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Abstract It is often necessary for organizations to perform data mining tasks col-
laboratively without giving up their own data. This necessity has led to the devel-
opment of privacy preserving distributed data mining. Several protocols exist which
deal with data mining methods in a distributed scenario but most of these methods
handle a single data mining task. Therefore, if the participating parties are interested
in more than one classification methods they will have to go through a series of dis-
tributed protocols every time, thus increasing the overhead substantially. A second
significant drawback with existing methods is that they are often quite expensive
due to the use of encryption operations. In this paper a method has been proposed
that addresses both these issues and provides a generic approach to efficient privacy
preserving classification analysis in a distributed setting with a worst-case privacy
guarantee. The experimental results demonstrate the effectiveness of this method.

Keywords Data mining · Privacy preserving data mining · Classification

1 Introduction

Data mining is the process of discovering new knowledge from large volumes of data.
The importance of data mining has increased manifold with the ability to store huge
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amounts of data. While dealing with sensitive data like personal data, business data,
medical data, crime data, and others, knowledge discovery techniques might threaten
the goal of preserving privacy of the data. Therefore, the data needs to be protected
from attacks that might reveal sensitive information. But, as the primary goal is to
retrieve useful information from the data, the privacy protected data should still yield
useful data mining results.

The issue of preserving privacy in data mining is further complicated by the con-
straints that automatically arise when the data analysis are performed by third parties.
The data often contains critical business information which if divulged might under-
mine the utility of data mining. Nowadays, many companies are opting for business
process outsourcing (BPO) as it is in most cases low cost and profitable. But, since
preserving the privacy of data and knowledge is one of the primary objectives for
corporate strategies, they are often reluctant to share data with a third party.

Another critical issue with privacy preserving data mining occurs when the data
is present in more than one location and owned by more than one party. This situ-
ation has given rise to the relatively new area of research named privacy preserving
distributed data mining [51]. As a result, collaborative data analysis from every data
location may yield useful results but the parties may be reluctant or not allowed to
share their own data.

Data can be distributed horizontally or vertically. Horizontal data partitioning
means each party contains a subset of records, vertical data partitioning means each
party contains a subset of columns of the same set of records. Below are two exam-
ples.

1. Horizontally partitioned: More than one bank have data from their correspond-
ing sources about fraud detection and will benefit from collaborative analysis by
building a classifier but they are not allowed to do so as it will reveal their busi-
ness data. The data at different banks have the same attributes but contain different
rows.

2. Vertically partitioned: A hospital and the environmental department wish to col-
laborate in order to analyze outbreak of certain diseases without actually revealing
their data. Both data sets are about the same locations or areas, but have different
attributes.

There exists a rich body of work in privacy preserving distributed data mining
based on Secure Multi-Party Computation techniques [35, 51]. These techniques de-
velop data mining algorithms that will work in a distributed scenario and will not
reveal critical information of the parties involved. However, these algorithms gen-
erally suffer from two major setbacks: (1) most of these algorithms handle only a
single data mining method; therefore, if the participating parties are interested in ex-
ploratory data analysis (e.g., trying a few mining algorithms or different parameter
settings for the same algorithm), they will have to go through a different secure dis-
tribution protocol for every mining task they intend to perform. (2) These protocols
are often expensive as they involve many expensive encryption operations.

In this paper, both the above shortcomings have been addressed. The contribution
of this research work comprises the following:
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1. The proposed algorithm deals with centralized data, horizontally partitioned data,
and vertically partitioned data to provide a worst-case privacy guarantee for clas-
sification methods.

2. This algorithm will enable the end user to sanitize the data once and then perform
exploratory data analysis by applying more than one classification technique.

3. The effectiveness of the algorithm has been validated by extensive experiments.

The rest of the paper is organized as follows. Section 2 describes related work.
Section 3 gives some background information needed for the foundation of this re-
search. Section 4 provides details about the methodology in this research. Section 5
presents the extensive experimental results. Section 6 concludes the paper.

2 Related work

There are extensive body of work in privacy preserving data mining. Surveys on vari-
ous privacy preserving techniques can be found in books [2] and [51]. The discussion
of existing work in this area has been divided into two broad categories for better
understanding. The first category deals with situations when data is in a centralized
location, and the second category handles distributed data mining scenarios.

Privacy preserving data mining on centralized data Privacy preserving data mining
in a non-distributed setting assumes that the mining will be outsourced to a third party
and the data holder is only responsible for the perturbation of the data. The most
simple technique in this regard is additive perturbation. A decision tree classifier
was build by [5] where data was sanitized using additive perturbation. However, as
mentioned in [25, 30] additive perturbation is vulnerable to attacks based on data
correlations.

As additive perturbation was not that efficient, Kim et al. [31] proposed multi-
plicative perturbation methods. The first technique multiplies individual data values
by random numbers generated with mean 1 and small variance. The second approach
generates the noise by transforming the data to their logarithms and calculates the co-
variance matrix and then generates random numbers which have mean zero and vari-
ance as some multiple of the covariance matrix. Finally it adds the generated noise
to the data. The limitations of this method are that it fails to be accurate in distance
based mining methods like K-nearest neighbor classification and is also vulnerable
to correlation attacks as is additive perturbation.

A few transform-based methods have been proposed for distance-based mining
[9, 37, 40, 42, 43]. However, such methods can not be applied in distributed mining
because each party has to use the same transform thus they can reverse the transform
to infer others’ data.

[11, 20] proposed another approach of perturbation called data swapping where
some values of attributes are swapped over certain mutually selected rows. Thus the
data is perturbed by keeping the t-order statistics unchanged but the method is unsafe
as there is no guarantee that the swapped values will be very different from the orig-
inal values. [1] suggests a condensation approach of using properties of clusters to
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regenerate data simulating the actual one but obfuscating the original values. How-
ever the privacy levels for this method are not very high.

Another technique is the randomized response method proposed in [13, 53]. Here,
a method is proposed for preserving the privacy of respondents while asking sensitive
questions in an interview. The concept here is to protect the identity of the interviewee
by randomizing the response. [13] proposes a decision-tree classification method to
support the above mentioned scheme. Another technique is k-anonymity proposed
in [46] where the data of an individual will be indistinguishable from other k − 1
individuals. The concept of k-anonymity is more related to the area of securing an
individual’s identity than the area of privacy preserving data mining but since data is
often about individuals this concept is worth mentioning.

All the methods discussed above deal with average case privacy and fail to handle
the worst-case privacy guarantee. To address this problem [41] proposes a privacy
preservation method to preserve Euclidean distances within data with a worst-case
privacy guarantee. Evfimievski et al. first proposed a worst-case privacy model and
used it for association rule mining in [18]. [4] further developed an optimal matrix
theoretic scheme for random perturbations of categorical data and provided guaran-
tees through amplification. However both [18] and [4] suggest some specific ran-
domization schemes suited for discrete data and only consider mining of association
rules from the perturbed data. [41] extends the model to continuous data where the
authors use Principal Component Analysis to eliminate attacks based on correlation
followed by adding Laplace Noise to distort the data. The authors also propose mod-
ifications to the K-nearest neighbor classification to improve its accuracy over the
perturbed data. However, this method has three problems: (1) it only deals with cen-
tralized data; (2) it is unclear how to generalize the modified KNN to other mining
algorithms; (3) it uses PCA which is often inferior to linear discriminant analysis
(LDA) for classification. Here, we propose a method that uses LDA and provides a
worst-case privacy guarantee for multiple classification methods and also works for
distributed data.

Another concept that needs to be mentioned here is differential privacy. Dwork has
proposed a differential privacy model that provides a worst-case privacy guarantee for
statistical databases [14]. The basic idea is to perturb the results of statistical queries
such that whether an individual is included in the database will only have limited
impact on the results. As a result, attackers can infer very limited information from
the results.

There are two possible use scenarios: the interactive scenario when users do not
have direct access to data and can only ask statistical queries against the database, and
the non-interactive scenario when data is sanitized and given to users. Most research
on differential privacy focuses on the interactive scenario [6, 15, 16, 33, 39, 45, 55].
There has been some work on applying differential privacy to non interactive scenario
[7, 16, 17, 19, 56]. However, it remains an open problem to find efficient solutions
in many domains for the non interactive scenario [17]. Further, existing work also
assumes that the set of queries asked over the database is given.

In this paper we will focus on the non interactive scenario and use a worst-case
privacy model that is quite similar to differential privacy but allows users to have
direct access to sanitized data. We also assume that users have not decided on the



Distrib Parallel Databases (2014) 32:5–35 9

data mining algorithms, which means the set of queries is not known in advance. Our
approach does not require a known set of queries. It is also very efficient.

Privacy preserving data mining on distributed data With the developments in net-
work technologies data can be located in more than one locations and be held by more
than one party who are not interested in divulging their own data and as a result there
is a need for algorithms that can perform data mining involving all the parties but can
still keep their data private. There has been extensive research in this area. Most work
in a distributed setting uses secure multi-party computation. Survey articles can be
found in [51]. [27, 48] deal with association rules for vertically partitioned data and
horizontally partitioned data respectively. [34] and [49] handle clustering over verti-
cally partitioned data. [8, 12, 23, 29, 50] explore the problem in context of decision
trees. [28, 38, 54] consider the process of Bayesian learning while [52] concentrates
on Naive Bayes classification for both horizontally and vertically partitioned data.

