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Discrete Wavelet Transform-Based Time Series Analysis and Mining
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Time series are recorded values of an interesting phenomenon such as stock prices, household incomes,
or patient heart rates over a period of time. Time series data mining focuses on discovering interesting
patterns in such data. This article introduces a wavelet-based time series data analysis to interested readers.
It provides a systematic survey of various analysis techniques that use discrete wavelet transformation
(DWT) in time series data mining, and outlines the benefits of this approach demonstrated by previous
studies performed on diverse application domains, including image classification, multimedia retrieval, and
computer network anomaly detection.
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1. INTRODUCTION

A time series is a sequence of data that represent recorded values of a phenomenon
over time. Time series data constitutes a large portion of the data stored in real world
databases [Agrawal et al. 1993]. Time series data appear in many application domains,
such as in financial, meteorological, medical, social sciences, computer networks, and
business. Time series are derived from recording observations of various types of phe-
nomena, for example, temperature, stock prices, household income, patient heart rates,
number of bits transferred, product sales volume over a period of time, etc. Some com-
plex data types, such as audio and video, are also considered time series data, since
they can be measured at each point in time.

This research was supported by the Royal Thai Scholarship.
This work was conducted when P. Chaovalit was a doctoral student at the University of Maryland, Baltimore
County (UMBC).
Authors’ addresses: P. Chaovalit, National Science and Technology Development Agency, 111 Thailand
Science Park, Pahonyothin Road, Klong 1, Klong Luang, Pathum Thani 12120, Thailand; email:
pimwadee@nstda.or.th; A. Gangopadhyay, G. Karabatis, and Z. Chen, Department of Information Systems,
The University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250; email:
{gangopad, georgek, zhchen}@umbc.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 0360-0300/2011/01-ART6 $10.00
DOI 10.1145/1883612.1883613 http://doi.acm.org/10.1145/1883612.1883613

ACM Computing Surveys, Vol. 43, No. 2, Article 6, Publication date: January 2011.



6:2 P. Chaovalit et al.

Time series data mining techniques analyze time series data in search of interesting
patterns that were previously unknown to information users. Researchers and users
perform various tasks on time series data, such as time series classification, time
series clustering, rule extraction, and pattern querying. For example, when users want
to gain an insight into stock prices, they explore the closing price data by clustering
data into price groups. Then they may track the stocks with certain price fluctuations
by performing a query. When users are familiar with the data, they may use a rule
extraction technique to mine a set of rules that best govern the stock prices. To perform
these interesting tasks, different techniques have already been established. One of the
more recent and promising techniques is discrete wavelet transform.

Discrete wavelet transform (DWT), a technique with a mathematical origin, is very
appropriate for noise filtering, data reduction, and singularity detection, which makes
it a good choice for time series data processing. DWT has been around for approximately
100 years, and it has been used extensively in a wide range of areas, such as in signal
processing, and specifically it is frequently employed for research in signal compression,
image enhancement and noise reduction.

Time series data analysis and mining is another area where researchers have re-
cently applied DWT techniques due to its favorable properties. Although DWT has been
around for quite some time, only recently has it been adopted by database researchers
to assist in data analysis and mining for time series.

DWT is a powerful tool for a time-scale multiresolution analysis on time series and
has been used to break down an original time series into different components, each of
which may carry meaningful signals of the original time series. Researchers have ap-
plied wide-ranging analyses on decomposition of an original time series in medical time
series data, audio and video data, and image data and obtained superior results. A no-
table example describing the value of DWT in the decomposition of a time series comes
from the medical domain: an EEG (electroencephalograph) signal is the most important
measurement to assist in the diagnosis of epilepsy. In Subasi [2005], an EEG signal
was broken down into several subbands using DWT, and produced better intermediate
results to be fed into a classification engine. The classification engine using an artificial
neural network diagnosed patients as healthy or epileptic from the decomposed sub-
band of EEG with more than 90% accuracy when using the human experts’ diagnoses as
baseline. Such a system can serve suitably as a great decision support tool for medical
experts.

There are many advantages in using DWT ranging from the discovery of more
precise knowledge, to the development of faster mining process, all the way to the
reduction of data storage requirements. In this article, we discuss and provide a
strong basis for understanding the use of DWT on time series data for data anal-
ysis and mining purposes. In Section 2 we present time series data definition and
characteristics. In Section 3 we present the concept of discrete wavelet transform
and its multiple levels of resolution, and discuss the benefits and functionalities
of DWT for time series data analysis. The functionalities include data dimension-
ality reduction, noise filtering, and singularity detection, which are available for
multiresolution analysis. In Section 4 we discuss applications of discrete wavelet
transforms in various domains of time series data analysis and mining, including (i)
wavelet-based time series similarity search, (ii) wavelet-based time series classification,
(iii) wavelet-based clustering, (iv) wavelet-based trend, surprise, and pattern detec-
tion, and (v) wavelet-based prediction. We conclude this article in Section 5 by sum-
marizing the benefits of DWT, indicating research gaps, and identifying challenges
involved in applying DWT to time series data analysis and mining for interested
researchers.

ACM Computing Surveys, Vol. 43, No. 2, Article 6, Publication date: January 2011.



Discrete Wavelet Transform-Based Time Series Analysis and Mining 6:3

2. TIME SERIES DATA ANALYSIS AND MINING

The growth of time series data has profoundly increased the interest in data analysis
and mining of time series by both academic and industry researchers. In this article
we concentrate mainly on topics relevant to wavelet-based time series data analysis
and mining; nevertheless, there is a rich body of literature for generic time series data
analysis and mining, which is briefly presented for comparison in Section 4, although
the discussion there can by no means be considered exhaustive. For further reading on
generic time series data analysis and mining, we direct the readers to examine the ex-
cellent survey articles by Keogh et al. [2004a], Keogh and Kasetty [2002], and Roddick
and Spiliopoulou [1999]. We start our discussion on time series data analysis with a
definition of time series. Then we introduce the characteristics of time series data.

2.1. Definition of Time Series Data

A time series is a sequence of event values which occur during a period of time. Each
event occurring at each time point has a value which is recorded. The collection of
all these values represents a single variable (such as an EEG signal or stock price
over a time period). Therefore, a time series of a single variable contains a sequence of
recorded observations of an interesting event. Formally a time series can be represented
by S = {s1, s2, . . . , sn}, where S is a whole time series, si is the recorded value of variable
s at time i, and n is the number of observations.

2.2. Time Series Data Characteristics

Time series data has some daunting characteristics for data mining: large volume,
high dimensionality, hierarchy, and multivariate property. We will discuss each of these
characteristics in this section.

A large volume of data in the database could pose a challenge for data analysis. With
time series data mining, the situation is exacerbated even further when, for example,
we use systems that constantly collect monitoring data from automatic sensors. The
number of observations in a time series can often be extremely high, sometimes ranging
from the order of hundreds or thousands to the order of millions or billions. The large
volume of data poses a problem for data analysis and mining algorithms as larger
databases take more time for data analysis and mining technique to access data and
perform computations.

High dimensionality is another easily-recognized characteristic of time series data.
It refers to situations when time series are long. During similarity search in time series
data analysis, this leads to what is known as the dimensionality curse [Agrawal et al.
1993; Chan and Fu 1999; Lee et al. 2000; Man and Wong 2001]. Dimensionality curse
is the situation that arises when a time series is mapped onto a k-dimensional space,
where k is the number of time points. Korn et al. [1997] proposed an approach using
singular value decomposition (SVD) to transform a large matrix of time series into a
smaller matrix for data compression purposes, as follows. If we consider a set of time
series data as having M observations, each of which has N data points, we have an
M∗N matrix. The method assumes that the number M is much larger than N. With the
Korn et al. [1997] technique, random accesses to data for ad hoc queries are possible
with a small reconstruction error. However, Korn et al.’s [1997] approach might not be
applicable to some time series datasets since this assumption may or may not hold true,
depending on the length of the data. For a time series that is very long, the number
N could easily exceed M [Shahabi et al. 2000]. A dataset composed of reasonably long
time series with moderate number of observations may not use the approach of Korn
et al. [1997].
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Another characteristic of time series data is its hierarchical nature. A time series
can be analyzed by its underlying time hierarchy, such as hourly, weekly, monthly, and
yearly. A number of studies have investigated multilevel analysis of time series data
hierarchically [Geurts 2001; Man and Wong 2001; Percival and Walden 2000; Shahabi
et al. 2000]. These investigations led researchers to look for patterns by temporal
semantics through the time series hierarchy. For example, Li et al. [1998] queried data
from a time series database on multiple levels of abstraction. Users could also find
the match for a larger sequence of events by forming together several small events.
Shahabi et al. [2000] proposed a technique for analyzing trend and surprise in time
series’ temporal hierarchies through visualization.

The last characteristic of time series data is the multi-variate nature of some data.
Time series data analysis often studies one variable, but sometimes deals with time se-
ries data consisting of multiple related variables. For example, weather data consists of
well-known measurements such as temperature, dew point, humidity, etc. Even though
most of the work in time series data analysis and mining has focused on time series
data for one variable, studies on multiple time series have appeared in the literature
[Dillard and Shmueli 2004; Huhtala et al. 1999; Shmueli 2004], where they sometimes
refer to these multiple time series as “aligned time series” [Huhtala et al. 1999].

In multiple aligned time series, each time series represents a variable. Multi-
ple aligned time series are several connected time series of S1, S2, . . . , Sm, where
S1 = {s11, s12, . . . , s1n}, S2 = {s21, s22, . . . , s2n}, through Sm = {sm1, sm2, . . . , smn}. On the
contrary, a multivariate time sequence is “a series of data elements, each element be-
ing represented by a multidimensional vector” ([Lee et al. 2000], page 599). Lee et al.
[2000] treated video stream and image data as multvariate data sequences composed
of several video frames, each of which has a number of attributes such as color, shape,
and text. The fact that a video frame has several variables at each time point makes the
video stream multivariate. Therefore, a multivariate time sequence of a video frame is
a time series S where S = {s1, s2, . . . , sn}, and si, where i = 1 to n, is a feature vector
of a video frame. Lee et al. [2000] applied the multivariate data sequence structure
to the task of retrieving similar video sequences such as from TV news, dramas, and
documentaries. Instead of a sequential search, they used minimum bounding rectan-
gles (MBR) to represent the data structure and were able to achieve 16–28 times faster
retrieval.

3. DISCRETE WAVELET TRANSFORMATION

Discrete wavelet transform possesses many favorable properties that are useful for
researchers in the time series data mining field; therefore, it is essential to understand
the foundation of DWT in order to appreciate its usefulness and fully comprehend the
application of DWT on time series data mining. This section contains an introduction to
DWT and the benefits and functionalities of DWT on time series analysis and mining.

3.1. Introduction to Discrete Wavelet Transformation

Discrete wavelet transform transforms a time series using a set of basis functions called
wavelets. The purpose of transformation is to reduce the size of data and/or to decrease
noise. By name, wavelets mean small waves [Percival and Walden 2000]. Wavelets are a
set of mathematical functions used to decompose data into different components. Time
series data components are separated into different frequencies at different scales by
DWT. In the signal processing field, frequency is the number of repeated occurrences
over a unit of time. Scale is the time interval of that time series. For example, a time
series with a frequency of five event occurrences per minute represents an interval
(scale) of 12 s between events. Since DWT is a data transformation technique that
produces a new data representation which can be dispersed to multiple scales, the
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Fig. 1. A two-level decomposition.

analysis of the transformed data can be performed at multiple resolution levels as
well.

