number of the variables and the data-
set size unchanged. The upper limit for the commercial de-iden-
tification tool was K = 100, that is why the blue line ends before
the others. We report the execution time as a measure in Fig. 5.
Cluster size (K) should not affect the execution time of our
model significantly as it was canceled out in the complexity
calculation. However, as Fig. 5 shows, the execution time
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Fig. 2. Significant coefficients changed directions.

decreased at first as K increased until about K=50, then it
increased again. The reason for this can probably be found in
the implementation of the algorithm. Execution time consists
of CPU (central processor unit) time and disk read/write time.
In the complexity calculation we only examined CPU time.
Our algorithm was implemented utilizing a database system.
Database systems utilize many techniques that affect execution
time, such as caching or indexing. Database systems usually use
hard disk drives to store data, which makes reading and writing
operations time consuming. To overcome this handicap, mem-
ory tables were used in the database. Writing to and reading
from the memory is considerably faster than disk operations,
yet it still requires time. This could be the reason behind the
shape of the curve for the improved algorithm in Fig. 5. The
majority of the read and write operations occur at two phases
in the improved algorithm (Algorithm 2):

o Cluster creation (2a in Algorithm 2): Even though overall
the same amount of data is read and written when we pro-
cess the same dataset using different K values, it is done in
different packaging. When K is small, the size of the data is
smaller, but the number of clusters is larger; so smaller
amount of data need to be read and written many more
times. When K is large on the other hand, there are fewer
clusters, so larger amounts of data are read and written
less times. This can conflict with the caching policy of

the database system making it more time consuming to
write small amounts of data repeated many times.

o Moving data points from larger clusters to smaller ones to
ensure K-indistinguishability. In this case disk reading and
writing time depends on the number of data points that
need to be moved among clusters to make the clusters
n. > qK (2b and 2c in Algorithm 2).

To asses how read/write times affected the execution time, we
measured the time needed for cluster creation and moving
records from larger clusters to smaller ones separately (Fig. 6).
Fig. 6 shows the averages of ten measurements for various K
values (K = {10, 20, 50, 100, 200, 500}). The time used for read
and write operations was almost constant as K varied, with
almost zero standard deviation. On the other hand, the time
needed for moving records from larger clusters to smaller ones
closely imitated the shape of the overall chart in Fig. 5. It is not a
requirement for K-means clustering to create clusters with
equal number of records and it does not seem to do well when
the cluster size is too small or too large. To compensate this
weakness, the improved algorithm needs to move more records
from larger clusters to smaller ones when K is too small or too
large. Another interesting fact to notice is the large standard
deviation in this second line. This can be explained by the
random nature of K-means clustering.
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In real life, K is usually set to a value between 20 and 100, where
execution time does not change significantly for the improved
method. It also performs well compared to the two other algo-
rithms in this interval.

Scalability in terms of the number of variables

For this test we varied the number of variables between 2 and
13 (m={2, 4, 8, 13}) while keeping K= 100 and the size of the
dataset unchanged. As we showed earlier, our improved
method has square relationship in time complexity in terms
of the number of dimensions because of the PCA calculation.
We also showed the PCA transpose trick, which can be used
for datasets with high dimensionality. Our empirical results
did not expose the square relationship. A possible reason for
this is that the overhead coming from disk input-output opera-
tions probably dwarfs the effects of the PCA calculation. Our
improved algorithm performed well, especially when compared
to the commercial de-identification tool in higher dimensions.
(Fig. 7). The commercial tool is a proprietary software. It imple-
ments k-anonymity through a heuristic lattice search which
seems to become complex at higher dimensions. It also uses a
database system to store the data during de-identification
which means disk operations and other overhead. On the other
hand, k-anonymity only masks quasi identifiers. The number of
quasi identifiers is usually no more than five or six, in which ter-
ritory the commercial tool performs well.

Scalability in terms of dataset size

For this test we varied the size of the dataset between about
10,000 and 430,000, while keeping K and the number of vari-
ables unchanged. We created larger datasets by combining the
original datasets with synthetic data. According to our complex-
ity calculation, dataset size is in linear relationship with time
complexity, unless we use the PCA transpose trick for high
dimensional data. Our empirical results show an almost linear
relationship between the size of the dataset and execution time
except for the TFRP algorithm, which has a square relationship
between N and time complexity. The improved method showed
considerable variation in terms of execution time when experi-
ments were repeated with the same settings. Just as previously
in the cluster size experiments, this variation can be explained
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Fig. 8. Execution time when varying the size of the dataset.

by the random nature of K-means clustering.

Another interesting observation is the slightly sub-linear nature
of the curves in Fig. 8. Since all these models were implemented
utilizing database systems, the explanation for this anomaly can
probably be found in the decreasing overhead in database
operations at larger datasets. In other words, database optimi-
zation seems to work better when larger chunks of data are
moved.

5. Discussion

De-identification is a balancing act between privacy and utility
preservation. The most common approaches to de-identification
are generalization and suppression, which, by definition, operate
on the basis of information loss. As we showed in this project, an
alternative solution is synthetic data generation. The promise of
this approach is to generate synthetic records that might have come
from the same population as the original records. Yet, usage of syn-
thetic data is not widespread, possibly because of the resistance of
the biomedical research community. It needs to be studied whether
researchers are willing to work with synthetic data and whether the
biomedical research community is ready to accept the results pro-
duced using synthetic data as equivalent to results coming from ori-
ginal data. This is an area where research can be extended.

Although our anonymization approach was purposefully cus-
tomized to the needs of the data recipient, we can still investigate
whether it is generalizable or not. Generalization of our methods
can be addressed on two levels:

e Our customization approach can be generalized and used for
other projects, namely:

o Ask for input from the data recipients about their data
usage plans (mining methods, statistical analyses, etc.).

o Analyze the proposed data mining and statistical models.
o Design a de-identification method that will minimally
obscure the data while ensuring privacy.

e Our actual anonymization method designed for this particular
project can be generalized to the use of any covariance based
statistical models as we showed that our method preserves
covariance in the data.
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Fig. 7. Execution time when varying the number of variables.
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Although our de-identification method was presented and
examined in the biomedical domain it can be readily applied in
other areas where privacy is a concern.

6. Conclusions

This paper proposed a data recipient centered utility based de-
identification framework. In this framework we ask the data reci-
pient about their plans regarding the data, carefully analyze the
proposed data mining and statistical models and design a custom-
ized de-identification approach that is specific to the needs of the
data recipient. In our test project the requirements were to pre-
serve statistical attributes specific to three statistical models. After
analyzing these models, we designed a microaggregation method
where both the clustering and the algorithms were specific to
the project requirements. We measured the performance of our
method using utility metrics that were specific to the data recipi-
ent’s requirements as well and showed that our customized meth-
od performed better than other general de-identification
algorithms.

We will continue working with biomedical researchers to fur-
ther explore the benefits of providing customized de-identification
solutions. We are planning to extend the scope of this research to
other statistical models and classification algorithms.
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