All these methods mentioned above are very specific to a certain class of min-
ing algorithms and because the information available to create global models is very
much situation dependent. This has resulted in devising a huge number of distributed
algorithms each suitable for a particular mining algorithm. No single general algo-
rithm exists. In other words, multiple SMC protocols must be executed to perform
multiple mining algorithms.

The only exception is a holistic approach proposed in [47] in which all parties first
use a SMC protocol to generate a synthetic data set and then directly share this data
for different mining algorithms. The synthetic data generation is based on the conden-
sation approach [1]. This approach first generates size-k clusters and then generates
synthetic data based on the statistical properties of these clusters. This approach has
one major benefit: data miners only need to sanitize the data once and then can try
many different mining algorithms on the same sanitized data.

However, the condensation approach has two major drawbacks. First, it provides
no worst-case privacy guarantee. Since each cluster contains at least k records, it
satisfies the k-anonymity model [46]. However, this model does not prevent the dis-
closure of sensitive values. For example, some records in the synthetic data may have
very similar values to records in the original data. Second, in distributed mining, all
parties often know what attribute to predict, but the condensation approach does not
take this into account. This may lead to inferior mining quality.

The algorithm proposed in this paper addresses these issues and provides a per-
turbation technique which will enable the end user to perform multiple classification
methods. The key idea of this approach includes a utility-aware projection step that
removes unnecessary information for the mining method followed by a group-based
perturbation step that provides a worst-case privacy guarantee.

3 Background

This section gives the background necessary to understand the proposed method.
Section 3.1 explains the Linear Discriminant Analysis method used in this article
as the first stage of the perturbation technique proposed here. Next, in Sect. 3.2 the
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Fig. 1 Linear discriminant
analysis

worst-case privacy model is explained with details also used in this article in order to
provide a worst-case privacy guarantee in this proposed framework. Finally, Sect. 3.3
explains the adversarial model commonly used in a private and distributed setting.

3.1 Linear discriminant analysis

Linear Discriminant Analysis (LDA) finds a linear transformation of predictor vari-
ables which provides a more accurate discrimination between class labels. LDA is
often used for dimensionality reduction before classification is performed on the data.
Principal Component Analysis (PCA) is very similar to LDA except that PCA is un-
supervised and does not take the class labels into consideration. This is evident from
Fig. 1. The figure shows two classes: A and B. PCA returns the direction with largest
data variance (PCA1 in Fig. 1), but not the direction that best separates the two classes
(LD1 in Fig. 1). LDA finds the direction that best separates the two classes.

Let us consider a dataset x with n rows or tuples and m columns or attributes
where the last attribute is the class label. Equation (1) computes Sb , between class
scatter matrix where μc is the vector of dimension m × 1 representing the mean of
each class c and x̄ is the vector representing the global mean of the dataset x. The
product of (μc − x̄)(μc − x̄)T and their summation over all the classes gives the
covariance matrix of the centers of classes. Similarly, in (2), SW can be explained as
the within class scatter matrix, related to the covariance matrix between classes.

Sb =
∑

c

(μc − x̄)(μc − x̄)T (1)

SW =
∑

c

∑

i∈c

(xi − μc)(xi − μc)
T (2)

J (w) = wT Sbw/wT SWw (3)

The idea is to find a linear combination that offers the maximal separation for
the classes. Therefore, once Sb and SW are computed, LDA will find a set of weight
vectors (the number is no more than the number of classes minus one) that maximize
J (w). The data can then be mapped to the subspace formed by these vectors.
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3.2 Worst-case privacy model

A worst-case privacy model was proposed in [18] for categorical data. Later it was
extended to numerical data in [41]. This model prevents privacy breaches called
ρ1-to-ρ2 privacy breach. Let X be a random variable whose values represent the
original data points. The sanitized data is represented by another random variable Y .
Further let VX and VY represent the set of possible values of X and Y respectively.

Definition 1 A ρ1-to-ρ2 privacy breach with respect to some property Q(x) of a
random variable X is said to occur if for some y ∈ VY

P
[
Q(X)

] ≤ ρ1 and P
[
Q(X)

∣∣Y = y
] ≥ ρ2

Where 0 < ρ1 < ρ2 < 1 and P [Y = y] > 0. In a similar way a ρ2-to-ρ1 downward
privacy breach occurs if

P
[
Q(X)

] ≥ ρ2 and P
[
Q(X)

∣∣Y = y
] ≤ ρ1

Definition 1 captures how much disclosing a sanitized value increases the pre-
dictability of the original value. E.g., suppose the original data contains the salaries
of employees. The probability of having a salary over one million dollars equals
0.001. Now, suppose we observe a perturbed salary of a person P , which is ten mil-
lion dollars. One may infer that P ′s salary is over one million with 0.99 probability.
This is a 0.001 to 0.99 privacy breach.

A perturbation method was proposed in [41] to prevent such privacy breaches.
The perturbation method first decorrelates data by applying Principal Component
Analysis. It then adds noise following Laplace noise to the principal components. The
authors in [41] have proved that only noise satisfying Laplace distribution provides a
worst-case privacy guarantee, while the widely used uniform or Gaussian noise does
not provide such guarantee. Let Di

P be the i-th column of the principal component
matrix, and bi be the range of that column, i.e., bi = b ·(max{Di

P }−min{Di
P }), where

b is a parameter. The noise added to the i-th column follows Laplace distribution with
a mean zero and standard deviation bi . [41] also proves that this perturbation method
gives the following privacy guarantee.

Theorem 1 The perturbation method proposed in [41] will neither cause an upward
ρ1-to-ρ2 nor a downward ρ2-to-ρ1 privacy breach with respect to any property of X

if the following is satisfied

ρ2

ρ1

(1 − ρ1)

(1 − ρ2)
> γ

As mentioned in [41] γ is the amplification factor and γ = e1/b . For example, in
the above example, suppose b = 0.2 and the probability of P having over a million
dollar salary is 0.001 (ρ1). After seeing the sanitized data, using Theorem 1 we can
infer that the probability of P having over a million dollar salary (ρ2) will not exceed
0.13.
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Fig. 2 Overview of the method

3.3 Adversarial model

In distributed settings, each party has only a portion of data and all parties want to
collaboratively compute some output without revealing their data to other parties. We
use the semi-honest adversarial model [51] where parties follow the protocol faith-
fully, but may try to infer private information of the other parties from the messages
they see during the execution of the protocol. Under the semi-honest model, parties
will not collude.

The security of SMC protocols is defined such that every party learns no more than
in an ideal model where there is a trusted third party who does all the computation and
distributes the result to all participants. So each party can only infer information from
the final results and its own share of data. In reality, however, some SMC protocols
do reveal some extra information (typically as intermediate results) for performance
reasons. Following traditional SMC methods, we require that our sanitization process
not reveal extra information besides the output (i.e., the sanitized data) and some non
critical information (e.g., the intermediate cluster positions in K-Means clustering).
In addition, we require a worst-case privacy guarantee (as mentioned in Sect. 3.2)
that prevents attackers from inferring original data from the sanitized data.

A useful technique to prove the security of a SMC protocol is the composition
theorem [51].

Theorem 2 If a protocol is shown to be secure except for several invocations of sub-
protocols, and if the sub-protocols are proved to be secure, then the entire protocol is
secure.

4 Our approach

We have proposed a privacy-preserving approach that works for centralized, hori-
zontally partitioned, and vertically partitioned classification. Our approach assumes
that data miners know which attribute they want to classify, but they may try multi-
ple mining algorithms or setting different parameters for the same mining algorithm.
This assumption is often satisfied in practice because for multiple parties to collab-
orate they need to specify a common goal (e.g. the classification task) first. In the
distributed mining case we also assume each party follows the semi-honest model.

Figure 2 presents the overview of our framework. Our approach consists of three
major steps:
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1. Utility aware projection which removes information unnecessary for the classifi-
cation method. This step improves privacy protection without sacrificing mining
quality.

2. Grouping of each class such that similar data is put into the same group. This step
improves mining quality.

3. Data sanitization which adds Laplace noise to data set to provide a worst-case
privacy guarantee.

Algorithm 1 presented below is the algorithm for centralized data, that is when the
data is present in a single location. Each step is described below.

Utility aware projection The first step in our approach is to use Fisher’s Linear Dis-
criminant Analysis to transform the original data. As already explained in Sect. 3.1
the use of LDA has several advantages. It helps in drastic reduction of data dimension
and also eliminates the correlation between columns in the transformed data thus pre-
venting correlation attack. The authors in [41] have used PCA but Fig. 1 explained the
advantages of LDA over PCA for classification data. Step 1 in Algorithm 1 computes
this step.

Grouping of each class Here we further group each class with a predetermined
group size after transforming the data using LDA. Grouping each class ensures that
each group only consists of records from the same class. This will improve mining
quality after adding noise (the data sanitization phase is explained below). Lines 3 to
10 in Algorithm 1 presents the steps for this phase.