Wavelet transforms analyze signals at multiple resolutions for different frequencies,
as opposed to a constant resolution for all frequencies as is the case for short-time
Fourier transforms (STFT). In a wavelet transform, a signal is multiplied by a wavelet
function, a localized wave with finite energy, and the transform is analyzed for each
segment. A continuous wavelet transform (CWT) is given by the following equation:

H(x) = 1
|√ζ |

∫
x(t) · ψ∗

(
t − τ

ζ

)
dt,

where H(x) is the wavelet transform for the signal x(t) as a function of time (t), ζ is
the scale parameter, τ is the time parameter, and ψ is the mother wavelet or the basis
function with * denoting the complex conjugate. The scale parameter corresponds to
the frequency information and equals 1/frequency and either dilates or compresses
the signal. High frequencies (equivalently, small scales) compress the signal and pro-
vide global information, whereas low frequencies (large scales) dilate the signal and
provide detailed information hidden in the signal. The time parameter is shifted along
the signal and provides location information.

The computation of a CWT is done using wavelet series by sampling from the
time-scale plane. However, it is still very expensive and DWT provide an efficient
computation by using subband coding where the signal is passed through filters with
different cutoff frequencies at different scales. The DWTs is computed by successively
passing a signal through high-pass and a low-pass filters, producing detail and
approximation coefficients. The half-band filters down-sample the signal by a factor
of 2 at each level of decomposition. This generates a decomposition tree known as
Mallat’s decomposition tree, shown in Figure 1, where x(n) is the signal, h and g
are the high- and low-pass filters, respectively, and d1, d2, and a2 are the first- and
second-level detail and the second-level approximation coefficients, respectively. This
approach of decomposition and filtering can be repeated until the desired level has
been reached. The original signal can be reconstructed from the approximation and
detail coefficients at every level by up-sampling by two, passing through high- and
low-pass synthesis filters, and adding them.

A number of basis functions exist that can be used as the mother wavelet. The
characteristics of the transformation are impacted by the choice of the mother wavelet,
and thus the application requirements should be taken into consideration in choosing
the mother wavelet. The oldest and simplest wavelet is the Haar wavelet, where the
mother wavelet can be described as follows:

ψ(t) =

⎧⎪⎨
⎪⎩

1 0 ≤ t < 1
2

−1 1
2 ≤ t < 1

0 otherwise

⎫⎪⎬
⎪⎭.
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A second group of wavelets, called Daubechies wavelets, offers a family of orthogonal
transforms that offer a maximal number of vanishing moments for a given support.
Daubechies wavelets are not expressed in terms of the resulting scaling and wavelet
coefficients and cannot be expressed in closed form. Daubechies wavelets range from
Daub2 to Daub22, where the index refers to the number of coefficients which doubles
the number of vanishing moments. They are used in a broad range of problems such as
signal discontinuities and self-similarity properties in signals. Other wavelets include
Symlets, Coiflets, Meyer, Morlets, and Mexican hat wavelets. Of these Meyer, Morlets,
and Mexican hats are symmetric, which possess many desirable properties for edge
localization in images.

3.1.1. Calculating DWTs. For unfamiliar readers, we portray an explanation of the
concept of DWT and its multiscale transformation through a simple example below: a
time series S with a length of N = 8, consists of eight data points, each denoted with
Si, when i = 1 to 8, with the following values:

80 61 75 71 63 59 76 63

Then we use DWT to separate the time series S into two components (averages
and differences) by calculating the pairwise averages of data points within S while
preserving the pairwise differences between the data points.

The first level of transformation, which is derived by applying a Haar wavelet (the
simplest wavelet function) to S, is exhibited below. The averages are presented in bold
and the differences are presented in italics.

70.5 73 61 69.5 −9.5 −2 −2 -6.5

To obtain the above result, we simply apply the pyramid algorithm of Haar wavelet
transform [Mallat 1989]. The first number in bold from the left is derived by adding
the first two consecutive numbers from the original time series S, and then dividing
the sum by 2, that is, (S2 + S1)/2. The second number in bold is derived by adding the
next two consecutive numbers from S, then dividing the sum by 2, that is, (S4 + S3)/2.
This averaging operation continues until the algorithm reaches the last number of the
original time series. This process results in the four average numbers in bold, for a
time series with a length of 8.

The first italic number from the left is derived by subtracting the first number of the
original time series S from the second number, and then dividing the difference by 2,
that is, (S2−S1)/2. The second italic number is derived by subtracting the third number
from the fourth number of S, then dividing the difference by 2, that is, (S4 − S3)/2.
This difference operation continues until the algorithm reaches the last number of the
original time series. As a result of this process, we derive four differences in italics, for
a time series with a length of 8.

In general, the average numbers are derived by a shifting function, (Sn+1 + Sn)/2,
along the pairwise data of the original time series and the differences are derived by
another shifting function, (Sn+1 − Sn)/2, along the pairwise data of the original time
series. The values in bold are therefore called wavelet approximation coefficients and
the values in italics are called wavelet detail coefficients. More concisely, the num-
ber of wavelet approximation coefficients from the first transformation of the origi-
nal time series with a length of N is N/2, and so is the number of wavelet detail
coefficients.

Then, considering only the approximation coefficients (we leave the wavelet detail
coefficients alone), we produce a second set of transformation from our original time
series S by reapplying the Haar wavelet function to the four wavelet approximation
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S 80 61 75 71 63 59 76 63 

Level 1 70.5 73 61 69.5 -9.5 -2 -2 -6.5 

Level 2 71.75 65.25 1.25 4.25 

Level 3 68.5 3.25  

S t1 t2 t3 t4 t5 t6 t7 t8

Level 1 A 11 A12 A13 A14 D11 D12 D13 D14

Level 2 A 21 A22 D21 D22

Level 3 A 31 D31

Fig. 2. The original time series data and three levels of wavelet transformed data (top) and the notation of
the original time series data and the notation of wavelet transformed data (bottom).

coefficients, resulting in

71.75 65.25 1.25 4.25

Again, we have wavelet approximation coefficients in bold and wavelet detail co-
efficients in italics. The second set of transformation is derived only from the first
set’s wavelet approximation coefficients. Consequently, the number of wavelet approx-
imation coefficients from the second transformation of the original time series with a
length of N is N/4, and so is the number of wavelet detail coefficients. The wavelet
approximation coefficients of length N/2 from the first transformation are decomposed
into both wavelet approximation coefficients and wavelet detail coefficients of length
N/4 each.

We can still reapply the Haar wavelet function to our second set of wavelet approxi-
mation coefficients one last time.

68.5 −3.25

As a result, the number of wavelet approximation coefficients from the third trans-
formation of the original time series S with a length of N is N/8, and so isthe number
of wavelet detail coefficients.

Note that we can easily reconstruct these approximation and detail coefficients into
the original time series S. For example, S can be perfectly reconstructed given the
approximation coefficients and the detail coefficients from the first transformation. At
the same time, S can also be reconstructed perfectly given approximation coefficients
from the second transformation, the detail coefficients from the second transformation,
and the detail coefficients from the first transformation. This is because approximation
and detail coefficients from the second transformation are the results of decomposing
approximation coefficients from the first transformation.

Denoting the first, second, and third transformations as level 1, 2, and 3, respectively,
we can specifically claim that the second-level approximation coefficients, 71.75 and
65.25, can be reconstructed without a loss of information from the third-level approx-
imation and detail coefficients, 68.5 and −3.25, by applying an inverse Haar wavelet
transformation. Therefore, given (1) the approximation coefficient from the last level,
68.5, (2) the detail coefficients from every level, and (3) the wavelet function used in
the transformation, one can easily reconstruct the original time series S. Figure 2
summarizes the original time series data and its transformations from the example.

The approximation coefficient from the last level of transformation contains the
most important information of time series as it summarizes the time series. Thus re-
searchers can choose to discard other less important components if they need to. For
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S

A1j D1j

A2j D2j

A3j D3j

Fig. 3. Multi-level decomposition tree by wavelet transforms.

this reason, DWT is utilized for data reduction of time series in order to save storage
space while sacrificing a small amount loss of detail information. By and large, the last
approximation coefficient and few of the high-level detail coefficients are usually se-
lected for preservation. DWT is therefore regarded by researchers as a lossless trans-
formation, whereby data from the transformed domain can collectively reconstruct
the original time series data. The only coefficients needed for a perfect reconstruction
are the approximation coefficients from the last level of transformation and the detail
coefficients from every level of transformation.

Figure 3 depicts the transformation of the original time series S and its wavelet
transformation. Aij denotes wavelet approximation coefficients and Dij denotes wavelet
detail coefficients, where i denotes the level of transformation and j denotes the order
of wavelet coefficients. DWT decomposes a single signal into multiscale signals using
wavelet functions. Consequently, DWT is considered as a time-scale transformation
[Misiti et al. 2005]. Each decomposed signal component is still in the time domain,
rather than in other domains, and is dispersed into different scales.

3.1.2. Benefits of DWTs. DWT is a very useful technique for time series data pro-
cessing of many aspects such as data dimensionality reduction, noise reduction, and
multiresolution analysis. In the signal processing field, one can take an original signal
and distribute it into separate signals in different frequencies by applying a wavelet
function, while preserving the original signal, which can be reconstructed from these
separate signals. For time series data, DWT can create separate time series from
the original time series. The original information will be distributed into these dif-
ferent time series in the form of wavelet coefficients. Therefore, DWT is considered
an orthonormal transformation, meaning it allows reconstruction and preserves the
original information (also known as energy) of the original signal within the trans-
formed data. The function of DWT as an orthonormal transformation is to reduce the
high dimensionality of a time series into a much more compact data representation,
with complete information stored within its coefficients. Therefore, DWT is suitable for
analyzing time series data for the following reasons.

First, DWT is an effective method for time series data reduction. As mentioned before,
each individual time series is composed of continuous observations of an interesting
phenomenon, and therefore is likely to be very large. Fortunately, DWT lends itself
very well to time series data analysis because it is very effective in reducing large
time series data into a significantly smaller number of coefficients, as confirmed by
many studies [Chan and Fu 1999; Liabotis et al. 2006; Popivanov and Miller 2002;
Wu et al. 2000]. Researchers can utilize DWT to project a large time series into DWT
coefficients, and then perform other data analyses on these coefficients. For similarity
search applications, performing analyses on the coefficients will likely generate more
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false retrieval than performing analyses on the original time series. Yet, if the methods
follow the lower-bounding condition of the GEMINI framework, false hits can be pruned
in the postprocessing. The efficiency gains obtained from a reduced dimensionality are
worth the effort of pruning more false hits.

Second, DWT can detect sudden signal changes well, because it transforms an orig-
inal time series data into two types of wavelet coefficients: approximation and detail.
Approximation wavelet coefficients capture rough features that estimate the original
data, while detail wavelet coefficients capture detail features that describe frequent
movements of the data. Researchers can investigate the latter and discover sudden
changes, peaks, or spikes in the observed phenomena. These sudden changes are some-
times difficult to detect in the original data because they are obscured by an overall
trend or seasonal movements of the data. Moreover, detection can be a time-consuming
task if performed solely by human experts. DWT can help relieve the burden of detec-
tion by separating detail features from the original time series, and thereby sudden
changes or spikes can be uncovered easily. Subsequently, researchers are free to apply
various detection techniques to the data that is proposed in the literature.

Third, DWT is useful in supporting multiresolution analysis. In addition to projecting
a time series into approximation and detail wavelet coefficients, DWT decomposes
these coefficients into various scales. When S1 and S2 are two resultant time series
with different time scales and b is a scaling factor between them, S1i = S2(i∗b), for 1 ≤
i ≤ N, where S1i and S2i denote the locations of event in time. A scale reflects a time
interval within a time series. This allows researchers to analyze wavelet coefficients
from one temporal scale individually, as well as to choose multiple temporal scales to
be investigated collectively.

