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Abstract—To mitigate climate change impacts, carbon capture
technologies have been implemented at significant CO2 emission
points, such as industrial sites and electric power generation
facilities. Solvent-based carbon capture solutions are pivotal in
reducing atmospheric CO2 levels and enhancing air quality by
capturing harmful pollutants. Amine-based solvents, favored for
their efficiency in post-combustion CO2 capture, are susceptible
to thermal and oxidative degradation, leading to complex emis-
sions profiles that demand comprehensive management strategies.
We develop a Machine Learning model designed to predict
future amine emissions in real-time, thereby assisting in the
formulation of mitigation strategies required for the operation
of capture plants. We conducted an experiment using data from
test campaigns run at the Technology Centre Mongstad (TCM).
We employed a Long Short-Term Memory (LSTM) autoencoder
model with dual-stage attention mechanisms to predict amine
emissions using historical data. The results were quite promising:
we achieved a mean absolute percentage error ranging from
5.8% to 6.8% percent for the real-time prediction of amine
emissions. The results are better than existing approaches using
simpler machine learning models as well as the standard LSTM
autoencoder model.

I. INTRODUCTION

Climate change mitigation efforts have led to the imple-
mentation of carbon capture technologies at major CO2 emis-
sion sources, with solvent-based solutions playing a pivotal
role. These technologies, particularly those using amine-based
solvents, are effective in reducing atmospheric CO2 levels
and improving air quality by capturing various pollutants,
including sulfur dioxide. The process involves chemical sol-
vents absorbing carbon dioxide from flue gases, with amine-
based solutions being especially effective in post-combustion
capture by binding directly with carbon dioxide molecules,
thus significantly reducing greenhouse gas emissions [1].

However, the deployment of amine-based carbon capture
systems introduces challenges related to the dispersion of
harmful compounds, such as monoethanolamine (MEA) and
nitrosamines (e.g., NDMA). These compounds, if not carefully
managed, can pose significant environmental and health risks
[2]. Moreover, the concentration of these emissions varies
significantly based on environmental factors such as wind
speed and the height of emission sources. This underscores

the importance of accurate emission predictions and targeted
mitigation strategies.

Fig. 1. Diagram of CO2 capture technology

Figure 1 presents a schematic representation of the carbon
dioxide capture technology deployed at Technology Centre
Mongstad (TCM). It begins with the preparation of industrial
flue gas in the flue gas preparation unit, where the gas
is cooled, and certain contaminants are removed via water
circulation before it enters the CO2 capture stage. The refined
gas, now containing carbon dioxide, is directed to the absorber
where it is captured by the solvent as the gas moves upward. A
washing section at the absorber’s apex ensures the CO2 capture
does not contribute to local environmental pollution. Pure CO2
is gathered at the stripper’s summit and is then dispatched
for transportation, storage, or use. The solvent, having been
regenerated, is cycled back to the absorber to persist in the
CO2 capture process.

In this paper, we focus on the development of a machine
learning model designed to predict future amine emissions in
real-time, which can assist in the formulation of mitigation
strategies required for the operation of capture plants. Machine



learning, particularly deep learning techniques, has shown
great promise in various fields for predictive analytics due to
its ability to model complex nonlinear relationships and learn
from large datasets [3].

We have made the following contributions:
1) We propose a deep learning technique for accurate

prediction of amine emissions. Our solution uses a
Long Short-Term Memory (LSTM) autoencoder with
dual-stage attention. The autoencoder layers compress
high dimensional time series data to a lower dimension
latent space. The dual-stage attention mechanisms let
the model focus on important input features as well as
important dimensions in the latent space.

2) We conducted an experiment using data from test cam-
paigns run at the Technology Centre Mongstad (TCM) to
evaluate our method. The results were quite promising:
we achieved a mean absolute percentage error ranging
from 5.8% to 6.8% for the real-time prediction of
amine emissions. The results are better than existing
approaches using simpler machine learning models.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III describes our method.
Section IV evaluates the model performance, comparing vari-
ous machine learning models. Section V concludes the paper.

II. RELATED WORK

Jablonka et. al. [4] treated the problem of predicting
amine emission as a time series prediction problem and
used gradient-boosted decision tree and Convolutional Neural
Network (CNN). However, both gradient-boosted tree and
CNN are not the most appropriate methods for time series
data [5].