Step 3 runs a K-Means clustering on each class where k is predetermined depend-
ing on the intended group size. The clusters are then sorted in ascending order of their

Algorithm 1 Algorithm for centralized case
Input: Dataset D, Number of classes L, predetermined group size S, Noise parameter b, Number of se-
lected coefficients s.
Output: Sanitized Dataset D′
1: Infer LDA transform of the dataset D by DP ← LDA(D);
2: for each class Li do
3: Run K-Means clustering on class Li with K = g where g is the number of groups to be formed in

class Li and g = �|Li |/S�
4: Sort the clusters in ascending order of cluster size.
5: for Each cluster center cj , j = 1, . . . , g do
6: Add all points in cluster Cj to group Gj

7: if |Cj | < S then
8: find the closest cluster and move S − |Cj | points in

⋃
Cl, l > j that are closest to cj , and

move them to group Gj .
9: end if

10: end for
11: For each group x compute maxx

j
and minx

j
as the maximum and minimum values of transformed

column j in group x

12: For each group x compute bx
j

= b ·(maxx
j

−minx
j
) where 1 ≤ j ≤ s and DNPx (l, j) = DPx (l, j)+

n(bx
j
) where n(bx

j
) ∼ Laplace(0, bx

j
) and DPx (l, j) is the transformed value in j -th column of

every row l in group x.
13: return D′ = ⋃

1≤x≤g DNPx

14: end for
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Fig. 3 Example of moving
records between clusters

size (line 4). In our approach we move elements from larger clusters to the smaller
clusters depending on their affinity to each other (lines 5 to 10). The insight for this
step is shown in Fig. 3. Figure 3(a) shows the initial groups generated after K-Means
clustering. Cluster 1 contains 6 points and cluster 2 contains only 2 points. Each final
group should have 4 points as we need to form approximately equal sized groups.
The question is which records to move. Figure 3(b) shows an example when some
random records are moved to cluster 2. Cluster 2 becomes too scattered and thus too
much distortion will be introduced after data sanitization. Instead, we move records in
larger clusters that are closest to the center of the smaller cluster. Figure 3(c) displays
the result. Now cluster 2 is much less scattered.

In our proposed algorithm we take the group size into account while grouping the
data, but do not take the data range into consideration. A very small range in a group
of data can lead to lower privacy. One way to handle such a situation (if it occurs)
is to use a binary search method as proposed in [32] to handle the group size and
minimum range parameters in the proposed algorithm here. In [32] the authors use a
binary search method to determine the optimal group size. In our algorithm it may not
be feasible to use minimum data range as a parameter but we can use the group size as
a parameter and tweak the group size following the algorithm (rule-based approach)
proposed in [32] and check if the data range parameter is satisfied by adjusting the
group size.

The algorithm will first select the minimal and maximal number of groups using
the method in [32]. It will then run our grouping algorithm using the maximal number
of groups to check whether the range for each generated group exceeds a threshold.
If so, the range condition will be satisfied. Otherwise, we will check whether the
minimal number of groups satisfies the range condition. If it does, we will use a binary
search algorithm to find the maximal group size that still satisfy the range condition.
Otherwise, we will not group the data because grouping will lead to violation of the
minimal range condition. We will further analyze and optimize this algorithm in our
future research.

Once the groups are formed, each group is then sanitized separately as explained
in the data sanitization phase below.

Data sanitization The data sanitation phase is very similar to [41]. Each group from
the previous phase is sanitized by adding noise generated using Laplace distribution.
The reason for using Laplace noise is because it provides a worst-case privacy guar-
antee as explained in details in Sect. 3.2 and in [41].
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In [41] Laplace noise is added over the entire dataset. The noise added to the
dataset is scaled by the range of the whole dataset. As a result it distorts the data
extensively and therefore decreases classification accuracy. The modified KNN algo-
rithm as presented in [41] tries to address this data distortion problem. However, in
this research since we are trying to develop a generic method for both distance based
and non-distance based classification methods, modified-KNN is not appropriate.

To reduce data distortion, we group each class and generate noise for each group
separately and add this noise to the corresponding group. We could have added the
noise generated separately for each class but if the class is not very well formed
then this method of noise addition can produce significant data distortion as well.
Therefore, we have further grouped the classes and produced groups of approximately
equal size and then sanitized each group separately. Lines 11 and 12 in Algorithm 1
present the steps for noise addition for the case of centralized data. The range of each
column of each group is computed in line 11. In line 12, noise with Laplace distribu-
tion is generated scaled to the ranges computed in line 11. This noise is then added to
the group. These steps are repeated for every group to obtain the final sanitized data
in line 13.

Complexity analysis The computational complexity of LDA is O(m2n) and
k-means clustering is O(snk) where m is the number of attributes in the original
data, n is the number of data elements, k is the number of clusters to be generated,
and s is the dimension of the data after LDA transformation. The noise addition
process takes O(ns) time.

We have extended our algorithm for a distributed scenario, that is where data is not
present in one single location but is distributed in multiple locations and often with
multiple parties. The data can be distributed horizontally or vertically. In order to
collaboratively sanitize the whole data as if the data was present in a single centralized
location, we need to securely perform all the above three steps such that none of the
parties needs to reveal their own private information to other parties. Sections 4.1
and 4.2 present the methods and protocols in details for horizontally partitioned data
and vertically partitioned data, respectively.

4.1 Horizontally partitioned data

This section provides the details for utility-aware projection, a grouping of each class
and data sanitization for horizontal partitioning followed by a security analysis of the
methods used and the computational complexity.

Utility aware projection for horizontally partitioned data Steps 1 to 5 in Algo-
rithm 2 explain this phase. When the data is horizontally partitioned the calculation of
Sb and SW can be mostly done locally. In order to calculate Sb all the parties will need
to go through a series of secure sum protocols to calculate Nc, μc and x̄. Computing
of SW can also be done locally as (xi −μc) ∗ (xi −μc)

T can be calculated locally by
each party and then secure sum protocol can be used to calculate the final SW . J (w)

can be computed by each party locally once Sb and SW are calculated. Here, the only
information revealed to each party is the class mean, the overall mean of the dataset,
Sb and SW which we assume are not sensitive information.
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Algorithm 2 Algorithm for horizontally partitioned data
Input: Dataset D distributed as D1,D2, . . . ,Dp in p participating parties, number of classes L, minimum
number of elements in each group S, noise parameter b, number of retained coefficients after LDA s.
Output: Sanitized Dataset D′
1: All parties run secure sum protocol to compute number of elements in each class Nc , class mean μc ,

and global mean x̄

2: Each party computes Sb by Sb =
∑

c(μc − x̄)(μc − x̄)T ;
3: Each party t where 1 <= t <= p computes SWt by SWt = (xt

i
− μc)(x

t
i

− μc)
T where xt

i
are the

elements of party t .
4: All parties run secure sum protocol to calculate SW

5: Each party t where 1 ≤ t ≤ p computes the LDA transformed data by D̂t = LDA(Sb, SW ,Dt , s)

6: for each class Li do
7: All parties run secure K-Means Clustering [26], on each class with k = g and g = �|Li |/S�
8: The clusters are sorted in an ascending order based on their size
9: All Parties need to first use a secure sum protocol to compute the number of points in each cluster

10: for each cluster center cj , j = 1, . . . , g do
11: Add all points in cluster Cj to group Gj

12: if |Cj | < S then
13: Use the protocol to find the closest cluster [26] to find S − |Cj | points in

⋃
Cl, l > j that

are closest to cj , and move them to group Gj .
14: end if
15: end for
16: All the parties run secure max and secure min protocol (secure comparison protocol) [26, 49] to

compute maxx
j

and minx
j

for each group x where 1 ≤ x ≤ g and each column j where 1 ≤ j ≤ s in

the transformed data D̂

17: For each group x each party computes bx
j

= b · (maxx
j

−minx
j
) where 1 ≤ j ≤ s and D̂tx (l, j) =

D̂t (l, j) + n(bx
j
); where D̂t (l, j) is the transformed value in the j -th column of every row l in

group x at party t and n(bx
j
) ∼ Laplace(0, bx

j
)

18: Each party t outputs
⋃

1≤x≤g D̂tx to form the whole sanitized dataset D′
19: end for

Grouping of each class for horizontally partitioned data Steps 6 to 15 in Algo-
rithm 2 explain the phase of grouping each class. All the parties run secure k-means
clustering [26] on each class with predetermined k = g. Then the parties engage in a
secure sum protocol to calculate the number of elements in each cluster and then or-
der the clusters in ascending order based on the size of each cluster. Then the records
from larger clusters are moved to the smaller clusters using secure protocols to satisfy
a predetermined minimum number of elements in each group.

Data perturbation for horizontally partitioned data Steps 16 to 18 in Algorithm 2
explain the data perturbation/sanitization phase.For data perturbation purposes, each
party needs to add Laplace noise to the dataset. All parties use secure max and secure
min protocols to calculate the range for each column in the transformed data, without
revealing their local data. Each party then adds Laplace noise scaled to these ranges
to their local data points. The algorithm for horizontally partitioned data is detailed
in Algorithm 2.