Altogether, DWT is extremely powerful for data reduction and signal compression
because of its orthonormal property. The application of DWT has been studied in several
areas, such as image compression, noise filtering, and singularity detection. Its benefits
warrant a further investigation to search for domain applications where the properties
of DWT suit their purposes. In conclusion, DWT possesses many capabilities that have
a large potential for supporting novel data mining approaches for time series data.

We will briefly discuss the functionalities of DWT for data mining in a variety of
application domains. In brief, they are dimensionality reduction, noise filtering, and
singularity detection.

3.2. Discrete Wavelet Transform for Dimensionality Reduction

One of the main reasons for data transformation is data reduction, which is a crucial
preprocessing step of data analysis and mining. A data reduction step before applying
data analysis and mining enables faster execution of the algorithms, since it reduces
the size of the original time series, therefore lowering the access time to data.

In order to reduce time series dimensionality using DWT, only some wavelet coef-
ficients are retained in data mining systems. This calls for an important decision of
which coefficients to drop. One of the most common and popular ways to approach this
problem is to retain a few coefficients which contain the most energy and drop the
remaining ones. Wavelets’ energy is a statistics calculated from wavelet coefficients.
One may obtain this information by plotting the distribution of values among coeffi-
cients. Once these coefficients with high energy are identified, other coefficients can
be dropped. An excellent example of a coefficient-dropping strategy can be found in
Shahabi et al. [2000]. Shahabi et al. [2000] not only employed the above approach,
but also proposed other approaches to strategically drop wavelet coefficients for their
OTSA tree. They first proposed dropping the nodes which contain less energy to reduce
a disk space requirement of the OTSA tree. However, dropping nodes means losing
potential outlier information. Since their work was originally intended for multilevel
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trend and surprise queries, they suggested keeping those outliers in a more condensed
space in a form of position-value pairs instead of within tree nodes. If the system’s
space is still limited, some coefficients will need to be abandoned and those coefficients’
energy will be lost. In that case, there are two decisions which can be made. First, the
head coefficients can be retained and tail coefficients dropped. Second, the high-energy
coefficients can be retained and low-energy coefficients dropped. The OTSA tree can
make these decisions on-the-fly depending on the available disk space.

It is possible to retain only a few coefficients for the similarity search task for dimen-
sionality reduction, although one still needs to guarantee no “false dismissals.” It needs
to be verified that data reduction techniques are lower-bounded in order to comply with
the GEMINI framework. Orthonormal transformations always follow a lower-bounding
property, also known as a contractive property [Keogh et al. 2001]. Therefore, any di-
mensionality reduction technique that is an orthonormal transformation automatically
conforms to the GEMINI framework and will be able to further reduce the similarity
search time, while preserving accuracy. These dimensionality reduction techniques
transform time series data into another format. The information is compressed into
Fourier coefficients for discrete Fourier transform (DFT) and into wavelet coefficients
for DWT, where most of the information is squeezed into a few coefficients. Empirically,
these techniques have helped reduce a long time series of an original dimensionality
of 1024 to a transformed dimensionality of 16–20 [Liabotis et al. 2006]. This is a data
reduction of two orders of magnitude. In addition, there is no false dismissal from a
similarity search task of an orthonormal transform of DFT, SVD, or DWT. Following
the GEMINI framework, similarity search on the transformed data is likely to result in
retrieving some false hits. However, false hits will be pruned in the postprocessing step
of a similarity search task. Nevertheless, the time saved by dimensionality reduction
outweighs the pruning time of false hits.

Since DWT was proposed as a dimensionality reduction technique for the similarity
search task by Chan and Fu in 1994, there have appeared several followup studies on
utilizing DWT for similarity search [Chan and Fu 1999; Popivanov and Miller 2002].
A comparison between DFT and DWT was reported in the literature by Wu et al.
[2000], who found that DFT and DWT produced a marginal difference as dimensionality
reduction techniques for a similarity search task. The query-matching error was not
significantly improved, and DWT did not increase query-matching precision. However,
another study by Liabotis et al. [2006], as well as the study of Chan and Fu [1999],
reported that DWT outperformed DFT. These empirical evaluations imply that DWT
can perform equally or better than DFT as a dimensionality reduction technique for
similarity search.

Another research area closely related to dimensionality reduction in similarity search
is the application of DWT in several fields of data compression. Examples include
studies in signal compression and image compression [Castelli and Kontoyiannis 1996,
1999; Castelli et al. 1996]. The applications of dimensionality reduction in time series
also include two-dimensional image classification, where images are compressed but
still retain enough information to be distinguished among classes [Brambilla et al.
1999; Chang and Kuo 1993; Jacobs et al. 1995].

3.3. Discrete Wavelet Transform for Noise Filtering

Another useful function of DWT is noise filtering. Noise is usually identified by do-
main experts to be high variations of data mixed into real signals [Han and Kamber
2006; Orfanidis 1996]. The basic idea of noise filtering is to isolate noise (unwanted
signals) from true information (wanted signals). Therefore, a suitable technique for
noise filtering must have the ability to separate and isolate the noise from the signal.
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DWT is a suitable technique to filter out noise because, when a signal or a time
series is decomposed by DWT, the original signal is separated into approximation and
detail coefficients at different resolution levels. The information of the original signal
is retained in wavelet coefficients and a perfect reconstruction of the original data can
be performed from these coefficients. However, some of the detail coefficients, which
represent detail movements in data, may be recognizable as noise. Those coefficients
can then be set to zero prior to a DWT reconstruction process in order to filter out noise
from the original time series. In other words, the reconstruction involves rebuilding a
time series from every component but noise.

This DWT functionality enhances the capability of various data analysis and mining
applications. Classification can be performed on a noise-filtered signal better than
on a noise-blended signal. For example, better classification results were reported by
Subasi [2005] in classifying epileptic and normal patients when applying DWT. Dinh
et al. [2002] also reported that wavelet-based features can be dependably employed in
audio genre classification for better classification results.

3.4. Discrete Wavelet Transform for Singularity Detection

Singularity is normally a point where the time series signal behaves irregularly. Such
behavior usually reveals interesting information in the time series signals [Mallat
and Hwang 1992]. For example, in images, adjacent pixels with extremely different
densities inform us of a picture edge. The location of these edges is useful for image
recognition.

Singularity detection involves the analysis of transient events in the form of peaks or
cusps [Mallat and Hwang 1992]. Since DWT decomposes time series data into elemen-
tary components, it is straightforward to detect local regular and irregular structures.
Using DWT, it takes minimal effort to detect any bursts, cusps, or irregularities in data.
A study that utilized DWT’s time aspect in the detection of jumps and sharp cusps in
time series appeared in Wang [1995]. A close examination of each scale helped detect
any spikes, which otherwise might be left unnoticed in the original signal. In general,
spikes are considered as pointed-end parts of the signal. These pointed-end sections of
signals can also be called cusps. From this study, spikes or cusps, which present quick
local variations in signals, were shown to be enhanced by DWT through wavelet detail
coefficients [Struzik and Siebes 2000; Wang 1995].

As previously described, DWT is a time-scale transformation because each scale con-
tains transformed data in time domain, rather than in other domains. The components
at each different scale are separated by their periodicity. One can detect short-time phe-
nomena in one or more scales of the wavelet-transformed data, whose multiscale detail
coefficients are an indicator for multilevel surprises [Shahabi et al. 2000]. Such an
ability to detect abrupt changes is valid for both one-dimensional and two-dimensional
time series data. Therefore, DWT becomes a popular and powerful technique for the
image processing field as well. For example, the ability of DWT to detect edges in
images and textures has been exploited for image recognition and progressive image
classification. We will discuss more about the studies that apply DWT’s singularity
detection to the domain applications in Section 4.3.

In addition, wavelet coefficients have a time-localization property, which will be ex-
plained below [Dillard and Shmueli 2004; Percival and Walden 2000]. Other frequency-
related techniques, such as discrete Fourier transform (DFT), present information
about the events of interest in the frequency domain but lose information in the time
domain. Unlike frequency-related transforms, DWT preserves temporal information—
the information regarding when the events occur. Let us examine an example recreated
from the Wavelet Toolbox User’s Guide [Misiti et al. 2005] which illustrates an apparent
difference between DFT and DWT in singularity detection.
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Fig. 4. (a) A synthetic signal example [Misiti et al. 2005]. (b) The analyses of the synthetic signal using DFT
(left) versus DWT (right) [Misiti et al. 2005].

In this example, a synthetic time series with a single small discontinuity is created.
The discontinuity is extremely tiny, so much that it is invisible with the bare eyes at
this scale. When this signal is transformed using DFT, the x axis denotes amplitude
and the y axis denotes frequency of the signal. The DFT graph is a flat spectrum
with two peaks at the ends of the x axis which represents a mostly single frequency
with high frequencies at two amplitudes [Misiti et al. 2005; Shasha and Zhu 2004].
In Figure 4(b) left, the DFT plot does not tell us the existence of a discontinuity in
the synthetic signal. However, DWT coefficients are plotted with the x axis denoting
time and the y axis denoting scale. The color at each pixel illustrates the intensity of
wavelet coefficients at each time snapshot of a specific scale. In Figure 4(b) right, the
exact location of the discontinuity is clearly shown at the bottom of the plot. Not only
does DWT show the existence of the discontinuity by the distinctly different intensity
from its local neighborhood, but it also points out the discontinuity (Figure 4(b), right)
at the same time location as the synthetic data plot (Figure 4(a)). In brief, DWT is a
transformation technique with a time-localization property.

In general, detection of spikes or cusps using DWT can be exemplified by plotting
data and inspecting for any visual clues. Examples of applications that have employed
the singularity detection by DWT include anomaly detection in credit card transac-
tions, underwater signal detection [Bailey et al. 1998], anomaly detection in computer
networks [Huang et al. 2001; Magnaghi et al. 2004], intrusion detection [Lee and Stolfo
1998], disease outbreak detection [Shmueli 2004; Wong 2004], and anomaly detection
in physiological monitoring data [Saeed and Mark 2001]. Consequently, DWT can help
researchers in detecting anomalies for various application domains.

4. WAVELET-BASED TIME SERIES DATA ANALYSIS AND MINING

In Section 3, we introduced DWT, its properties, and its favorable characteristics.
DWT has gained an increasing popularity in the past few decades and there is a
significant amount of work in this field. DWT is an effective and powerful instrument
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for a time-scale analysis of nonstationary signals that can be found in the medical and
biological domains, computer network traffic data [Basu et al. 1996; Huang et al. 2001;
Kobayashi and Torioka 1994; Ma and Ji 1999a, 1999b; Ma and Ji 2001; Magnaghi
et al. 2004; Riedi et al. 1999], multimedia archives, and the chemical engineering
field [Chen et al. 1999a, 1999b]. For example, signals in the medical and biological
domains include EEG (electroencephalograph signal) [Subasi 2005], myocardial tissue
image [Mojsilovic et al. 1997], heartbeat and carbon dioxide level [Nilsson et al. 2005],
and other clinical data [Goodwin and Maher 2000; Rizzi and Sartoni 1994; Silver and
Ginsburg 1984]. Multimedia archives include digital images [Ardizzoni et al. 1999;
Blume and Ballard 1997b; Brambilla et al. 1999; Chang and Kuo 1993; Jacobs et al.
1995; Mandal et al. 1999; Mojsilovic et al. 1997; Natsev et al. 1999; Sheikholeslami
et al. 1999; Wang et al. 1997a, 1997b, 1997c], audio signals [Dinh et al. 2002; Lambrou
et al. 1998; Li and Khokhar 2000; Subramanya and Youssef 1998; Tzanetakis and Cook
2002; Tzanetakis et al. 2001], satellite images [Castelli et al. 1996], and video streams.
A number of researchers have realized and utilized this multiresolution property of
DWT to enhance the data analysis and mining process in their research, as will be
discussed next.