In this paper, we employed a Long Short Term Mem-
ory (LSTM) autoencoder model with dual-stage attention
mechanisms to predict amine emissions using historical data.
LSTM autoencoder learns a more concise data representation
through an autoencoder, which transforms input data into a
lower-dimensional embedding. Dual-stage attention was first
proposed in [6]. It allows the model to focus on important
input features and important embeddings, leading to better
prediction results.

Other studies have investigated the use of CNNs, LSTMs,
and attention mechanisms to increase prediction accuracy
and model efficiency in a variety of applications [7]–[10].
Abbasimehr and Paki [11] compared the hybrid model against
several standard and hybrid time series forecasting techniques.
The proposed method involves using LSTM layers to capture
short-term and long-term dependencies in the data, while the
multi-head attention mechanism focuses on the most important
features. It finally concludes that integrating attention mecha-
nisms with LSTM models offers significant improvements in
time series forecasting accuracy.

Banna et al. discussed a machine learning approach for
earthquake prediction [12]. The authors added an attention
layer to the LSTM architecture to improve the model’s pre-
diction accuracy for earthquake occurrence.

Recently, Li et al used a similar technique in the finan-
cial business to predict stock prices [13]. They used neural
networks to increase the accuracy of financial time-series
predictions, with a focus on forecasting the next trading day’s
closing price. It also used a attention-based LSTM model
(AT-LSTM) that blends Long Short-Term Memory (LSTM)
networks with attention mechanism.

Overall, LSTM models, especially when integrated with
attention mechanisms, represent an effective approach to time
series forecasting than previous methods such as CNNs and
gradient-boosted decision trees.

III. METHODOLOGY

Section III-A describes the pre-processing step of our
method. Section III-B presents the deep learning methods. We
also discuss complexity of proposed method in Section III-C.

A. Pre-processing

We used data from the Technology Center Mongstad [14].
This dataset contains data from a test campaign conducted
between November 1, 2020, and November 15, 2020. For
this test, a portion of the product CO2 was recycled to the
Combined Heat and Power (CHP) flue gas inlet stream in a
controlled manner to maintain the incoming CO2 concentration
at 5% by volume, dry basis. A process flow diagram, presented
in Figure 2, shows the high-level equipment contained within
the amine plant, along with key existing instrumentation.

Fig. 2. Diagram of CO2 capture technology

This dataset records flue gas inlet properties, system per-
formance, solvent circulation parameters, depleted flue gas
composition, amine emissions, and water wash parameters.

The data is sampled every 10 minutes and includes 31 plant
parameters and 4 amine emission measures, with 2 measures
each for AMP and Piperazine (two types of amine emission).



AMP (2-amino-2-methyl-1-propanol) and Piperazine (an or-
ganic compound that consists of a six-membered ring con-
taining two opposing nitrogen atoms) are solvent commonly
used in CO2 capture and they can generate emission during
the process.

In the pre-processing step, we converted the data into a time
series using a window size of 25, meaning that we used data
from the past 100 minutes to predict the emission data 10
minutes later. We selected a varying number of features using
Pearson correlation, specifically, features with the highest
absolute values of Pearson correlations with the emissions
were selected. This data was then converted into a time series
format, where each data sample consists of 10m dimensions,
with m being the number of features. Each input data record
includes 10 time steps, with m readings at each time step,
where the first m− 1 values are the selected features and the
last value is a historical emission reading. The output is the
AMP or Piperazine emission in the next 10 minutes (or 100
minutes after the initial reading in the input).

Fig. 3. Selected Features

Figure 3 displays the 10 features selected based on Pearson
correlation that are from highest to lowest values, for AMP
and Piperazine. Those in bold text are control parameters,

e.g., flue gas temperature, lead solvent flow, and upper WW
(Wastewater) Water temperature In. The remaining features are
measure of depleted flue gas composition.

B. Deep Learning Models for Amine Prediction

We explored a number of deep learning models and selected
the one that offers the highest accuracy. The list of models
includes:

• LSTM: This is a popular type of recurrent neural network
(RNN) well-suited for time series analysis. Unlike other
RNN methods, LSTM avoids the problem of vanishing
gradients, where long-term gradients tend toward zero.
Such networks typically consist of several LSTM layers,
each comprising a different number of LSTM nodes. An
LSTM node has three inputs: the data Xt at time t, the
cell state Ct-1 from the previous node, and the hidden
state (output) ht-1 from the previous node. It generates
two outputs: Ct, the current cell state, and ht, the current
hidden state. The last hidden state is the output of the
LSTM network [15]. An LSTM cell contains a cell
state, which is managed by gates that control the flow
of information. These gates, using a sigmoid activation,
determine the amount of information added or removed
from the cell state through pointwise multiplication [16].
These LSTM layers extract important features from the
input data, while the last few densely connected layers
are used for prediction.