Security analysis We want to show that our sanitization process does not reveal
extra information besides the output (i.e., the sanitized data) and some non-critical
information. In line 1 of Algorithm 2 all parties engage in secure sum protocol and
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the information revealed is the number of elements in each class Nc, class mean μc

and global mean x̄ which we assume are not private. Line 2 and 3 are computed
locally by each party. In line 4 all the parties engage in another secure sum protocol
to calculate SW . We assume that these statistics Sb and SW are not private. Line 5
is again computed locally by each party. Line 7 to Line 15 performs the grouping of
each class. Only secure protocols from existing literature [26, 49] are used in these
steps and therefore critical information is not divulged.

The next step is data sanitization. In line 16 all parties run secure max and secure
min protocol and the information revealed are the highest and the lowest values for
each column in each group in the transformed dataset which we again assume is not a
security breach. Lastly, line 17 is computed locally and in line 18 each party outputs
their sanitized dataset.

Communication cost Let n be the number of records, m be the number of attributes,
s be the number of attributes in the transformed data, c be the number of classes, g be
the number of groups, r be the number of parties and rk be the number of iterations
for k-means clustering. When data is horizontally partitioned, most computation can
be done locally for statistics needed for the LDA transform which is O(mcr), and
O(scr) to compute bj needed to add the noise to the dataset. The computational
complexity for secure k-means clustering is O(sgrrk). Therefore, the overall com-
plexity can be considered as O(mcr + sgrrk) for the case of horizontally partitioned
data.

4.2 Vertically partitioned data

This section provides the details for utility aware projection, grouping of each class,
and data sanitization for vertical partitioning followed by a security analysis of the
methods used and computational complexity. Algorithm 3 describes our approach for
vertically partitioned data.

Utility aware projection for vertically partitioned data Steps 1 through 5 explain the
phase of utility aware projection in Algorithm 3. In the case of vertically partitioned
data, Nc is known to each party and each party can locally compute μc and x̄ for
their local subset of columns. In order to compute Sb and SW the parties will involve
a series of secure dot product protocol. For example, let us consider the computation
of SW as in (2). Since the data is vertically partitioned each party can subtract the
class means corresponding to their local attributes from their local attributes with the
corresponding class labels (i.e. if there are p parties each party computes xip − μip ).
As it is evident xi − μc is distributed in more than one party, in order to compute
(xi − μc)(xi − μc)

T all the parties need to engage in secure dot product protocols to
contribute to the total computation of the matrix (xi −μc)(xi −μc)

T . (xi −μc)(xi −
μc)

T is needed to be computed for all the data points for a single class and then all
the parties engage in a secure sum protocol to compute

∑
i∈c(xi − μc)(xi − μc)

T .
These steps are repeated for each class in the dataset and finally another secure sum
protocol results in the computation of SW = ∑

c

∑
i∈c(xi −μc)(xi −μc)

T . The steps
are similar for the calculation of Sb as in (1).
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Algorithm 3 Algorithm for vertically partitioned data
Input: Dataset D (n rows and m columns) distributed as D1,D2, . . . ,Dp in p participating parties, num-
ber of classes C, minimum number of elements in each group S, noise parameter b, number of retained
coefficients after LDA s.
Output: Sanitized Dataset D′
1: Each party t calculates the class mean μct and global mean x̄t for the subset of columns stored by t

where 1 ≤ t ≤ p;
2: All parties engage in secure dot/scalar product protocol [26, 49] to compute Sb and SW ;
3: All parties infer LDA Transform matrix M from the statistics computed from the previous step;
4: Each party t computes Dt ∗Mt where Dt is the local data and Mt is the columns in M that correspond

to the columns in t ;
5: All parties engage in a secure sum protocol to compute D̂t = ∑p

t=1 Dt ∗ Mt . The results are stored in

two random shares as D̂1
t at party P1 and D̂2

t at Pr

6: for each class Li do
7: Parties P1 and Pr run secure K-Means Clustering [26] on their random shares, on each class with

k = g and g = �|Li |/S�
8: The clusters are sorted in an ascending order locally based on their size
9: for each cluster center cj , j = 1, . . . , g do

10: Add all points in cluster Cj to Gj

11: if |Cj | < S then
12: Use the protocol to find the closest cluster as presented in [26], to find S − |Cj | points in⋃

Cl, l > j that are closest to cj , and move them to group Gj

13: end if
14: end for
15: Parties P1 and Pr use secure comparison protocol to compute bx

j
= b · (maxx

j
−minx

j
) for each

column j in D̂x
t (the transformed rows in group x) where 1 ≤ j ≤ s and 1 ≤ x ≤ g

16: P1 (Pr ) generates random noise matrix R1 (R2), which follows exponential distribution with λ =
1/bjx for each column and each group x in the transformed data

17: P1 and Pr use secure sum protocol to compute D̂tx = (D̂1
tx

+ R1 + D̂2
tx

− R2)

18: return
⋃

1≤x≤g D̂tx for party t and class Li to form the whole sanitized dataset D′
19: end for

The final Sb and SW are revealed to each party which we assume is not sensitive
information. From Sb and SW each party can compute the LDA transform matrix M .
At step 4 of Algorithm 3 each party t computes its fraction of LDA transformed
data by multiplying Dt by Mt , which contains columns in M that corresponds to
data columns at party t . E.g., if party 1 contains data columns 1, 2, and 4 then M1
contains columns 1, 2, and 4 in M . The final LDA transformed data (D̂t ) at party t is
computed as the sum of Dt × Mt (1 ≤ t ≤ r) using a secure sum protocol. Note that
for vertically partitioned data, the transformed data should not be revealed directly to
any party because otherwise that party can apply a reverse LDA to find out data at
other parties. Instead, D̂t is stored as two random shares in two parties (say P1 and
Pr ) such that D̂1

t = R is stored by P1 and D̂2
t = D̂t − R is stored by Pr .

Grouping of each class for vertically partitioned data Steps 6 through 14 show
the grouping phase for each class in Algorithm 3. All parties run secure k-means
clustering on each class based on the SMC protocol mentioned in [26]. Next each
party orders the clustering in the ascending order of their sizes, the size of each cluster
is known to each party. Then the parties engage in a series of secure protocols to move
elements from larger clusters to smaller clusters after comparing distance between the
smaller cluster centers and the points in the larger clusters.
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Data perturbation for vertically partitioned data The phase of data perturbation
is explained in steps 15 through 18 in Algorithm 3. In order to generate the noise
with Laplace distribution, both the parties engage in a secure comparison protocol
to compute maxx

j and minx
j for each column j in the transformed dataset in each

group x. In case of vertically partitioned data, we can not let a single party generate
the Laplace noise because that party can infer the original data values from the last
shared sanitized data and the generated noise. In horizontally partitioned cases this
is not an issue because each party contains different records. Instead, we use the
property that a Laplace(0, b) noise can be generated as the difference of two i.i.d
exponential noise. Parties P1 and Pr generate noise R1 and R2 respectively with
exponential distribution where λ = 1/bj

x and bj
x is the noise level b scaled to the

range of the column j and group x in the LDA transformed data. The final sanitized
data is then calculated using secure sum protocol by P1 and Pr using the equation
D̂tx = (D̂1

tx
+ R1 + D̂1

tx
− R2).

Security analysis Line 1 in Algorithm 3 is computed locally by each party. Line 2
uses secure dot product protocol and the only information revealed is Sb and SW

which we assume are not private as each single party cannot identify other parties
data from the privately computed statistics. Lines 3 and 4 are also computed locally
by each party. Line 5 uses secure sum protocol and the transformed data is stored as
two random shares with two parties (P1 and Pr ), therefore, nothing is revealed to all
the parties except to parties P1 and Pr holding the random shares. The information
revealed to P1 and Pr is also secured as P1 holds a random data R and Pr holds
the difference of the transformed data and R, that is, no one party gets hold of the
transformed data; also by the assumption of semi-honest model the parties will not
collude. Lines 7 to 14 perform the grouping of each class. Only secure protocols
from existing literature [26] and [49] are used in these steps and therefore critical
information is not divulged.

The next step is data sanitization. In line 15 parties P1 and Pr use secure com-
parison protocol to compute the maximum and minimum values for each group and
each column in the transformed data. The only information revealed from line 15 is
the corresponding maximum and minimum values which we assume are not private.
In line 16 P1 and Pr locally generate the noise data. In line 17 secure sum protocol is
used which reveals the sanitized data and is provided to all other parties in line 18.

Communication cost Let n be the number of records, m be the number of attributes,
s be the number of attributes in the transformed data, c be the number of classes, g be
the number of groups, r be the number of parties and rk be the number of itera-
tions needed for k-means clustering. When data is vertically partitioned, computing
statistics for LDA requires a communication cost of O(mncr) . The perturbation
method costs O(snr). The computational complexity of the secure k-means cluster-
ing is O(sngrrk). Thus overall communication cost is O(mncr + sngrrk). As men-
tioned before, if a small sample of the dataset is selected by each party to compute the
utility aware projection (LDA) the communication cost can be reduced drastically.