The multiresolution analysis presented by DWT has a unique and important charac-
teristic. The decomposition of an original signal into different scales separates hidden
but meaningful subsignals of the original time series. The decomposed signals, which
convey the information more meaningfully, are then fed into wavelet-based data analy-
sis and mining techniques, such as in the medical domain [Subasi 2005] and in network
traffic data [Huang et al. 2001].

To fully appreciate the benefits of DWT for time series data analysis and mining, we
now focus on using DWT for time series data analysis and mining tasks. Briefly, the
tasks can be separated into five categories: similarity search, classification, clustering,
detection, and prediction.

4.1. Wavelet-Based Similarity Search in Time Series

Many applications with temporal data require the capability of searching for similar or
exact time series. Since the late 1980s, time series research has shifted from focusing
on matching exact time series to searching for similar time series [Agrawal et al. 1993],
the latter being referred to as a similarity search. Similarity search of time series needs
a parameter called a distance tolerance, which is classified as follows.

(1) Exact matching. Distance tolerance = 0
(2) Similarity search. Distance tolerance = a threshold ε, which is set by users.

The distance tolerance between two time series signifies the upper bound of the
distance between the two time series. An exact matching is a special case of time
series similarity search, where the distance tolerance between two time series is zero.
Therefore, a retrieved time series resulting from an exact matching operation has to be
zero distance units apart. Similarly, a retrieved time series resulting from a similarity
search operation will be less than or equal to ε distance units apart from the query
sequence. The search, either exact or similar, is applied in situations such as identifying
music scores with the exact same sequence of notes, and identifying stocks with similar
price growth.

Time series search can also be classified by the length of time sequence queried
(query sequence) compared to time sequences already existing in the database (archive
sequence) [Agrawal et al. 1993; Faloutsos et al. 1994; Keogh et al. 2001] as follows.

(1) Whole matching. The length is equal to the length of archive sequences.
(2) Subsequence matching. The length is shorter than the length of archive sequences.
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To perform a similarity search task, long time series are partitioned into smaller
sequences and then stored in the database. A new unknown sequence called a query
sequence is to be compared with existing archive sequences in the database in order to
find either an exact or the most similar time sequence. The sequences to be compared
in whole matching have the same length, while those in subsequence matching have a
smaller length for the query sequence. The shorter length sequence is matched against
the longer length sequence. As an example, whole matching may help find copyrighted
music in a song archive. Subsequent matching facilitates meteorologists in recognizing
critical weather patterns that need immediate action.

For a similarity search task, there are two main steps, indexing and query processing.
Indexing is the process of constructing pointers for faster access to data. An index is
computed from values within the time series. Since time series data has a very high
dimensionality, direct indexing is computationally expensive and becomes unaffordable
[Popivanov and Miller 2002]. A feature extraction needs to be done prior to index
construction, in order to reduce the dimensionality of an index. Query processing is
the process of finding the matches of time series. This process involves developing or
utilizing similarity measurements, which quantify how alike two time series are. Query
processing compares a collection of time series using selected similarity measurements,
then retrieves the time series from databases using an index, and returns the query
results to the users.

There are two aspects to consider for the performance of a similarity search: speed
and precision. Speed indicates how fast the similarity search completes its task. The
overall time taken for a similarity search task is comprised of (a) a time for constructing
and updating an index, (b) a time for searching for similar time sequences, and (c) a
post processing time. The latter two are under the query processing step. Searching
for similar sequences is likely to result in retrieving some false hits at first. The
postprocessing step prunes false hits and results in more accurate results. Precision
measures the accuracy of the retrieved time series. It equals the number of correctly
retrieved time series, divided by the number of total retrieved time series. In other
words, it is the percentage of the retrieved time series that are similar.

The most straightforward measurement for evaluating speed is time. However, dif-
ferences in hardware and system configurations may lead to different reporting times,
and therefore, the most reliable measurement for evaluating the speed performance of
similarity search techniques is data page accesses [Popivanov and Miller 2002], which
measures the number of disk page reads. Data page accesses are further broken down
into index page accesses and time series data page accesses.

The research interest in the area of time series similarity search mostly focuses on
feature extraction, indexing, and similarity measurements. Indexing methods specially
designed for multidimensional data have been proposed and explored for similarity
search. These indexing methods include the quadtree, the grid structure and grid file,
the R-tree family, and the KD-Btree family [Agrawal et al. 1993; Shasha and Zhu 2004].
Such indexing methods support high dimensionality of time series data by extending
binary tree index to higher dimensions in different fashions. As for grid structure
and grid the file, the index memory is divided into a d-dimensional space and each
d-dimensional data point is hashed into each individual grid cell.

Even though all of the above indexing methods are especially designed for high-
dimensional data, empirical results have shown that the number of dimensions still
largely affects the query time [Agrawal et al. 1993]. Most of the proposed indexing
approaches scale exponentially in terms of computation time for high dimensionalities.
Due to the aforementioned “dimensionality curse” problem, there is a limit to the
number of dimensions that allows indexing methods to work well. Spatial and high-
dimensional indexing methods perform efficiently up to 8 to 12 dimensions, while most
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time series queries range from 20 to 1000 time points [Keogh et al. 2001; Shasha and
Zhu 2004]. To get around this problem, researchers have called for feature extraction
or dimensionality reduction techniques in order to reduce the dimensionality to a
manageable number for indexing.

Feature extraction techniques have also been explored in the literature on time se-
ries [Man and Wong 2001; Yoon et al. 2005]. Feature extraction aims to transform
data into a lower dimensionality by removing redundant information while preserving
the time series’ most important elements [Chen et al. 1999a, 1999b]. Dimensional-
ity reduction also focuses on trimming down the number of dimensions of time series
[Chakrabarti et al. 2002; Keogh et al. 2001]. Both dimensionality reduction and feature
extraction serve as a subtask of a similarity search task: during a similarity search,
researchers choose an appropriate feature extraction or dimensionality reduction tech-
nique to ensure that the extracted features have sufficient information for similarity
search algorithms to differentiate between time series. As a result of these methods,
the number of dimensions is reduced, keeping only a few numbers for indexing and
query searching. However, researchers must make a difficult choice about the optimal
number of dimensions to be retained. There is a tradeoff between speed and precision
performance.

This speed and precision tradeoff has always framed the research direction for sim-
ilarity search indexing aiming at similar time series not only regarding correctness
but also regarding acceptable computation time. In addition, it also has to meet the
accuracy constraint.

Chan and Fu [1999] proposed the use of DWT for reducing the dimensionality of time
series. The potential of DWT for this purpose had been pointed out previously by Korn
et al. [1997]. According to Chan and Fu [1999], DWT representations of a time series
carry information about both time and frequency locations, whereas DFT representa-
tions fail to encapsulate the former information. Chan and Fu [1999] mathematically
proved that DWT produced data representations that obeyed the lower-bounding condi-
tion of the GEMINI framework, which guarantees that no eligible similar time series is
discarded. Experiments conducted for this study showed results that DWT considerably
outperformed DFT in terms of precision and the number of page accesses. Moreover,
the scalability of DWT was shown to be better than that of DFT when increasing the
database size and the time sequence length.

According to Li et al. [2003], there are three approaches to applying DWT to the
similarity search task: keeping the first few wavelet coefficients, extracting features
and defining new similarity measures using wavelets, and supporting similarity search
in a multiscale fashion.

In the first approach, Chan and Fu [1999] proposed DWT to map an n-dimensional
time series into a k-dimensional space for similarity search. In this study, the first
few wavelet coefficients were kept to retain most of the information. In addition, Wu
et al. [2000] took the above DWT-based approach and compared it with a DFT-based
approach. The result from Wu et al. [2000] did not show a significant difference between
these two approaches for similarity search in terms of matching precision, but DWT
naturally has significantly lower time complexity than DFT [Li et al. 2003].

In the second approach, Struzik and Siebes [1999a, 1999b] proposed the use of a spe-
cial data representation that preserved only the sign of wavelet coefficients, instead of
the first few coefficients as in other studies [1999a, 1999b]. The sign information gives
relative values of wavelet coefficients, which is more useful in the case of comparing
similarity among time series than absolute values. Beyond the studies of Struzik and
Siebes, other studies have devised DWT to extract compact feature vectors and de-
fined new similarity measures and new indexing schemes to accommodate the search
[Jacobs et al. 1995; Li and Khokhar 2000; Wang et al. 1997a]. Jacobs et al. [1995]
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distilled wavelet coefficients into small signatures for each image. Also, a new simi-
larity measure called the image querying metric was developed to compare common
significant coefficients between the query images and the target images. The image
querying metric was proven effective both in terms of speed and success rate in query-
ing a large image database in Jacob et al.’s [1995] article. Wang et al. [1997a] utilized
a combination of wavelet features, which included Daubechies’ wavelets, normalized
central moments, and color histograms, to create a new vector for image similarity
matching. The new developed feature vector allowed searching by partial sketch im-
ages for large image databases. Li and Khokhar [2000] exercised the knowledge that
the wavelet decomposition of audio sounds is extremely like the decomposition in sound
octaves. By including several statistical properties of wavelet decomposition, such as
zero crossing rate, mean, and standard deviation, in their hierarchical indexing scheme,
they reported a great recall rate of more than 70% on a set of diverse audio signals. In
sum, the studies within this second approach of wavelet-based similarity search were
feasible and practical, owing to the researchers’ use of heuristics in devising new mean-
ingful features and associated similarity measurements from their domain knowledge.

In the third approach, DWT is used in finding similarity in a step-by-step man-
ner for several data formats, such as images [Natsev et al. 1999] and audio sounds
[Li and Khokhar 2000]. Brambilla et al. [1999] exploited a DWT’s favorite function-
ality, multiresolution analysis to describe images. By applying DWT, four subimage
wavelet coefficients—one approximation and three details—are produced as a result
of the original image. Then a wavelet decomposition is reapplied to the approximate
image of the first level to obtain the next four subimages at the next level. This pro-
cess is repeated on the approximate image at each level. By keeping the 128 largest
wavelet coefficients and setting the rest of the coefficients to zero, an image signature
is formed. This image signature describes pictorial content and captured sufficient
perceptual similarity between images, which the human eye would use in image recog-
nition. Another example of image similarity search in a multiresolution fashion was
a study by Jacobs et al. [1995]. Multiresolution wavelet coefficients of an image pro-
vide independent information at each level to the original image. This information is
distinct in terms of color shift, poor resolution, dithering effects, and misregistration.
Therefore, this multiresolution image retrieval method allows for querying the target
image using these distinctive image features extracted from multiresolution wavelet
coefficients. Also, Struzik and Siebes [1999a, 1999b], as discussed earlier under the
second approach, utilized a multiscale representation of time series as well. Multiscale
wavelet coefficients permit the construction of a scale-wise hierarchical organization
of wavelet extracted features. Such a hierarchical structure facilitates a stepwise com-
parison on time series via their correlations. The comparison is based on this special
wavelet representation, which is otherwise unavailable if DWT is not employed.

In conclusion, the multiresolution property of DWT is inherent and offers an oppor-
tunity for a similarity search to be performed on time series data at different levels
of resolution. The similarity search can be performed directly on few selected wavelet
coefficients, or on extracted new features. Also, the similarity search can be applied in
a stepwise manner for multiscale analysis.