• LSTM Autoencoder: Since our input data has a large
number of dimensions, it often makes sense to map
the input to lower dimensions (embedding) to extract
only important information. The LSTM autoencoder is
a popular method for mapping input time series data
to lower-dimensional embedding. The data is fed to an
encoder with a few LSTM layers and is mapped to an
embedding. A decoder, having a reverse structure to the
encoder, reconstructs the input from the embedding. A
few dense layers are also used to predict future emission
products from the embedding.

• LSTM Autoencoder with Dual-Stage Attention: At-
tention is a technique commonly used in deep learning
to enhance performance over long sequences. For long
sequences, RNNs tend to prioritize more recent data and
overlook earlier data. Attention addresses this issue by
computing a soft weight (meaning the weight can change
depending on the data) for each input unit (e.g., input
data at each time step or output from the previous layer).
We used a dual-stage attention mechanism as described in
[6]. This mechanism adds two attention layers to a regular
LSTM autoencoder: one as the first layer (before the first
LSTM layer) to assign weights to input features based
on the encoder’s previous hidden state, and the other is
a temporal attention layer placed after the encoder but
before the decoder, calculating weights of the embedding
(output of the encoder) based on the decoder’s previous
hidden states.



Fig. 4. LSTM Autoencoder with dual-stage attention

In our LSTM autoencoder with dual-attention model, the
encoder consists of two LSTM layers: the first with 32 units
and the second with 16 units. The output of the encoder is
an embedding of the input, which is then passed through two
decoder layers to reconstruct the input from the embedding
[17]. Additionally, this embedding feeds into a dense layer
with 100 units to predict emission outputs. Two attention
layers are added, one before the first LSTM layer and the other
after the embedding layer but before the first LSTM layer in
the decoder. Figure 4 shows the structure of our model.

C. Computation Time and Model Complexity

The complexity of training a deep learning model is in the
order of number of parameters in the network times number of
training examples times number of training epochs. Since the
deep learning models we use mainly contains LSTM layers
and dense layers, we will examine number of parameters in
each case. A LSTM layer has 4((x + h)h + h) parameters,
where x is input size, h is output size (also number of LSTM
nodes in the layer) [18].

For a dense layer, the number of parameters equals (input
size +1) times output size. So if the input data is wm where
w is number of time steps and m is number of features, and
layer i has ni neurons.

The first LSTM layer will have 4((wm + n1)n1 + n1)
parameters. The second layer will take n1 input and output n2.
So it has 4((n1 + n2)n2 + n2) parameters. We can continue
this computation for each layer and then compute a sum of
each layer.

In our proposed LSTM autoencoder with dual-stage atten-
tion, the total number of parameters is 34033, with most of
parameters in the LSTM layers.

When we use the model for prediction, the computation cost
is much lower because we don’t need to have multiple epochs.
So the computational cost is only related to the number of
parameters in the model. In addition, when LSTM autoencoder

is used, we no longer need to use the decoder layers in
the model. This will also reduce the computational time. In
general, although the training of prediction models may take
significant amount of time (in hours), the prediction can be
done in real time (in seconds).

IV. EXPERIMENTAL RESULTS

A. Setup

a) Data set: We used TCM data set as described in
Section III-A. We trained two models separately for each
machine learning method: one to predict AMP emission and
the other to predict Piperazine emission, using 80% of the
data for training and the remaining 20% for testing. Features
were selected using Pearson correlation. The pre-processing
step was described in Section III-A.

b) Machine learning models: We evaluated the following
machine learning models in our experiments.

1) LSTM: We used two LSTM layers with 32 and 16
LSTM units each, and a dense layer for prediction.

2) LSTM autoencoder: The encoder also consists of two
LSTM layers with 32 and 16 LSTM units each, the
decoder has the same two layers but in reverse order,
and a dense layer taking encoder output as input for
prediction.

3) Autoencoder with dual-stage attention: This is the pro-
posed method, with LSTM autoencoder as described
above and two attention layers, one as the first layer
before encoder, and the other in between the encoder
and decoder.

4) Autoencoder with a single attention layer: This is a
variant where we only add an attention layer between
encoder and decoder.