Random sampling We also propose the method of stratified random sampling to
reduce the overhead of computing J (w) while computing LDA. In case of vertical
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Table 1 Comparison of order
of communication cost for
various methods

Methods Vertical Horizontal

Our method O(mncr + sngrrk) O(mcr + sgrrk)

Naive Bayes O(mncr) O(mcr)

SVM O(n2r) O(mcpr)

partitioning each party selects randomly a fixed percentage of their data if the data
size is huge. The percentage varies between 10 %–30 % based on the size of the
dataset. We use stratified sampling such that all the classes will be equally represented
in the sampled dataset based on the proportion of the classes in the actual datasets.
For example, if there are two classes in the original data and 30 % of the data is to
be selected for the sampled dataset, then 30 % of data points with class label 1 are
selected randomly and similarly 30 % of data points with class label 2 are selected
randomly. Therefore, it will result in a sampled data where the proportion of the class
labels are same as the proportion of the class labels in the actual dataset.

This technique of stratified random sampling will reduce the communication cost
for the initial statistical analysis substantially. Statistics needed for the LDA, that is
Sb and SW will be computed based on this random sampling of that data. Experiments
in Sect. 5 will show the effectiveness of random sampling.

4.3 Comparison of communication cost

The communication cost for the vertically partitioned case involves a number of data
points and can be significant if the dataset is very big. This problem is also present
in the existing algorithms that handle vertically partitioned datasets like [48, 49, 52].
But, the advantage of the algorithm presented here is that the secure distributed pro-
tocols are run only once and then the data can be provided to the user for exploratory
data analysis, unlike other algorithms that handle only a single mining task and for
each task the users have to go through all the protocols. This increases the overhead
substantially.

In Table 1 a comparison of the order of communication cost is provided. We have
compared the communication cost of the existing methods in [28, 52, 58, 59] with
our proposed method and shown that our communication cost is either low or similar
to the existing methods. In Table 1 n is number of data points; m is the number of
dimensions in original data; c is the number of classes; r is the number of parties
involved; s is the number of dimensions preserved after LDA; p is the average num-
ber of values in each attribute; g is the number of groups; and gr is the number of
iterations in k-means clustering.

4.4 Privacy of the proposed method

The proposed method combines LDA with additive perturbation. LDA completely
decorrelates the data thereby guards additive perturbation against the typical noise
filtering attacks based on data correlations [25]. The additive perturbation step guards
against attacks that can recover the LDA transform (e.g., the attacking methods de-
scribed in [36]) because such attacks can not remove the added noise.
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Next we compute the amplification for the proposed method. The result will show
that the proposed method also provides a worst-case privacy guarantee for ρ1 to ρ2
privacy breach.

One could certainly compute amplification using the original data values. However
this paper computes the amplification using the linear discriminant values, not the
original data values. The reason is that in the worst-case, attackers can find out the
LDA transform (e.g., if the attacker learns the covariance matrix of original data) and
will be able to infer the original data values from the principal component values.

To compute amplification for the combined framework, let −→wi = (wi1, . . . ,win)

denote the i-th weight vector and −→x1 = (x11, x12, . . . , x1n) and −→x2 = (x21, x22, . . . ,

x2n) be two arbitrary row vectors in the original data. Also let X1 and X2 denote
the i-th linear discriminant scores to which the two data vectors are mapped respec-
tively(i.e., X1 and X2 equal the dot product of −→wi with −→x1 and −→x2 , respectively). Let
Di

P and Di
NP denote the i-th column of DP (the result of LDA transform) and DNP

(the perturbed LDA scores), respectively. According to [41] the amplification can be
defined for continuous data as follows:

Amax = max
x1,x2∈Vx,y∈Vy

lim
dx→0

P([x1, x1 + dx] → y)

P ([x2, x2 + dx] → y)

= max
x1,x2∈Vx,y∈Vy

lim
dx→0

P([x1, x1 + dx] → y)/dx

P ([x2, x2 + dx] → y)/dx

= max
x1,x2,y

fΔ(y − x1)

fΔ(y − x2)
(4)

Here fΔ is the density function of noise. Using the results from (4), amplification
for the i-th linear discriminant can be computed directly over these linear discrimi-
nant values as follows:

Amax = max
X1,X2,y

lim
dx→0

P([X1,X1 + dx] → y)/dx

P ([X2,X2 + dx] → y)/dx
∀X1,X2 ∈ Di

P , y ∈ Di
NP

= max
X1,X2,y

fΔ(y − X1)

fΔ(y − X2)
by (4)

If the noise follows Laplace distribution with zero mean, as proved in [41] am-
plification is bounded by the support bounds of data distribution and has the value
of

Amplification = e
{max(x)−min(x)}

b (5)

Using (5) the amplification equals

Amax = e
{max(Di

P
)−min(Di

P
)}

bi

= e

{max(Di
P

)−min(Di
P

)}
b·{max(Di

P
)−min(Di

P
)}

= e1/b (6)

where bi is the scale parameter of the Laplace noise added to the i-th linear discrim-
inant. The bounds of Di

P are computed from the linear discriminant scores of the
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data. Note that bi is proportional to the range of the i-th linear discriminant, thus
the amplification for each column is the same and dependent only on b. Further the
linear discriminants being independent, amplification is calculated on each column
individually since one cannot infer values of a column from another column.

Although the data is grouped, grouping is performed over the linear discriminants.
Therefore, the data is already decorrelated. The Laplace noise is added over each
group and the noise is scaled by the range of each column in each group. If there
is reasonable amount of data points in each group and the range of each column is
significant there will be limited adverse effect on privacy.

As discussed before, in distributed cases we use the semi-honest model. To prove
that the distributed protocols are secure we have used the composition theorem. The
security analysis for both horizontally and vertically partitioned data in the previous
sections show that the distributed protocols are secure as the sub-protocols are se-
cure. Some intermediate statistics such as range of each group and scatter matrices
are revealed as described in Sects. 4.1 and 4.2. However if we set appropriate minimal
group size (set by the user) with a significant range of values in each column, then
knowing these statistics will not allow attackers to get good estimate of the values of
an individual data point. A large range may indicate an individual with an extreme
value is present in the data. However, the attacker will not know which person in
the group has that value because the privacy model described above explicitly pre-
vents him from doing that (all people in the same group are indistinguishable to the
attacker).

5 Experiments

This section presents experimental evaluation of the proposed method. Section 5.1
describes setup of the experiments. Section 5.2 describes results for the centralized
case. Section 5.3 describes results for the distributed case.

5.1 Setup

The experiments were conducted on a machine with Pentium Dual Core, 2.0 GHz
CPU, 3.0 GB of RAM, and running Windows Vista. All algorithms were imple-
mented using Matlab 7.0.

Datasets The experiments were run over six real datasets and two synthetic
datasets. Among the real datasets, five are from UCI Machine Learning Repository
namely Iris, Wine, Pendigits, Breast Cancer and Adult [21]. A real life dataset for
Lung Cancer [22] has been used as well. The synthetic datasets were generated in
Matlab such that each dataset follows a similar structure as in Fig. 1. The Synthetic1
dataset has 2000 rows and 4 columns (including class label) and 4 classes (each class
with 500 points) and Synthetic2 data has 2500 rows with 5 classes (each class having
500 data points) and 17 columns (including class label).
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Privacy measures Three approaches have been proposed in the literature to measure
privacy: the first using confidence interval [5], the second using information theory
[3], and the third using amplification to measure worst-case privacy breach as men-
tioned. However, the information theory approach is inappropriate for distance-based
mining algorithms such as KNN because Euclidean distance is based on individual
data values, while information theory only considers the distribution of values [60].

This paper uses amplification to measure the worst-case privacy breach and uses
the confidence interval to measure the average privacy. In our approach, the amplifi-
cation γ equals to e1/b according to Theorem 1 where b is the level of Laplace noise.
The confidence interval measure is as follows: If a transformed attribute x can be
estimated with c % confidence in the interval [x1, x2], then the privacy equals x2−x1

xU −xL

where xU is the maximal value of x and xL is the minimal value. 95 % confidence
interval was used in experiments. All the experiments were run five times and the
average measure has been reported.

Comparison with other algorithms The following algorithms are compared in the
experimental evaluation.

1. LDA + groupwise-noise: this is our approach. Here, noise generated using Laplace
distribution is added separately on each group created after grouping each class
(range of each group is used to generate the noise and added to each corresponding
group) in the dataset.

2. PCA + noise: this is the method proposed in [41]. This method is the only existing
perturbation method that provides a worst-case privacy guarantee. However, it
uses PCA rather than LDA and does not have the grouping step.

3. LDA + noise: this algorithm is the same as our approach except that the grouping
step is skipped and the added Laplace noise is scaled to the ranges of the whole
data set. So the difference between this method and PCA + noise will show the
difference between LDA and PCA.

4. LDA + classwise-noise: this is the same as our approach except that Laplace noise
is added separately on each class and the noise is scaled to the ranges of each
class. This method can be seen as somewhat in between our approach and LDA +
noise.