4.2. Wavelet-Based Time Series Classification

The goal of time series classification is to assign a class label to a time series from
two or more predefined classes. Application domains for time series classification are
varied. Examples of application domains include speech recognition, gesture recogni-
tion, intrusion detection [Zeira et al. 2004], audio classification [Lambrou et al. 1998;
Tzanetakis and Cook 2002; Tzanetakis et al. 2001], image classification [Blume and
Ballard 1997b; Castelli et al. 1996; Wang et al. 1997a, 1997b], texture classification
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[Chang and Kuo 1993; Laine and Fan 1993; Scheunders et al. 1998], and medical signal
classification [Subasi 2005].

Researchers consider several evaluation criteria to assess classification approaches.
Accuracy is likely the most important criterion in the classification literature since the
main goal is to correctly classify an unknown instance of time series data. Regarding
the accuracy evaluation, researchers may also use an error rate to measure accuracy
in a complementary way.

When comparing several competing classification approaches, accuracy is usually
evaluated together with other criteria. The computation time (speed) of the classifi-
cation algorithm is probably the second most important criterion, especially for time
series data. Speed is usually reported via experimentation by measuring the clock
time it takes to complete a classification task, along with reporting the computational
complexity of the algorithm.

DWT provides an effective way to isolate nonstationary signals into signals at var-
ious scales. We sometimes call these signals signal decompositions. Various aspects
of nonstationary signals such as trends, discontinuities, and repeated patterns are
clearly revealed in the signal decompositions. Other signal-processing techniques are
not as effective in isolating all of these transient features present in nonstationary
signals. For those reasons, DWT is a suitable technique to combine with classification
approaches in order to categorize an unknown signal into a predefined group of signals.
This section explains how DWT assists in the classification process.

DWT can be integrated into a classification of time series data in two main ways.
First, the classification methods are applied to the wavelet domain of the original data.
Second, the multiresolution property is incorporated into the classification procedures
to facilitate the process [Li et al. 2003].

The first approach is straightforward. It is simply performing a classification on
wavelet-transformed data instead of the original data. A potential research question
is which levels of signal decomposition to choose from, since the application of DWT
produces a number of signal decompositions. The answer to this question can vary
depending on the data and application domain. The second approach is more complex.
DWT is utilized in classification in a progressive fashion, which means it gradually cat-
egorizes time series data from decompositions of lower resolution to higher resolution.
Progressive classification serves the purpose of faster computation when the classifi-
cation is performed on a much smaller set of wavelet coefficients from a coarser level
of resolution. If executed in a distributed environment, progressive classification can
provide a faster data transfer rate between terminal machines when contents are being
classified progressively. We will discuss both approaches of wavelet-based classification
in further detail by examining the research studies that fall under each approach.

4.2.1. Classification on a Wavelet-Transformed Domain. The first approach is applying the
classification methods on the wavelet-transformed domain of the original data. Several
researchers have employed this approach [Blume and Ballard 1997b; Dinh et al. 2002;
Laine and Fan 1993; Lambrou et al. 1998; Mojsilovic et al. 1997; Scheunders et al.
1998; Subasi 2005; Tzanetakis and Cook 2002; Tzanetakis et al. 2001]. We will discuss
these studies along their domain of applications: medical, texture, and audio.

In the medical signal classification domain, DWT helps researchers isolate relevant
features from the original signal. In Subasi [2005], EEG signals were decomposed into
subbands of different frequencies using DWT. Then wavelet coefficients were fed to
a neural network for classification. Subasi’s [2005] aim was to classify whether the
EEG signal is considered epileptic or normal. If classified correctly, epileptic seizures
in patients would be detected. Without an appropriate analysis, a seizure might remain
unnoticed owing to its hidden presentation or might be confused with a stroke. After
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EEG (200 Hz) 

A1 D1 (50–100 Hz)

A2 D2 (25–50 Hz)

A3 D3 (12.5–25 Hz)

A4 D4 (6.25–12.5 Hz)

A5 (0–3.125 Hz) D5 (3.125–6.25 Hz)

Fig. 5. Frequency decomposition of EEG signals.

DWT, only parts of the EEG signals that reside in significant frequencies are retained.
The raw EEG signals are digitized at 200 samples/s (200 Hz). With the application of
DWT to each signal, the corresponding decomposed signals are generated, as illustrated
below. In Figure 5, Ai designates the approximation at level i of the signal, while Di
designates the detail at level i of the signal.

Different frequency ranges—δ (1–4 Hz), θ (4–8 Hz), α(8–13 Hz), and β (13–30 Hz)—
convey a meaningful message to the medical experts. The resultant wavelet coefficients
are also related to these meaningful subbands of the signal. For example, the compo-
nents A5 corresponds to δ (1–4 Hz), D5 corresponds to θ (4–8 Hz), D4 corresponds to α
(8–13 Hz), and D3 corresponds to β (13–30 Hz). To medical domain experts, the levels
of decompositions that are lower than D3 (D2 and D1) are not significant for classifying
epileptic seizures and are therefore not included in the neural network classification
model. Thus only the wavelet decompositions with corresponding frequencies to δ, θ , α,
and β are extracted and fed as inputs into the artificial neural networks.

The classification accuracy of a wavelet-based neural network (DWN), an approach
in also Subasi [2005], has been found to be higher than that of its counterpart tech-
nique, a regular feedforward error backpropagation neural network (FEBANN). It was
elucidated by the author that, since EEG signals are nicely decomposed into the mean-
ingful subbands of different frequencies, those extracted subbands in DWN account for
better classification results, compared to the results from FEBANN.

There are a number of studies that pursued this first approach by applying the clas-
sification on the wavelet domain of the data [Blume and Ballard 1997b; Dinh et al.
2002; Laine and Fan 1993; Lambrou et al. 1998; Mojsilovic et al. 1997; Scheunders
et al. 1998; Tzanetakis and Cook 2002; Tzanetakis et al. 2001; Wang et al. 1997a].
At first glance, the approach may seem straightforward, but various issues need to
be taken into consideration. Theoretically, the maximum number of wavelet decompo-
sition levels for a time series with a length of N is log2(N), and the total number of
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coefficients will approximately be N, that is N − 1 detail coefficients and 1 approxima-
tion coefficient. To perfectly reconstruct the original time series, there are N wavelet
coefficients to be retained, which are dispersed into log2(N) + 1 groups, that is, all
log2(N) levels of detail coefficients and the one last level of approximation coefficient.
Researchers should exclude unimportant coefficients and retain only significant com-
ponents for their classification application. With such a large number of coefficients to
choose from, it is almost a daunting task to make a decision about setting up param-
eters for classification. Most often, researchers choose the appropriate decomposition
levels and the choice of wavelet coefficients with some theoretical background in the
research field. We describe the following studies within different domains to perceive
how decomposition levels are selected.

In the image and texture classification domain, wavelet transform revealed infor-
mation about the local brightness, color, and surrounding texture features [Blume and
Ballard 1997b; Scheunders et al. 1998]. Various choices of extracted features from
the wavelet transformation process were applied to texture classification, as discussed
below.

Blume and Ballard [1997a] interpolated between neighboring wavelet coefficients to
obtain the texture information per pixel. The important feature for classification in
Blume and Ballard’s [1997a] study was the texture information per pixel, which was
then used to obtain as high as 99% accuracy in pixel classification. In other cases,
the appropriate feature to use is wavelet energy instead of wavelet coefficients [Laine
and Fan 1993; Mojsilovic et al. 1997; Scheunders et al. 1998]. Wavelet energy features
reflect the distribution of energy along various wavelet decomposition scales. For ex-
ample, Scheunders et al. [1998] investigated texture properties such as roughness,
granularity, and regularity using wavelet energy features in a multiscale manner. The
multiscale analysis was applied in Scheunders et al.’s [1998] study because past studies
have indicated that the human visual system processes images in a multiscale fashion.
As another example, Mojsilovic et al. [1997] decomposed texture samples into each level
of decomposition, then computed the energy difference between neighboring decompo-
sition levels. The difference was then compared with a threshold so it was assured that
the decomposition had not caused image degradation. Mojsilovic et al. [1997] found
that the developed feature was effective in classifying clinical data, compared to other
transform-based techniques.

A combination of features was also promising for image and texture classification.
Recall that, for image data, the information at each pixel, that is, the location, has var-
ious features such as color and texture. When these pixels are ordered appropriately,
they form a long data sequence. Sequences of image and texture information were
treated as if they were time series. For instance, Laine and Fan [1993] studied texture
characterization at multiple scales using both energy and entropy features. In Laine
and Fan’s [1993] study, the wavelet-based feature was able to classify 25 textures in
the study without any error. In Wang et al. [1997b], a new feature vector for an im-
age classification was extracted by merging Daubechies’ wavelets, normalized central
moments, and color histograms together. An algorithm called WIPETM (Wavelet Image
Pornography Elimination) was devised from this new combined feature. WIPETM was
able to classify an image as objectionable or benign. This application was particularly
useful in helping the software industry to counteract the threat of pornography images.

In the audio classification domain, wavelet transformation separated audio signals
into meaningful subbands of music surface and rhythm information [Tzanetakis and
Cook 2002; Tzanetakis et al. 2001]. Dinh et al. [2002] decomposed audio signals at
different scales using Daubechies wavelet transform. Subband signals at varying levels
were characterized to meaningful different sound types. For instance, the subband
signal from the first level of decomposition, which ranged from 11025 to 22050 Hz,
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matched with the noise and friction sound. The subband signals from the second and
third levels of decomposition, which ranged from 5513 to 11025 and 2756 to 5123,
respectively, corresponded with the speech and music lyrics.

Several types of features were used in wavelet-based audio classification. For one,
statistics of wavelet coefficients were calculated and supplied to classifiers as in a num-
ber of papers [Dinh et al. 2002; Lambrou et al. 1998; Li and Khokhar 2000; Subramanya
and Youssef 1998]. For instance, Dinh et al. [2002] proposed that the feature vector
for each decomposition level of wavelet transformation is composed of the following
coefficient statistics: wavelet energy, coefficient variance, zero crossing rate, centroid,
and bandwidth. All of these subband features were a product of an additional computa-
tion from wavelet coefficients, and were found to be able to distinguish successfully six
video genres in the study [Dinh et al. 2002]. Lambrou et al. [1998] also explored wavelet
coefficient statistics, but they utilized a more extensive set of calculated statistics for
their classification of audio sounds. A total of eight statistical features were collected
as inputs and fed into four classifiers for comparison. Lambrou et al.’s [1998] statistics
also proved superior with an empirical classification accuracy of 91.67%.

Besides audio classification, researchers extracted musical features using coefficient
statistical features and their domain knowledge. Two studies by Tzanetakis, Cook,
and Essl investigated music instead of audio sounds, and performed a music genre
classification [Tzanetakis and Cook 2002; Tzanetakis et al. 2001]. The articles men-
tioned that the statistical features are related to instrumentation, rhythmic structure,
and the form of genre members. These features could define a particular music genre.
According to Tzanetakis et al. [2001], the characteristics of music—referred to as mu-
sical surface—were related to texture, timbre, and instrumentation. In this study, nine
musical surface features were calculated based on the Fourier transform. In addition,
musical rhythmic structure was another musical feature which was calculated using
wavelet transform. Altogether, these features from Fourier and wavelet transforms
were fed into classifiers to successfully define the rhythmic structure and strength of
music.

4.2.2. Progressive Classification by Wavelets. The second approach to wavelet-based time
series classification is to facilitate the classification process by incorporating DWT’s
multiresolution property. A multiresolution analysis is used to classify data—usually
images or texture features—progressively. For example, Castelli et al. [1996] applied
generic classifiers on a low resolution representation of wavelet-transformed data. They
defined the satellite image classification as “the process of labeling individual pixels
or larger areas of the image, according to classes defined by a specified taxonomy”
([Castelli et al. 1996], page 2199). At each step of the classification, the algorithm de-
cided the class label and assigned the label to the whole block at a low level in order
to be reexamined at a higher level. If at anytime the whole block was found to be
homogenous, no further detail examination was required. Castelli et al. [1996] pre-
sented a wavelet-based recursive classification algorithm for progressively classifying
images, which allowed the classification result to be available at each step [Castelli
and Kontoyiannis 1996, 1999; Castelli et al. 1996] providing a large speedup (three to
four times) in classifying large images as opposed to a pixel-by-pixel approach, and the
improvement allowed by DWT was used in the application of landcover classification
in image databases.