5) Gradient boosting tree: This is the method proposed in
[4].
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Fig. 5. Prediction of AMP emission using different models.

6) Convolutional neural network (CNN): This is the method
proposed in [4]. To make a fair comparison, we used
two layers of CNN with 32 and 16 units in each layer
followed by a dense layer for prediction.

All models were implemented using Tensorflow 2.17.0 and
Keras 3.4.1. All experiments were conducted on a Google
Colab free tier node with 900 training epochs. The default
configuration for a Colab free node uses a NVIDIA Tesla K80
GPU with 12 GB of VRAM.

c) Metrics: we used mean absolute percentage error as
the metric for all models.

B. Results

Figure 5 compares the performance of various models to
predict AMP emission with 4, 6, 8, and 10 features. The y-
axis is mean absolute percentage error.

The error for LSTM Autoencoder (blue line) starts at around
8.5% error with 4 features, decreases to approximately 7% at
6 features, and then slightly increases to about 7.5% at 10
features. Its performance is slightly better than LSTM (without
encoder/decoder).

Our proposed method, LSTM autoencoder with dual-stage
attention, consistently outperformed other models. The error
for autoencoder with dual-stage attention mechanisms (red
line) starts at around 7.5% with 4 features, decreases to
approximately 6.8% at 6 features, and remains stable around
7% for 8 and 10 features. The optimal setting is 6 features.
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Fig. 6. Prediction of Piperazine emission using different models.

This verifies the benefits of using dual-stage attention along
with LSTM autoencoder.

LSTM autoencoder with just one attention layer performs
better than autoencoder without attention, but is worse than
LSTM autoencoder with dual-stage attention. This shows the
benefits of using two layers of attention rather than just
one layer because the former allows the model to focus
on important input features as well as important embedding
features.

The result of both Gradient boosting tree and CNN are
worse than than the LSTM based models (over 10% error
rate). CNN has the worst performance. This is expected as
LSTM is known to be more suitable for time series data.

Figure 6 illustrates the performance of these different
models in predicting Piperazine emission, measured as mean
absolute percentage error. The x-axis ranges from 4 to 10.
Since CNN performs much worse for Piperazine than other
methods, we also plot the results without CNN in Figure 7.

The results are similar to the results for predicting AMP
emission. The proposed model autoencoder with dual-stage
attention outperforms the autoencoder and autoencoder with
one attention layer with 4 and 10 features, but has slightly
higher error with 6 and 8 features. However the lowest error
rate is still achieved by the dual-stage attention model at 5.8%
using all 10 features.

Autoencoder with one attention layer is the second best
method, outperforming autoencoder without attention, but is
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Fig. 7. Piperazine prediction results without CNN.

worse than autoencoder with dual-stage attention in terms of
the best performance (using 10 features). This is expected as
using dual-stage attention can better focus on features both
in input and in latent space, especially when there are many
features.

Autoencoder method also works better than LSTM and
gradient boosting tree. CNN again has much higher error rate
(over 10%) than all other methods and its performance is worse
when more features are selected.

The error rates for LSTM based methods are also smaller
for predicting Piperazine emission than for predicting AMP
emission.

It is evident that incorporating attention mechanisms im-
proves the prediction accuracy for both AMP and Piperazine
emission prediction. LSTM based models also outperform
existing methods such as Gradient Boosting Tree and CNN.

Figure 8 plots real values of AMP and values predicted by
LSTM autoencoder with dual-stage attention. Figure 9 plots
the same for Piperazine. The red lines indicate predictions,
whereas the blue lines display actual numbers.

The results indicate that the predicted values of AMP and
Piperazine using our method closely match the actual data. The
proposed model effectively captures fluctuations and patterns
with good precision.

Our proposed models are also efficient to train due to its
relatively small size. Training time was below 30 minutes in all
cases using just a Google Colab free tier node. The inference

Fig. 8. Predicted vs. Real AMP FTIR in the TCM data set.

Fig. 9. Predicted vs. Real Piperazine in the TCM data set.

will just take around a second.

V. CONCLUSION AND FUTURE WORK

We proposed an accurate amine emission prediction model
using LSTM autoencoder with dual-attention. Experiments
with real emission data showed promising results. Our method
achieved an error rate between 5.8% to 6.8%. This marks a
significant improvement over LSTM autoencoder as well as
other existing methods.

We will enhance our emission prediction models by lever-
aging transfer learning techniques to generalize models trained
on TCM data across different carbon capture technologies.
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