The mining quality of all algorithms is the same in the distributed case as in the
centralized case, so we conducted extensive experiments to compare mining quality
in the centralized case and focus on communication cost and cost of encryption for
the distributed case. In distributed case, we also compared our generic approach with
using specific SMC algorithms for each mining algorithm.

5.2 Results for centralized case

Figure 4 reports accuracy vs. noise Level for each dataset. The noise level is varied
at 0.1, 0.2, and 0.3. The classification algorithm is KNN with best k (found through
cross-validation). The number of retained coefficients s after LDA is 1 for all the
datasets except Pendigits where s = 4 (number of classes in Pendigits is 10). The
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Fig. 4 Accuracy vs. noise level for various datasets
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minimum predetermined group size varies with dataset (e.g. 20 for Iris to 1000 for
Adult). The results show that the accuracy of all privacy preserving methods de-
creases as noise level increases. However, the decrease of LDA + groupwise noise is
the least significant among all methods and it leads to the highest accuracy in almost
all cases except for Lung Cancer data where all methods more or less behave simi-
larly (the difference of accuracy among all methods is about 2 % for that data set).
Our approach leads to higher accuracy than PCA + noise for two reasons: (1) our
approach uses LDA which takes class label into account while PCA does not; (2) our
approach adds group-wise noise while PCA + noise adds global noise which distorts
data a lot more than our approach.

Among the three LDA based methods, LDA + classwise noise is usually the sec-
ond best. The gap between it and our approach (LDA + groupwise noise) is significant
only for Pendigits and Adult and the gap is insignificant for all other data sets. This
proves that groupwise noise is only useful when the classes are not very well formed
and thus further grouping of each class after LDA transformation increases the min-
ing accuracy of the perturbed data. On the other hand, LDA + noise is often better
than PCA + noise, showing the benefit of LDA over PCA. But it is significantly worse
than the other two LDA based methods for most data sets, due to the same problem
of adding global noise.

Figure 5 shows the average privacy vs. accuracy for each dataset. The noise level
is fixed at 0.3. The x-axis represents the average privacy measure while the y-axis
depicts the accuracy. Thus methods lying above the line (manually drawn) have bet-
ter accuracy-privacy tradeoff. The results show that the three LDA based methods
provide better accuracy and in most cases similar or even higher privacy measures
than the existing method [41]. Among the three LDA based methods, our approach
usually gives the highest accuracy but slightly lower privacy. So in practice if users
are more concerned with accuracy then our approach is the choice. Otherwise users
may choose the other two LDA based methods.

Figure 6 reports the worst-case privacy measure for all datasets. Figure 6(a) reports
the amplification for all data sets using our proposed method in Algorithm 1. Note that
the amplification for all data sets are exactly the same because as shown in Theorem 1,
they depend only on noise scaling parameter b. Thus one figure is used for all data
sets.

Equation in Theorem 1 describes the relationship of amplification (γ ) and the
maximal value of ρ2 in ρ1 to ρ2 privacy breach. Suppose ρ1, the probability of a pri-
vacy sensitive property in the original data, is 0.1 %. Figure 6(b) reports the maximal
possible value of ρ2 (the probability of the privacy sensitive property given sanitized
data) for various values of b. For example, for b = 0.3, the maximal possible value
of ρ2 is 2.8 %. This means for b = 0.3, the probability of this privacy sensitive prop-
erty will not exceed 2.8 % given the sanitized data. Typically most privacy-sensitive
data properties (can be the data values themselves) in real life appear in original data
with low probabilities. The results show that the proposed method does not increase
the conditional probabilities of such properties too much thus effectively restricting
worst-case privacy breaches.In both the figures the noise level b is varied from 0.1
to 0.4.
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Fig. 5 Accuracy vs. privacy for various datasets
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Fig. 6 Worst-case privacy for
all data sets

Fig. 7 Performance analysis over synthetic datasets

Execution time We have also analyzed the performance measures of the algorithm
presented here. We have used laboratory generated synthetic data sets for this pur-
pose. Figure 7(a) provides the execution time for the step of Linear Discriminant
analysis while we change the number of attributes in the dataset as provided in
the x-axis. The y-axis shows the execution time. The number of records and num-
ber of groups after LDA is maintained constant at 20,000 and 1,000 respectively.
The execution time for the step of grouping and noise addition is not presented
in this set of experiments as the number of attributes after LDA remains same af-
ter LDA. In Fig. 7(b) the execution time is presented as we vary the number of
records while the number of attributes is constant at 20 and group size is main-
tained as 1,000. In Fig. 7(c) we present the execution time for each of the step
in our algorithm: LDA, grouping and noise addition. As apparent from Fig. 7 the
execution time of the presented method is linearly proportional to the size of the
dataset.
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5.3 Results for distributed case

Since mining quality of all algorithms in the distributed case is the same as the cen-
tralized case except when our method uses stratified sampling for vertical partitioned
data set. So we only reported mining quality for vertical partitioned case.

Since our approach is also generic compared to existing SMC algorithms, we also
report our approach’s performance for various mining algorithms.

We are also interested in the overhead for the distributed mining case. Since net-
work bandwidth and encryption operations are two typical bottlenecks in distributed
mining, we compare the communication cost (in terms of bytes) and the number of
encryption operations of our approach to that of traditional SMC algorithms (i.e., one
algorithm for each mining algorithm).

We used Synthetic2 in our experiments. In the horizontally partitioned case, we
randomly partitioned the data set into 5 partitions, each with about 500 rows. In the
vertically partitioned case, we randomly partitioned the data set into 3 partitions, each
with 6 columns plus a row ID. The class label is stored in the first partition. We also
used 20 groups and selected 4 columns after LDA. We used 30 % of the random
sample in the vertical partitioned case.

Stratified sampling for vertically partitioned datasets The results using stratified
sampling have been presented in Fig. 8. We have also conducted experiments to mea-
sure the impact of stratified sampling for vertically partitioned data sets. The goal of
stratified sampling is to reduce communication cost and the benefit is significant only
for large data sets. Thus the experiments have been performed in datasets which have
more than 1000 data points. The X-axis represents the noise level which is varied
from 0.1 to 0.3. The Y-axis represents the KNN accuracy. We compared our pro-
posed method of ‘LDA + groupwise noise’ with and without sampling (the sampling
percentage is 30 %) and reported accuracy of KNN. We noticed less than 1 % dif-
ference in terms of accuracy for the method with and without sampling. The detail
results are omitted due to space constraints. As it is apparent from the figures, the
accuracy of ‘LDA + groupwise Noise’ algorithms for vertical partitioning of data is
not affected due to the sampling in all the datasets.

Classification accuracy for other classification methods We have tried exploratory
data analysis by running multiple classification method over the perturbed data. The
classification methods include Support Vector Machine, Naive Bayes, Bayesian Net-
work and Decision Tree (J48). We have used the Data Mining Tool Weka Version 3.6
for this purpose. The results are displayed in Fig. 9. The noise level has been fixed
at 0.2 for this set of experiments. The results show that there is a loss in accuracy
from the original data after perturbing the data but the drop is not significant for our
approach in most of the datasets. Our approach also has better accuracy than PCA +
noise for most cases except for Iris and Pendigits. Iris contains only 4 data attributes
so PCA and LDA makes little difference. For Pendigits our method does not work
well only for SVM, probably because SVM has difficulty in separating many classes
(Pendigits has 10 classes) after LDA.



Distrib Parallel Databases (2014) 32:5–35 29

Fig. 8 Accuracy vs. noise level on 30 % sampling of datasets

Communication cost and number of encryption operations We considered a case
where all parties try both Naive Bayes and SVM algorithms. Using our approach, all
parties only need to sanitize data once. Using traditional SMC approaches, all parties
would first run the SMC protocol for Naive Bayes and then the protocol for SVM.

Table 2 reports the communication cost in terms of MB. The results show that
our method leads to significant savings (in about 2 orders for horizontally partitioned
case and about a factor of 6 for vertically partitioned case).

The overhead of SMC protocols are dominated by the cost of encryption. Table 3
reports the number of encryption operations (in thousands) as well as the execution
time (in parenthesis). We used Pallier encryption [44] in SMC protocols. The results
show that our method leads to significant savings in terms of encryption cost. Further,
the cost of encryption is quite small for the horizontally partitioned case because most
computation can be done locally without the need of encryption. The cost is higher
for the vertically partitioned case, but is still tolerable because our algorithm only
needs to be run once. The unit execution time of a single encryption operation is
0.0017 second and we expect it to be reduced further with the rapid improvement in
hardware performance.
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Fig. 9 Classification accuracy for various classification methods

6 Conclusion and future work

This paper proposes a method to provide a worst-case privacy guarantee for classifica-
tion algorithms. It provides an algorithm for the centralized case and then extends the
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Table 2 Comparison of
communication cost (in MB) for
various methods

Methods Horizontal Vertical

Our method 0.15 203.5

Traditional SMC 64.02 1238.4

Table 3 Number of encryption
operations (in thousands) and
execution time in seconds
(shown in parenthesis) for
various methods

Methods Horizontal Vertical

Our method 2.4 (4.13 sec) 3180 (5469.6 sec)

Traditional SMC 1000.4 (1720.7 sec) 19350 (33282 sec)

work to distributed scenarios providing secure protocols for both horizontal as well
as vertical partitioning of the datasets. In order to provide a worst-case privacy guar-
antee this paper uses Laplace noise framework as presented in [41] but uses Linear
Discriminant Analysis to eliminate correlation between attributes instead of Principal
Component Analysis as LDA is proved to be more effective in case of classification.
Experiments also prove that this method works well for multiple classification algo-
rithms.