As another example of the multiscale classification, Chang and Kuo [1993] created
a tree-structured wavelet transform for texture classification. To perform the classifi-
cation, dominant features were chosen, which were determined by wavelet coefficients
with large energy values. By repeating these wavelet decomposition and classification
steps, further zoom-in into the classification of the desired frequency was possible.
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In summary, signals can be decomposed into different scales of subsignals with
DWT’s ability to isolate signal components. Suitable time series data for wavelet-based
classification have multiscale signal components that are more meaningful in parts
than in sum, such as audio signals, and patients’ ECG heart rates. DWT is also a
suitable noise filtering technique for a preprocessing step that is necessary before
performing classification. Therefore, time series data prone to noise is very suitable
to be transformed with DWT before the classification. In other cases where noise is
not a problem, DWT is beneficial in isolating signals into several components and
performing a stepwise classification on each of these components. This last benefit
is especially important in the image classification and audio classification domains,
where the data has too many fine details that can be excluded from the classification
process [Castelli and Kontoyiannis 1996, 1999; Castelli et al. 1996; Chang and Kuo
1993]. Classification can be performed correctly on dominant features, and even on
more detailed features upon users’ requests.

4.3. Wavelet-Based Clustering in Time Series

The goal of time series clustering is to group similar time series data together into the
same clusters and put dissimilar time series into different clusters. Examples of appli-
cations that benefit from time series clustering include clustering patients into groups
based on their clinical measurements over time, or grouping stocks in the stock market
according to their price fluctuations. Clustering allows users to identify patterns and
trends pertaining to each group. Time series clustering has been applied in diverse
application domains, such as clustering stocks in the stock market [Fu et al. 2001;
Gavrilov et al. 2000], clustering gene expressions [Balasubramaniyan et al. 2005],
clustering hot and cold air pockets to predict the weather temperature [Sarma 2006],
and clustering images for image retrieval [Ardizzoni et al. 1999; Natsev et al. 1999;
Sheikholeslami et al. 1999]. Due to the high dimensionality, the execution of cluster-
ing algorithms is costly in terms of computational time. Research work on clustering
time series data relies on transforming raw time series data using some dimensional-
ity reduction techniques [Gavrilov et al. 2000; Lin et al. 2004], and then performing
clustering on the transformed data, or on clustering the large amount of time series in
small pieces recursively to improve the efficiency of the clustering process [Chaovalit
2009; Chaovalit and Gangopadhyay 2009].

There are various clustering algorithms proposed in the literature, such as k-means,
CLARANS, BIRCH, DBSCAN, STING, and CLUDIS [Han and Kamber 2006; Korn
et al. 1997]. Though many of these have been proposed, fast clustering algorithms
typically still have a high computational complexity of O(n2) or O(n log n), where n is
the number of data instances [Korn et al. 1997].

Clustering methods are evaluated for their efficiency measured by the computational
complexity of different clustering algorithms. However, it is a challenge to evaluate the
accuracy of the clustering methods. Since the labels of clusters are not predefined prior
to clustering, data miners do not know whether the clusters are assigned to time series
correctly. In order to evaluate the clustering methods’ accuracy, researchers measure
how well the clustering results conform to the clustering objective function, that is,
distances among data within the same clusters are small, while distances among data
from different clusters are large [Han and Kamber 2006]. One such evaluation metric
is the Silhouette function, which is defined as the ratio of the difference between the
average intracluster and the average intercluster distances, to the maximum of the
intracluster and intercluster distances [Kaufman and Rousseeuw 1990]. Some articles
on clustering time series evaluate their clustering by the sum square (SSQ) distance
of each time series to its respective cluster centroids [Aggarwal et al. 2003; Guha et al.
2003]. A small SSQ value indicates a better cluster formation.
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The use of DWT in clustering can be found in several articles [Chaovalit and
Gangopadhyay 2007; Lin et al. 2004; Sheikholeslami et al. 1998]. First, WaveCluster
[Sheikholeslami et al. 1998], a well-known clustering algorithm, applies DWT to filter
numerical data prior to clustering. WaveCluster uses hat-shaped filters as they are
best for sharpening cluster edges. They accentuate boundaries by suppressing low-
frequency parts of the signal (clusters) and emphasizing high-frequency parts of the
signal (boundaries). Using these filters, WaveCluster can also eliminate outliers, which
is useful for clustering noisy data. WaveCluster inherits the multiresolution advantage
from DWT; hence data can be clustered on various resolutions. The algorithm produces
high-quality clusters especially with formations that are arbitrarily shaped.

Another example of time series clustering using DWT appears in Lin et al. [2004]. Lin
et al. [2004] exploited DWT to extend the k-means algorithm. It is well known that one
of the k-mean’s disadvantages is random seed selection which results in different clus-
ters when executed multiple times. Therefore, cluster qualities are highly dependent
on initial seeds. DWT can alleviate this problem using its multiresolution property.
The authors proposed Iterative k-means algorithm (I-kmeans) which has the following
steps. First, DWT is applied onto time series. Then, the k-means algorithm is executed
on the coarsest level of decomposition in order to obtain cluster centers. Subsequently,
the DWT coefficients are reconstructed to the next higher level of decomposition. For
each next level of decomposition, the cluster centers which were previously obtained
from clustering the prior level of decomposition are used as seeds. In clustering the
newly reconstructed DWT coefficients at finer levels of decomposition, good initial seeds
have been selected from the approximation since the very beginning of the clustering
process. The I-kmeans algorithm iterates until the finest level of decomposition but can
be stopped at any decomposition level by users. Clustering time series in this manner
eliminates cluster centers falling into local minima, hence producing better results
than the traditional k-means algorithm. The I-kmeans algorithm has an advantage of
better clustering qualities and faster processing, which are direct benefits from initial-
izing seeds at the approximation level of time series. As the number of dimensions of
time series is reduced at lower levels of decomposition, I-kmeans saves time of cluster-
ing on full-resolution data by doing most of the work early on when the number of time
dimensions is low.

In addition to the above mentioned works, other researchers have applied DWT on
clustering for different purposes [Cheong et al. 2005; Ghosh-Dastidar and Adeli 2003;
Li et al. 2000a]. The multiresolution property of DWT, which is the most unique prop-
erty among data dimensionality reduction techniques in the literature, has been useful
in clustering. For example, Li et al. [2000a] and Cheong et al. [2005] analyzed air pol-
lutant data and stock data, respectively, using multiresolution DWT coefficients. The
multiresolution property allows the underlying trends and localized patterns found
in wavelet coefficients to be analyzed. In Cheong et al. [2005], the decomposed time
series of stock data were clustered for similarities among stocks. It was found that
groups of stock at different temporal resolutions corresponded to real-world events. As
an example, the connection between two stocks with an owner-subsidiary relationship
was found when data was decomposed. This connection was not discovered from clus-
tering raw time series data due to noise. While a property such as the multiresolution
capability was more directly exploited, noise reduction was sometimes a byproduct.
DWT’s noise reduction was intentional in situations where high signal-to-noise ratios
were present [Wang et al. 2006]. In Wang et al.’s [2006] work, hyperspectral Raman
data have high signal-to-noise ratio which requires an effective preprocessing in order
to cluster chemical groups of this data. Although conventional smoothing methods can
achieve the purpose of noise reduction, they will distort important features. DWT was
chosen by Wang et al. [2006] because it was able to distinguish between features and
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noise. Compared to other denoising approaches (Spline filter and Savittzky-Golay),
DWT was able to smooth data while producing higher levels of clustering accuracy
when used by the fuzzy c-means clustering.

Although we have discussed the advantages that DWT offers on clustering, the bene-
fits of DWT in clustering was sometimes more secondary. For example, Sheikholeslami
et al. [1999] employed DWT as part of an image retrieval system because clustering on
an image database allows faster image retrieval and better accuracy. DWT was used
to control the level of details to compare and cluster images for further retrieval.

DWT was not used only with Euclidean distance. An example of applying other dis-
tance functions with DWT can be found in Ghosh-Dastidar and Adeli [2003], employed
the Mahalanobis distance when clustering traffic data with wavelets. Traffic data was
represented as speed, volume, and occupancy. Therefore, the Mahalanobis distance was
chosen in order to capture correlations among these components in traffic data. Also, the
authors investigated the use of several wavelet filtering schemes which were implied
from the domain knowledge. The different wavelets included in their study were Haar,
second-order Daub, second-order Coifman, and fourth-order Coifman. These wavelets’
coefficients were selected and applied to neural networks for clustering. The results
showed that the wavelet-based clustering technique proposed by Ghosh-Dastidar and
Adeli [2003] gave the most superior results when the fourth-order Coifman wavelets
were employed.

4.4. Multiresolution Anomaly Detection

Anomaly detection deals with detecting anomalous behavior of time series data. It helps
users identify abnormal time series or parts of time series from the rest of the data.
The concept of anomaly detection considers the behavior from past data and/or data
models to perform this task. Any data that deviates from its regularity is considered an
anomaly. Anomaly detection is critical in various application domains, such as intrusion
detection in computer networks. One main challenge in anomaly detection is how to
successfully distinguish an anomaly.

Usually, an anomaly refers to an individual data point or a set of data points that
deviate from an expectation. Sometimes, the concept of an anomaly is interchangeable
with the concepts of a surprise or interestingness. We usually hear the terms surprise
detection [Shahabi et al. 2000, 2001], “event detection [Atallah et al. 2004; Bunke and
Kraetzl 2004; Guralnik and Srivastava 1999; Saeed and Mark 2001], change detection
[Zeira et al. 2004], “burst detection [Shasha and Zhu 2004], and “novelty detection
[Dasgupta and Forrest 1995; Keogh et al. 2002; Ma and Perkins 2003; Marsland 2001]
in the anomaly detection literature [Bailey et al. 1998; Chin et al. 2005; Klimenko et al.
2002; Lane and Brodley 1999; Lee and Stolfo 1998; Luo et al. 2001; Magnaghi et al.
2004; Mallat and Hwang 1992; Shmueli 2004; Struzik and Siebes 2000; Wang 1995].
Yet, it is not surprising that these various terms may refer to the same general concept.

Let us discuss some of the various definitions for anomaly detection that have been
proposed in the literature. First of all, the concept of outlier detection comes to mind.
An outlier is a data point in a time series that differs greatly from other data points
[Keogh et al. 2002]. Therefore, outlier detection involves a problem of finding data
points that diverge from the normal range. Another term in the literature with the
same definition as outlier detection is deviation detection [Arning et al. 1996]. In sum,
outliers are a set of potentially interesting data points, since they depart significantly
from the expectation, and should be subjected to further investigation.

Next, let us examine other related concepts. Shahabi et al. [2000] defined “surprises”
as sudden changes within the time series. Bunke and Kraetzl [2004] detected an “ab-
normal change” when a similarity between two time series of graphs fell below a certain
threshold. Keogh et al. [2002] defined surprising patterns as a collection of data points

ACM Computing Surveys, Vol. 43, No. 2, Article 6, Publication date: January 2011.



6:24 P. Chaovalit et al.

whose “occurrence frequency differ substantially from that expected by chance, given
some previously seen data. In fact, a surprise could also be a concept among various
types of interestingness [Geng and Hamilton 2006].

When data points are considered collectively and not individually, the problem has
shifted from outlier detection to anomaly detection. For anomaly detection, the goal is
to find interesting data patterns that are surprising or unexpected.

Various domain applications have utilized the anomaly detection task and its rela-
tives. Detection of abnormal events includes network performance problem detection
[Huang et al. 2001], intrusion detection [Lee and Stolfo 1998; Luo et al. 2001], dis-
ease outbreak detection [Wong 2004], bio-terrorist attack detection [Shmueli 2004],
and change detection in classification models [Zeira et al. 2004]. Since all of the terms
mentioned above are subjective and application-dependent, it is crucial for researchers
to have a clear definition of their “anomaly” for researching anomaly detection.

Given a variety of definitions on the concept, the approaches to anomaly detection can
vary. These approaches include finding dramatic shifts in the time series [Shahabi et al.
2000], change point detection [Guralnik and Srivastava 1999], comparing a new time
series to reference time series or patterns [Chen et al. 1999a, 1999b], and discriminating
time series between self and nonself [Dasgupta and Forrest 1995; Forrest et al. 1994].
Work in the field has introduced various ways to identify an anomaly, for example, by
utilizing probabilities [Atallah et al. 2004; Chin et al. 2005; Guralnik and Srivastava
1999; Keogh et al. 2002; Wong 2004], similarity measures [Arning et al. 1996; Keogh
et al. 2004b; Lane and Brodley 1999; Wei et al. 2005a, 2005b], rule induction [Keogh
et al. 2002; Luo et al. 2001], matching functions [Forrest et al. 1994; Ma and Perkins
2003], and graph-based edit distance [Bunke and Kraetzl 2004]. We can group anomaly
detection approaches into three categories.

(1) detecting abrupt changes within a time series [Fu et al. 2006; Guralnik and
Srivastava 1999; Shahabi et al. 2000];

(2) detecting abnormality by comparing distances between two or more time series
[Arning et al. 1996; Bunke and Kraetzl 2004; Wei et al. 2005a, 2005b];

(3) detecting irregular patterns by observing the regular frequency of data points
[Atallah et al. 2004; Chin et al. 2005; Keogh et al. 2002; Lee and Stolfo 1998; Luo
et al. 2001; Wong 2004].

The approaches in the first category do not need previous data or other time series
data for comparison. On the contrary, the approaches in the second and third categories
need at least two time series to be present. However, if only a single time series is
available, such detection is achievable by applying a sliding window to segment the
time series. Then one can specify some of these segmented time windows as a reference
segment [Fu et al. 2006; Wei et al. 2005b].

As an example, one study at the University of California, Riverside, utilized the
combination of two techniques: Chaos Game Representations (CGR) and Symbolic
Aggregate approXimation (SAX) data representation [Wei et al. 2005a, 2005b]. SAX is
a symbolic time series data representation, which is useful for converting real-value
sequences into discrete data. In Wei et al. [2005a], the CGR technique was used to map
sequences of discrete values, which were previously transformed by SAX, into a 2L by
2L grid bitmap, where L is the length of the sequences. Subsequently, the frequency
of pixels within the grid bitmap was counted and color-coded to allow the human eye
to compare and contrast. A 2L × 2L grid bitmap represented a single, sequence and
color-coding helped researchers distinguish among various sequences.

Wei et al. [2005b] focused on anomaly detection. The basic idea was to create two
concatenated windows and to slide them together across the sequence. The anomaly
score for each pair of two sliding windows was plotted along the time scale. According
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to the experiments conducted in both studies [Wei et al. 2005a, 2005b], an anomaly can
be detected via visualization. While the first study emphasized visualizing each time
series, the second approached anomaly detection by visualizing the difference between
two time series.

Most of the standard anomaly detection approaches (perhaps with the exception of
Wei et al.’s [2005a, 2005b] work) cannot detect anomalies at different temporal scales,
while wavelet-based approaches can. In addition, wavelet-based anomaly detection ap-
proaches offer the advantage of selecting the levels of resolution to detect anomalies
from. This sets the wavelet-based approaches apart from Wei et al.’s [2005a, 2005b]
approach. While the latter performed discretization on time series at different scales
and applied colored visualization on the discretized values, the former can combine
some different scales of time series wavelet coefficients while intentionally skipping
others. This benefit was demonstrated in Shahabi et al. [2000] when only some co-
efficients of time series were retained due to space limitation. Shahabi et al. [2000]
proposed various strategies of coefficient dropping, but suggested that selective coeffi-
cient dropping was appropriate when time series contain many outliers. The selective
dropping of coefficients proved to be fitting for the surprise detection purpose, because
dropping coefficients means abandoning some unnecessary information in the time se-
ries for anomaly detection. This ability is not found in the standard anomaly detection
approaches. Even with other data reduction techniques such as SVD and DFT, time
series data can be reduced to coefficients but the anomaly information is not isolated
as well as in the case of DWT.

Due to its ability to separate original time series into its decompositions, DWT is a
powerful tool to help researchers capture trends, surprises, and patterns in data. It
is also the data transformation technique that concurrently localizes both time and
frequency information from the original data in its multiscale representation. Other
techniques, such as discrete Fourier transform (DFT) and discrete cosine transform
(DCT), convert data from the time domain into the frequency domain, but in doing so
temporal semantics—the sense of when significant events happen—is lost. In contrast,
auto regressive moving average (ARMA) models preserve the temporal information in
their results, but lose the frequency information [Dillard and Shmueli 2004]. In other
words, techniques such as DFT and DCT do not have a time localization property, while
ARMA models do not have a scale localization property [Dillard and Shmueli 2004].

The scale localization property of DWT makes the anomaly detection task at different
resolutions both feasible and promising. A series of wavelet approximation coefficients
at the ith level (Aij = {Ai1, Ai2, . . . , Aik, j = 1 . . . k) represents trends, while a series of
wavelet detail coefficients at the ith level (Dij = {Di1, Di2, . . . , Dik}}, j = 1 . . . k) repre-
sents surprises for that scale. Repeated patterns of signals can be discovered in both
Aij and Dij—the products of wavelet transform. More importantly, trends, surprises,
and repeated patterns identified by DWT also preserve temporal semantics.

Studies that have utilized DWT for anomaly detection always draw on the visual-
ization of wavelet-transformed data as a part of their approach [Dillard and Shmueli
2004; Huang et al. 2001; Shahabi et al. 2000]. In time series data, visualizing time
series data is a preliminary technique for descriptive analysis. Assuming that the sig-
nals are nonstationary with several mixed components, DWT reveals those patterns
that are hidden in the original signals. Visualizing wavelet-transformed signals helps
illuminate the trends in approximations, surprises in details, and repeated patterns in
different levels of decomposition.

Figure 6 (left-hand side) visualizes decompositions where the trends of this signal
have been enhanced. The higher the level of resolution, the smoother the trend we
perceive. Such a trend pattern is harder to pick out in raw time series data, especially
when the time series has a lot of spikes and peaks. Also an on the right-hand side of the
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Fig. 6. A visualization of trends, surprises, and patterns at different decomposition levels by Haar wavelet
transform.

same figure, surprises have been filtered out from the signals and appear in the detail
graphs. The surprises are distinguishable at different levels of decomposition. Each
surprise is at a different scale and at a different time location. Therefore, surprises
are a good indicator of singularities in signals. The singularities are preserved in both
scale and time location in the wavelet decomposition.

In applying DWT to time series, peaks or spikes that are in one scale may not be as
obvious in another scale. The scale localization property enables wavelets to capture
details pertaining to such scales and such scales only. Suppose that, for decompositions
D1–D4, where D1 corresponds to details at a 1-day interval, D2 at a 2-day interval, D3
at a 4-day interval, and D4 at an 8-day interval, spikes that are visible at t = 100 for
D1 and D2 might not be apparent at D3 or beyond. Those spikes imply that a surprise
occurs at t = 100 for D1 and D2, for both 1-day and 2-day intervals, and that this
particular surprise does not pertain to larger time scales. Conversely, suppose that
there are some surprises in the original data showing at D4, but not at D3 or other
lower levels of decomposition. Consequently, these surprises correspond to events in
the 8-day interval, but not in the smaller or larger time scales.

Looking closely at the detail graphs in Figure 6, we see repeated patterns of spikes
appearing in some levels of detail coefficients. A zoom-in version of these graphs is
shown in Figure 7. By interpreting the visualization in this manner, experts with
domain knowledge can provide better insights into the semantics of trends, surprises,
and repeated patterns. As noted before, this type of surprise information cannot be
captured with other time series analysis techniques [Dillard and Shmueli 2004; Mallat
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Fig. 7. A visualization of (a) a zoomed-in original signal (top), (b) repeated patterns in D4 (middle), and
(c) repeated patterns in D6 (bottom).

and Hwang 1992]. However, the analysis methodology of the wavelet-based anomaly
detection has been mostly limited to visualization [Dillard and Shmueli 2004; Shahabi
et al. 2000].

Besides using wavelet coefficients and wavelet coefficient graph, wavelet-based sur-
prise detection can be used to create another type of graph: an energy plot. Previous
studies on anomaly detection in time series data utilized an energy plot as a tool to
detect irregular patterns [Huang et al. 2001; Magnaghi et al. 2004]. This approach
was more quantitative in nature than the visualization approach. In these studies, a
wavelet energy function at the qth level of decomposition among all levels was defined
as

Eq = 1
Nq

∑
k

∣∣dq,k
∣∣2,

where Eq denotes an energy at level q, Nq denotes the number of coefficients at scale q,
and dq,k denotes a detail wavelet coefficient at a position k of level q [Huang et al. 2001].
The scale q was plotted along the x axis, and a logarithmic energy at scale q, log2(Eq)
was plotted along the y axis. By knowing that the logarithmic values of energy function
would remain constant for white noise time series [Huang et al. 2001], any apparent
“dips” in the energy plot illustrated low values in the energy function, which in turn
indicated irregular events in time series. Therefore, the logarithmic energy plot could
show a relationship between the scale q and the logarithmic energy at scale q, log2(Eq),
for time series and illustrate any surprise in data [Huang et al. 2001; Magnaghi et al.
2004].

Other studies employed different techniques for detecting energy dips in the energy
plot. By using energy plots, Magnaghi et al. [2004] detected the local minima of the
energy function in a least-square parabola. Huang et al. [2001] visually compared the
energy plot with a round-trip time (RTT) plot and a retransmission timeout (RTO) plot
to assure the alignment of energy dips among the corresponding measurements. Energy
plots of the investigated time series were then compared to a baseline energy plot, which
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illustrated a normal condition of the computer network path. If the difference between
these two plots was greater than a threshold δ, an irregular pattern was detected.
Such surprises are visible through dips in the energy plots. The experiments presented
promising results in Huang et al. [2001] and Magnaghi et al. [2004]. However, these
studies utilized the scale-localization property but did not reach as far as to analyze the
timing of the anomaly. Generally speaking, this approach has not yet quantitatively
utilized the time-localization property.

DWT has also been employed for detecting anomaly in time series as a discretiza-
tion technique [Fu et al. 2006]. In Fu et al.’s [2006] approach, subsequences of time
series were transformed using Haar wavelets and then the coefficients were converted
into symbols. These strings of symbols formed words. The technique presented by Fu
et al. [2006] exploits DWT to adjust an effective word length in order to compress the
time series subsequences. Results showed that DWT reduced the number of times the
distance function was called, when compared to the baseline algorithm without DWT.