For better accuracy we have proposed a grouping technique. Privacy is related
to the range of values in a group. Privacy is also problematic if a group contains
too few points. So we assume user provides a threshold for minimal group size and
minimal range. Right now our proposed method takes the minimal group size into
consideration but finding the optimal setting of noise level, minimal group size, and
minimal range will be our future research work.

Another future research direction will be to minimize communication cost for the
distributed protocols. The distributed protocols have been presented for both horizon-
tally and vertically partitioned datasets but further optimization of the protocols will
reduce the communication cost. Therefore, our future research plan is also to explore
algorithms to optimize communication cost.

Appendix

In the appendix we give brief summary of the SMC protocols we use in this paper.

Secure sum protocol The secure sum protocol [10] uses homomorphic encryption.
More specifically, suppose we want to compute the sum of xi (1 ≤ i ≤ r) where xi

belongs to party i. Two parties are first randomly selected. Without loss of generality,
suppose party 1 and 2 are chosen. Party 1 then generates a pair of public and private
keys for a homomorphic encryption scheme. It then sends the public key to the other
parties. Each party uses the public key to encrypt xi and then sends the encrypted xi to
party 2. Party 2 then computes the encrypted sum without decrypting each individual
xi using the property of homomorphic encryption. Party 2 then sends the result back
to party 1, which will decrypt the result and distribute the sum to each party.

The secure sum protocol is used in our algorithm for horizontally partitioned case
to compute number of elements in class, class mean, global mean, global Sb, and
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global Sw , all of which are essentially sum of local shares. The secure sum protocol
is also used by our algorithm for vertically partitioned case to compute the result of
LDA transform (D̂t ).

The secure sum protocol just needs r encryption operations (r as the number of
parties) and 1 decryption operation. So both the communication overhead and com-
putational overhead is O(r).

Secure scalar product We use the secure scalar product protocol that was first pro-
posed in [24] and later used in [26]. Suppose two parties A and B each has a vector
xA and xB . We want to compute the scalar product of xA · xB . The protocol also uses
homomorphic encryption. Party A generates a pair of public and private keys and
sends the public key to B . Party A then computes encrypted value for xA and sends it
to Party B . Party B selects a random value sB and uses the property of homomorphic
encryption to compute the encryption of xA · xB − sB and sends it back to Party A.
Party A decrypts the result and gets sA = xA · xB − sB . Now each party has a random
share (sA and sB ) for the scalar product.

The secure scalar product is used in the secure K-Means clustering [26] algorithm
to compute distances. We also use it in our algorithm for the vertically partitioned
case to compute Sb and Sw . Let us first consider Sb. Let vector xi(1 ≤ i ≤ m)be a 1
by c vector where the j -th value xij is the value of μj − x̄ on column i. So the value
at i-th row and j -th column of Sb is essentially scalar product of xi and xj . Similarly,
for Sw , suppose ylj is a 1 by |cl | vector where the i-th element is the value of the i-th
row in class cl on column j minus the value of μl on column j . The value at i-th row
and j -th column of Sw is the sum of a series of c (c as the number of classes) scalar
products where each scalar product equals yli · ylj (i.e., the scalar product computed
in class cl but over the column i and j ).

The protocol requires n encryption operations and one decryption operation for
a length n vector. Since the encrypted value of a data element may be used in sev-
eral scalar product computations (e.g., column 1 will be used to compute the scalar
product with column 2, 3, . . . , ), we can reuse the encrypted value. Thus each data el-
ement needs to be encrypted at most once. Our algorithm requires O(mn) encryption
operations to compute Sb and Sw in the vertically partitioned case.

Secure comparison protocol We use the secure comparison protocol to find the clos-
est cluster and the range of each column in our algorithms for horizontally and verti-
cally partitioned cases. The protocol was proposed by Yao at [57].

Secure K-Means clustering We use the secure K-Means clustering protocol pro-
posed in [26]. This protocol also calls secure sum, secure scalar protocol, and
Yao’s secure comparison protocol. The secure K-Means clustering protocol requires
O(sngrrk) encryption operations where n is number of rows in data, s is number of
columns after LDA, r is number of parties, g is the number of clusters, and rk is the
number of iterations in K-Means clustering.

The overhead of these SMC protocols are dominated by the cost of encryption. In
the horizontally partitioned case, our algorithm requires O(mcr + sgrrk) encryption
operations. Note that this is irrelevant to the number of rows in the data set because
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each party can do most computations locally. So the algorithm is efficient. In the verti-
cally partitioned case, our algorithm requires O(mn+sngrrk) encryption operations.
Encryption can be quite expensive in practice, especially for large data sets under the
vertically partitioned case. However, as stated in [24], the current hardware and some
optimization tricks (such as reusing encrypted values) can make the computational
overhead tolerable.

References

1. Aggarwal, C.C., Yu, P.S.: A condensation approach to privacy preserving data mining. In: 9th Inter-
national Conference on Extending Database Technology, Heraklion, Crete, Greece (2004)

2. Aggarwal, C.C., Yu, P.S.: Privacy-Preserving Data Mining: Models and Algorithms. Springer, Berlin
(2008)

3. Agrawal, D., Aggarwal, C.C.: On the design and quantification of privacy preserving data mining
algorithms. In: 20th ACM PODS, Santa Barbara, CA, pp. 247–255 (2001)

4. Agrawal, S., Haritsa, J.R.: A framework for high-accuracy privacy-preserving mining. In: ICDE
(2005)

5. Agrawal, R., Srikant, R.: Privacy preserving data mining. In: 2000 ACM SIGMOD, Dallas, TX, May
2000, pp. 439–450 (2000)

6. Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the sulq framework. In: PODS
(2005)

7. Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive database privacy. In:
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC’08, pp. 609–618.
ACM, New York (2008). http://doi.acm.org/10.1145/1374376.1374464

8. Caragea, D., Silvescu, A., Honavar, V.: Decision tree induction from distributed, heterogeneous, au-
tonomous data sources. In: Conference on Intelligent Systems Design and Applications (2003)

9. Chen, K., Liu, L.: A random rotation perturbation approach to privacy-preserving data classification.
In: ICDM 2005, Houston, TX, November 2005

10. Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., Zhu, M.: Tools for privacy preserving distributed
data mining. ACM SIGKDD Explor. 4, 28–34 (2002)

11. Dalenius, T., Reiss, S.P.: Data-swapping: a technique for disclosure control. J. Stat. Plan. Inference 6,
73–85 (1982)

12. Du, W., Zhan, Z.: Building decision tree classifier on private data. In: IEEE International Conference
on Privacy, Security and Data Mining, Maebashi City, Japan, December 2002, pp. 1–8 (2002)

13. Du, W., Zhan, Z.: Using randomized response techniques for privacy preserving data mining. In: 9th
ACM SIGKDD, Washington, DC, August 2003, pp. 505–510 (2003)

14. Dwork, C.: Differential privacy. In: ICALP, pp. 1–12 (2006)
15. Dwork, C.: Differential privacy: a survey of results. In: Proceedings of the 5th International Confer-

ence on Theory and Applications of Models of Computation, TAMC’08, pp. 1–19. Springer, Berlin
(2008). http://dl.acm.org/citation.cfm?id=1791834.1791836

16. Dwork, C., Mcsherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data anal-
ysis. In: Proceedings of the 3rd Theory of Cryptography Conference, pp. 265–284. Springer, Berlin
(2006)

17. Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.: On the complexity of differen-
tially private data release: efficient algorithms and hardness results. In: Proceedings of the 41st An-
nual ACM Symposium on Theory of Computing, STOC’09, pp. 381–390. ACM, New York (2009).
http://doi.acm.org/10.1145/1536414.1536467

18. Evfimevski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy preserving data mining.
In: 22nd ACM PODS, San Diego, CA, June 2003, pp. 211–222 (2003)

19. Feldman, D., Fiat, A., Kaplan, H., Nissim, K.: Private coresets. In: Proceedings of the 41st An-
nual ACM Symposium on Theory of Computing, STOC’09, pp. 361–370. ACM, New York (2009).
http://doi.acm.org/10.1145/1536414.1536465

20. Fienberg, S.E., McIntyre, J.: Data-swapping: variations on a theme by Dalenius and Reiss. Tech. rep.,
National Institute of Statistical Sciences (2003)

21. Frank, A., Asuncion, A.: UCI machine learning repository (2010). http://archive.ics.uci.edu/ml

http://doi.acm.org/10.1145/1374376.1374464
http://dl.acm.org/citation.cfm?id=1791834.1791836
http://doi.acm.org/10.1145/1536414.1536467
http://doi.acm.org/10.1145/1536414.1536465
http://archive.ics.uci.edu/ml


34 Distrib Parallel Databases (2014) 32:5–35

22. Gal, T., Chen, Z., Gangopadhyay, A.: A privacy protection model for patient data with multiple sen-
sitive attributes. Int. J. Inf. Secur. Priv. 2(3), 28–44 (2008)

23. Giannella, C., Liu, K., Olsen, T., Kargupta, H.: Communication efficient construction of decision
trees over heterogeneously distributed data. In: Fourth IEEE International Conference on Data Mining
(2004)

24. Goethals, B., Laur, S., Lipmaa, H., Mielikainen, T.: On secure scalar product computation for privacy-
preserving data mining. In: The 7th Annual International Conf. in Information Security and Cryptol-
ogy (2004)

25. Huang, Z., Du, W., Chen, B.: Deriving private information from randomized data. In: SIGMOD 2005,
Baltimore, MD, June 2005, pp. 37–48 (2005)

26. Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering over arbitrarily par-
titioned data. In: SIGKDD’05, Chicago, IL, pp. 593–599 (2005)

27. Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of association rules on horizon-
tally partitioned data. IEEE Trans. Knowl. Data Eng. 16(9), 1026–1037 (2004)

28. Kantarcioglu, M., Vaidya, J.: Privacy preserving naïve Bayes classifier for horizontally partitioned
data. In: IEEE ICDM Workshop on Privacy Preserving Data Mining, Melbourne, FL, November 2003,
pp. 3–9 (2003)

29. Kargupta, H., Park, B.H.: A Fourier spectrum-based approach to represent decision trees for mining
data streams in mobile environments. IEEE Trans. Knowl. Data Eng. 16(2), 216–229 (2004)

30. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving properties of random
data perturbation techniques. In: ICDM, pp. 99–106 (2003)

31. Kim, J.J., Winkler, W.E.: Multiplicative noise for masking continuous data. Tech. rep. 2003-01, Sta-
tistical Research Division, U.S. Bureau of the Census, April 2003

32. Kim, D., Chen, Z., Gangopadhyay, A.: Optimizing privacy-accuracy tradeoff for privacy preserving
distance-based classification. Int. J. Inf. Secur. Priv. 6(2), 16–33 (2012)

33. Li, C., Hay, M., Rastogi, V., Miklau, G., McGregor, A.: Optimizing linear counting queries un-
der differential privacy. In: Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS’10, pp. 123–134. ACM, New York (2010).
http://doi.acm.org/10.1145/1807085.1807104

34. Lin, X., Clifton, C., Zhu, Y.: Privacy preserving clustering with distributed em mixture modeling. Int.
J. Knowl. Inf. Syst. 8(1), 68–81 (2005)

35. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Advances in Cryptology (CRYPTO’00).
Lecture Notes in Computer Science, vol. 180, pp. 36–53 (2000)

36. Liu, K., Giannella, C., Kargupta, H.: An attacker’s view of distance preserving maps for privacy
preserving data mining. In: The 10th European Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD’06) (2006)

37. Liu, K., Kargupta, H., Ryan, J.: Random projection-based multiplicative data perturbation for privacy
preserving distributed data mining. IEEE Trans. Knowl. Data Eng. 18(1), 92–106 (2006)

38. Ma, D., Sivakumar, K., Kargupta, H.: Privacy sensitive Bayesian network parameter learning. In:
4th IEEE International Conference on Data Mining (ICDM’04), Brighton, UK, November 2004, pp.
487–490 (2004)

39. Mcsherry, F.: Mechanism design via differential privacy. In: Proceedings of the 48th Annual Sympo-
sium on Foundations of Computer Science (2007)

40. Mukherjee, S., Chen, Z., Gangopadhyay, A.: A privacy preserving technique for Euclidean distance-
based mining algorithms using Fourier-related transforms. VLDB J. 15(4), 292–315 (2006)

41. Mukherjee, S., Banerjee, M., Chen, Z., Gangopadhyay, A.: A privacy preserving technique for
distance-based classification with worst case privacy guarantees. Data Knowl. Eng. 66(2), 264–288
(2008)

42. Mukherjee, S., Chen, Z., Gangopadhyay, A.: A fuzzy programming approach for data reduction and
privacy in distance based mining. Int. J. Inf. Comput. Secur. (in press)

43. Oliveira, S., Zaïane, O.R.: Privacy preserving clustering by data transformation. In: 18th Brazilian
Symposium on Databases, pp. 304–318 (2003)

44. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: EURO-
CRYPT, pp. 223–238. Springer, Berlin (1999)

45. Roth, A., Roughgarden, T.: Interactive privacy via the median mechanism. In: Proceedings of the
42nd ACM Symposium on Theory of Computing, STOC’10, pp. 765–774. ACM, New York (2010).
http://doi.acm.org/10.1145/1806689.1806794

46. Sweeney, L.: K-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based
Syst. 10(5), 557–570 (2002)

http://doi.acm.org/10.1145/1807085.1807104
http://doi.acm.org/10.1145/1806689.1806794


Distrib Parallel Databases (2014) 32:5–35 35

47. Vaidya, J.: Towards a holistic approach to privacy-preserving data analysis. In: Workshop on Secure
Knowledge Management (2008)

48. Vaidya, J.S., Clifton, C.: Privacy preserving association rule mining in vertically partitioned data. In:
8th ACM SIGKDD, Edmonton, Canada, July 2002, pp. 639–644 (2002)

49. Vaidya, J.S., Clifton, C.: Privacy-preserving k-means clustering over vertically partitioned data. In:
9th ACM SIGKDD, Washington, DC, August 2003, pp. 206–215 (2003)

50. Vaidya, J., Clifton, C.: Privacy-preserving decision trees over vertically partitioned data. In: Proceed-
ings of the IFIP WG 11.3 International Conference on Data and Applications Security, pp. 139–152.
Springer, Berlin (2005)

51. Vaidya, J., Clifton, C., Zhu, M.: Privacy Preserving Data Mining. Springer, Berlin (2005)
52. Vaidya, J., Kantarcioglu, M., Clifton, C.: Privacy-preserving naïve Bayes classification. VLDB J.

17(4), 879–898 (2008)
53. Warner, S.: Randomized response: a survey technique for eliminating evasive answer bias. J. Am.

Stat. Assoc. 60(309), 63–69 (1965)
54. Wright, R., Yang, Z.: Privacy-preserving Bayesian network structure computation on distributed het-

erogeneous data. In: 10th ACM SIGKDD Conference (SIGKDD’04), Seattle, WA, August 2004, pp.
713–718 (2004)

55. Xiao, X., Bender, G., Hay, M., Gehrke, J.: Ireduct: differential privacy with reduced relative errors.
In: Proceedings of the 2011 International Conference on Management of Data, SIGMOD’11, pp.
229–240. ACM, New York (2011). http://doi.acm.org/10.1145/1989323.1989348

56. Xiao, X., Wang, G., Gehrke, J.: Differential privacy via wavelet transforms. IEEE Trans. Knowl. Data
Eng. 23, 1200–1214 (2011). doi:10.1109/TKDE.2010.247

57. Yao, A.C.: How to generate and exchange secrets. In: 27th IEEE Symposium on Foundations of
Computer Science, pp. 162–167 (1986)

58. Yu, H., Jiang, X., Vaidya, J.: Privacy-preserving svm using nonlinear kernels on horizontally par-
titioned data. In: Proceedings of the 2006 ACM Symposium on Applied Computing, SAC’06, pp.
603–610 (2006)

59. Yu, H., Vaidya, J., Jiang, X.: Privacy-preserving svm classification on vertically partitioned data. In:
PAKDD, pp. 647–656 (2006)

60. Zhu, Y., Liu, L.: Optimal randomization for privacy preserving data mining. In: KDD, pp. 761–766
(2004)

http://doi.acm.org/10.1145/1989323.1989348
http://dx.doi.org/10.1109/TKDE.2010.247

	A generic and distributed privacy preserving classification method with a worst-case privacy guarantee
	Abstract
	Introduction
	Related work
	Privacy preserving data mining on centralized data
	Privacy preserving data mining on distributed data

	Background
	Linear discriminant analysis
	Worst-case privacy model
	Adversarial model

	Our approach
	Utility aware projection
	Grouping of each class
	Data sanitization
	Complexity analysis
	Horizontally partitioned data
	Utility aware projection for horizontally partitioned data
	Grouping of each class for horizontally partitioned data
	Data perturbation for horizontally partitioned data
	Security analysis
	Communication cost

	Vertically partitioned data
	Utility aware projection for vertically partitioned data
	Grouping of each class for vertically partitioned data
	Data perturbation for vertically partitioned data
	Security analysis
	Communication cost
	Random sampling

	Comparison of communication cost
	Privacy of the proposed method

	Experiments
	Setup
	Datasets
	Privacy measures
	Comparison with other algorithms

	Results for centralized case
	Execution time

	Results for distributed case
	Stratified sampling for vertically partitioned datasets
	Classification accuracy for other classification methods
	Communication cost and number of encryption operations


	Conclusion and future work
	Appendix
	Secure sum protocol
	Secure scalar product
	Secure comparison protocol
	Secure K-Means clustering

	References