The application of DWT in anomaly detection has appeared in diverse application
domains, such as manufacturing [Li et al. 1999, 2000b; Yao et al. 1999], disease out-
break detection [Shmueli 2004; Wong 2004], and anomalies in computer networks
[Huang et al. 2001; Magnaghi et al. 2004]. We find that these approaches do not yet
fully utilize the benefits of DWT’s multiresolution analysis. Multiresolution analysis
can be used to further analyze data in both time and scale correspondences, and this
capability has not been shown or implemented among the studies that we reviewed.
With the combination of both time- and scale-localization properties, DWT has more
potential than is currently being exploited. And, therefore, opportunities for analyzing
time series for trend, surprise, and pattern detection through DWT’s multiresolution
analysis are enormous.

4.5. Wavelet-Based Prediction

Time series data prediction is the task of forecasting data values in the future, given in-
put values such as a prediction time point and historical data values. In general, people
are very interested in forecasting time series data, such as stock prices [Fu et al. 2001;
Gavrilov et al. 2000], weather [Sarma 2006], electricity and water consumption [Collin
2004; Dillard and Shmueli 2004; Petridis et al. 2001], river water level, Internet usage
[Basu et al. 1996], disease outbreak [Banner et al. 1976; Goodwin and Maher 2000;
Shmueli 2004; Silver and Ginsburg 1984; Wong 2004], and physiological symptoms
[Banner et al. 1976; Goodwin and Maher 2000; Shmueli 2004; Silver and Ginsburg
1984; Wong 2004], to name a few.

Prediction or forecasting is considered as a fitting process of time series data to a
model [Anderson 1976, 1997; Brockwell and Davis 1991]. All predictive models, such
as those weather forecasting and stock prediction, need historical data as input for
developing such a model. The time series prediction process starts with developing a
mathematical hypothesis of a model that represents the input data [Brockwell and
Davis 1991]. Factors hypothesized in the model are those that affect the values of time
series. Then parameters are derived from these factors, and are estimated using an
appropriate time series analysis technique. As a general rule, the larger the available
time series data collection, the better the model and parameters estimation is, and
hence the more precise the prediction becomes. Next the model is evaluated using a
goodness-of-fit test, which indicates how robust the model is for time series data. In a
general sense, a goodness-of-fit test returns errors between predicted data and actual
data. If the model verifiably describes the underlying data well (with few errors), future
values of these observations can be predicted using this model, given the assumption
that the behavior of future data remains constant. If the fitness of the model is not yet
satisfied, the model needs to be adjusted and reverified. Once the goodness of fit of the
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model is satisfied for a particular set of time series, the model is ready for use with new
time series datasets.

One may derive data characteristics of the time series from the model fitting pro-
cess. For example, if a time series is generated from a stochastic process, where the
probability distribution of the data is fixed along the time axis, the characteristics of
that signal—namely, a stationary signal—will have a mean and a variance that do not
fluctuate over time [Anderson 1976]. Such a characteristic may be interpreted from
looking at the model. For time series prediction, a time series might have combined
characteristics of various types, for example, trend, seasonal, and noise, and the study
of time series is about the discovery of those characteristics. The main objective is to
find a mathematical model which accurately describes those characteristics in order to
represent that particular set of time series. When the model is discovered, it can also
be used in several applications beyond prediction, including noise filtering and future
value control [Brockwell and Davis 1991].

As with other time series data analysis and mining approaches, researchers need
to evaluate time series data prediction. An error measurement is usually employed
to mark the quality of the prediction. A popular error measurement is the root mean
square error [Korn et al. 1997; Weigend and Gershenfeld 1994]. At times, this mea-
surement will be normalized with its respective standard deviation to obtain a more
accurate evaluation across different data. Root mean squared percent error (RMSPE)
was defined by Korn et al. [1997].

In brief, the main idea behind time series prediction is to understand the movement
of historical data and apply this understanding for future prediction. Such movements,
when analyzed by DWT, display important patterns more obviously, thus enabling
researchers to perform a prediction task more effectively. Researchers have modeled
time series into trend, seasonal, and noise components. The models can be constructed
in various ways depending on an underlying assumption of data. This section discusses
a number of studies that utilize DWT for time series prediction.

A group of researchers (Murtagh, Starck, and Renaud) focused their work on à trous
wavelet transform [Murtagh et al. 2004; Renaud et al. 2003, 2005]. À trous wavelet
transform is a redundant form of the regular DWT. À trous coefficients are created by
shifting wavelet functions on time series data one point at a time, instead of 2 j points
at a time as with the normal DWT, where j denotes the current level of resolution.

In Murtagh et al. [2004] and Renaud et al. [2003, 2005], à trous is advantageous for
wavelet-based prediction since it allows a one-step forward prediction and avoids the
problem of finding corresponding coefficients with the original time window for predic-
tion, also known as the boundary problem in the wavelet literature. Wavelet coefficients
are selected from each scale to perform a multiscale prediction. Experimentation has
shown that these methods have superior results on two prediction schemes: autore-
gressive (AR) models and neural networks. The authors also claim that the proposed
approach is easily extendable to other prediction schemes as well.

Lotrič [2004] and Soltani et al. [2000] performed predictions based on a similar
concept of multiscale wavelet decomposition. The difference among these studies is that
the work of Soltani et al. [2000] chose all the coefficients of à trous wavelet transform,
while Lotrič [2004] and Murtagh et al. [2000] chose a particular set of coefficients
according to scales [Renaud et al. 2005].

In summary, studies on wavelet-based prediction have explored and utilized the
multiresolution property of DWT and the à trous wavelet transform. For the à trous
wavelet transform, predicting the next values of a time series requires that none of the
corresponding wavelet coefficients be calculated from unknown upcoming data points.
Hence, the à trous wavelet transform has been applied due to the application of time
series prediction.
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5. CONCLUSION

In this article, we reviewed the literature in the field of discrete wavelet transform
(DWT), and the application of DWT on time series data analysis and mining. We have
also illustrated the potential of applying DWT on time series data analysis and mining,
especially its multiresolution analysis. A large number of studies demonstrated the
applicability of DWT to data analysis and mining for various domain applications. We
found that many desirable properties of DWT have been realized and practiced by
research communities.

Researchers have used DWT for noise reduction in various domain-specific data such
as audio data for a better audio classification system, and medical data for better illness
diagnosis. In addition, DWT is an effective dimensionality reduction technique to apply
before conducting a similarity search. It greatly reduces search time, while preserving
accuracy. DWT is unique for its multiresolution analysis, which allows researchers to
apply it at different levels of data resolution, resulting in significant benefits such as
faster data mining process, less data storage, and better mining results. Domain appli-
cations that benefit from applying DWT to time series data analysis include, but are not
limited to, image querying, audio querying, illness classification, image texture clas-
sification, satellite image classification, pornographic image classification, audio and
video genre classification, computer network anomaly detection, and disease outbreak
detection. DWTs are useful in defining new sets of features used in classification and
similarity search applications from wavelet coefficients. These usually result in more
well-defined features due to the reduction in noise or irrelevant data, which in turn
increase the accuracy of classification and similarity search. Another apparent use of
DWTs is allowing researchers the freedom to investigate data at different temporal
scales. For example, patterns of wavelet coefficient energy at different scales have been
used to detect network anomaly. Other studies take this benefit further to perform a
progressive time series analysis, such as progressive classification. Progressive time
series analysis is beneficial in such a way that it is a step-by-step approach, in which
the first few steps allow researchers to mine data at coarse levels, producing somewhat
approximate answers while reducing the processing time (they can perform additional
steps for finer data if they need to).

The research included in this survey mostly employed a limited number of wavelet
filters and distance functions. Frequently, the Haar filter and the Euclidean distance
are used. Nevertheless, the lack of diversity in wavelet filters and distance functions
does not indicate a limitation of DWT in these areas. In general, DWT can handle other
distance functions besides Euclidean, and different wavelet filters have been applied to
time series analysis. An example of such varieties can be found in Ghosh-Dastidar and
Adeli [2003], who utilized a different distance function (Mahalanobis distance) and var-
ious wavelet filters in order to search for the most appropriate wavelet filters for analyz-
ing their traffic data. As another example, Coifman and Wickerhauser [1992] used cost
functions such as Shannon entropy to select the best basis functions to the given signal.

Before employing DWT, however, there are some related challenges that one needs
to address. These challenges relate to each of the following issues.

(1) Choice of wavelets. An appropriate wavelet filter can be identified, as illustrated
in Ghosh-Dastidar and Adeli [2003] and Sheikholeslami et al. [2000], wherediffer-
ent filters were compared or a special property of a particular wavelet filter was
exploited. In that case, other wavelet filters may be found more appropriate than
the simple Haar wavelet. Nevertheless, Haar has often been found an appropriate
filter in various research studies, such as Chan and Fu [1999].

(2) Depth of analysis. This issue deals with the number of levels of decomposition. It
is theoretically possible to decompose data up to the coarsest level, but at each
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level the approximate data is being filtered. How does one know when to stop the
decomposition? At which level of decomposition should the signals be analyzed? One
research study [Lalitha 2004] answered this question by measuring the entropy of
wavelet coefficients at each level and finishing the decomposition when a stopping
condition was met. A heuristics applied by Lalitha [2004] prevented the interesting
trend of degrading fault signals in gas turbines data from being further distorted
by identifying the optimal level of decomposition.

(3) Boundary problem. Computation of wavelet coefficients for a given level of decom-
position requires a certain number of data samples. In real-life situations, it is
possible for a dataset to contain insufficient number of samples for calculation.
This may happen when (i) data is irregularly sampled, (ii) some data observation
values are missing, and (iii) the number of samples is not enough for computa-
tion. This problem is referred to as the boundary problem and has no universally
best solution. One must make an informed decision based on the advantages and
disadvantages of the following boundary correction methods.

There are solutions to the boundary problem proposed by Jensen and Cour-Harbo
[2001] and Ogden [1997]. They either applied treatments to data or wavelet filters
to solve the problem. The simplest solution to implement is the zero-padding tech-
nique, where missing samples are added as zeros into the data sequence. In this
case, the manipulated data variances are tampered and the orthogonality of data
is not preserved. Other methods from Ogden [1997] include data interpolation and
numerical integration. The former requires creating a new dataset through inter-
polation of the original dataset in order to create good approximations of wavelet
coefficients without changing data distribution. However, this approach introduces
some amount of correlations among coefficients. The latter employs numerical in-
tegration in computing top-level wavelet coefficients. This approach introduces the
least amount of artificial data into the coefficients but is computationally expen-
sive. More frequently used methods are available for further reading in Jensen and
Cour-Harbo [2001], which include boundary filters, periodization, and mirroring. In
boundary filters, new filter coefficients at each end of the signal are substituted in
order to preserve the perfect reconstruction of data without modifying the signal’s
lengths. Periodization chooses samples from the signal to add into the sequence
instead of zero padding. Mirroring first mirrors a signal and then adjoins the re-
sult to the original signal. Periodization is then performed on the adjoined data to
truncate the signal. Both periodization and mirroring can lead to incorrect wavelet
analysis as discontinuities may be present from truncating data samples. However,
mirroring is popular in image applications, where symmetry is preferred to the eye.

(4) Data dependency. DWT is a data-dependent technique. As pointed out by Shasha
and Zhu [2004], DWT requires time series data to have principal components.
When data is stationary and/or when patterns do not exist in data, DWT may not
necessarily be superior to other methods.

Perhaps one area where DWT has not been fully utilized in the literature so far is
taking temporal semantics of wavelet coefficients into account when performing data
analysis. DWTs have been realized for its multiresolution capability, but only in a
relative sense to another level. A limited number of works have derived meaningful
temporal semantics, that is, in absolute time scales such as weekly or monthly patterns,
from the mining results. Moreover, anomaly detection or surprise detection using DWT
is still largely done with visualization. Since experts usually take a look at plots of
wavelet detail coefficients or plots of other types to detect anomalies, model-based
anomaly detection such as those in nonwavelet time series anomaly detection has yet
to be formalized.
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