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Abstract. This paper proposes a method to anonymize network trace data by
utilizing a novel perturbation technique that has strong privacy guarantee and at
the same time preserves data utility. The resulting dataset can be used for security
analysis, retaining the utility of the original dataset, without revealing sensitive
information. Our method utilizes a condensation based approach with strong
privacy guarantees, suited for cloud environments. Experiments show that the
method performs better than existing anonymization techniques in terms of
privacy-utility trade off, and it surpasses existing techniques in attack prediction
accuracy.

Keywords: Privacy preserving · Data mining · Intrusion detection ·
Anonymization · Network traces

1 Introduction and Background

Sharing network trace data to create models that identify security attacks is a very sensi‐
tive issue for any organization as everyone prefers to access real (not synthetic) network
trace datasets for security analysis, but nobody wants to reveal internal information to
the public. Organizations use public or private clouds to store data (resources) which
may contain sensitive information that may be detrimental if an adversary has access to
it. Real-world traces usually contain sensitive information, e.g. host addresses, emails,
personal web-pages, and even authentication keys [1]. These traces must be first “anony‐
mized” to eliminate any private information before they can be shared among
researchers. Additionally, anonymization should maintain both utility and the privacy
of the trace. Network traces consist of a packet header and payload. The header contains
information about source and destination Internet Protocol (IP) addresses, port numbers,
protocol, type of packet, and other fields which must be anonymized before sharing.
Network data sources such as RIPE (European IP Network Coordination Centre) [2],
Route Views [3], and the Center for Applied Internet Data Analysis (CAIDA) [4]
provides anonymized collected traces to the research community. A simple approach to
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anonymize IP addresses is to map each IP into a random 32-bit address [5], yet it results
in losing the prefix relationship between IP addresses, which may be important for clus‐
tering based on such relationships. Therefore, it is highly desirable to preserve the prefix
when anonymizing IPs. In addition, the existing techniques do not handle data injection
attacks. This is the act of injecting information to be logged, so that it may be recognized
after the anonymization process [6]. Data injection attacks are executed by sending IP
packets with random source and destination IP addresses, spoofed IP addresses, or
forged packet headers that appear in the anonymized traces [7]. The adversary may then
uncover the mapping between the injected plain text and the anonymized address (see
[8, 9]). Our technique anonymizes network trace data, and generates a dataset that can
be deployed in clouds, and freely distributed to organizations for testing intrusion detec‐
tion techniques without revealing sensitive information. The proposed algorithm has
strong privacy protection and high utility. Related work includes several methods of
data obfuscation to achieve network traces anonymization. Black marker is the most
trivial method that replaces all IP addresses with a constant [10]. Enumeration is another
method that can be applied to well-ordered sets. It replaces a value with a random one
for the first field and continues with a higher value for each following field [10]. Permu‐
tation approaches are used for anonymizing the IP and MAC addresses. A random
permutation is applied to map non-anonymized addresses to a set of possible addresses.
Shuffling re-arranges pieces of data within a field (an example tool is PktAnon [11]).
Truncation techniques can anonymize the IP and MAC addresses by deleting a portion
of the data. Truncation replaces the n least significant bits of a field with zeros. This
technique effectively makes an end-point non identifiable [7]. Other approaches such as
Random Substitution randomize data to provide no link between observations [7], and
random time shifting [12]. Generalization approaches replace data with more general
data [10], e.g. by grouping of TCP/UDP port numbers using a fixed value for both
categories [10]. Finally, Prefix-preserving pseudonymization techniques are similar to
the permutation ones, however, they preserve the prefixes and cryptographic keys are
used to keep the mapping consistent [13–15]. In the rest of the paper Sect. 2 describes
our anonymization approach. In Sect. 3 experiments and analysis are discussed, and
conclusions are in Sect. 4.

2 Research Methodology

We address two shortcomings in existing work on anonymizing network trace data
[10, 16–19]. First, the lack of a formal and strong privacy preservation model and
secondly, the exposure to attacks such as injection attacks [6, 20]. We utilize an improved
version of K-anonymity [21] and we identify the features (attributes) in network traces
that need to be anonymized and also are important for intrusion detection. Source and
destination IP addresses reveal information that may lead to the discovery of a user
identity. The destination IP addresses can be used by attackers to launch attacks. On the
other hand, IP addresses can be used in intrusion detection algorithms as well. For
example, if we know that attacks often originate from specific IP addresses then we can
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identify future attacks from the same addresses. Thus we need to carefully balance the
need for privacy protection and intrusion detection when anonymizing IP addresses.

2.1 Anonymization of IP Addresses

The following two stages describe anonymization of IP addresses:

• Encrypt/permute the leading digits of the IP addresses (network number). Intrusion
detection methods can still use the leading portion of the IP addresses. Attackers may
discover the subnet of a host but the next stage prevents identifying the host.

• For the remaining digits of the IP (host number part), cluster these addresses, and
randomize addresses in the same cluster (exact IP address cannot be located).

Figure 1 summarizes the steps needed to anonymize the IP address. The dataset D
is divided into n datasets, such that Di contains flows with label Li where each label can
be an attack or a benign activity. Then permute the leading digits of the IP addresses
(network number) using prefix preserving permutation function. The IP addresses are
then clustered into k clusters based on their least significant digits (host number). The
mean for the least significant digits of IPs in the same cluster (host number) is calculated.
Then the least significant digits of IPs (the last three digits) in each cluster are replaced
using the computed statistics. Figure 2 demonstrates IP anonymization.

Fig. 1. Steps to anonymize IP addresses

Fig. 2. IP anonymization example
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2.2 Anonymizing Non-IP Features

We utilize a condensation-based approach to perform anonymization on non-IP features.
The original condensation method utilizes the distribution of the original data to generate
a synthetic dataset [22]. The condensation method has some similarity with K-
anonymity. It creates groups where records are k- indistinguishable. However, instead
of masking values, random synthetic data is generated [22]. We apply two modifications
to the original condensation algorithm.

• First, we implement a per class condensation mechanism on network traces. The
typical condensation algorithm does not consider the differences between classes to
perform the de-identification. In general, there is a significant difference between the
behavior of network attackers and other users and such differences need to be
captured in the anonymized data

• Second, the typical condensation algorithm picks cluster centers randomly, which
may lead to inferior clusters. Instead, we utilize k-means clustering algorithm which
is relatively efficient in terms of within-class variance [23].

The first two steps in anonymizing non-IP features are similar to those for IP
addresses. Figure 3 shows two more steps to anonymize such feature, first the clusters
are sorted in ascending order of cluster size. For each cluster Cj that contains less than
k records, k- |Cj| records are selected if they are the closest to the center of Ci that lies
in a cluster in which the number of records is greater than k.

Fig. 3. Anonymization of non-IP features
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The selected records are then moved to Cj. In addition, synthetic data is generated
using Algorithm 1. For each cluster Cj the data is shifted into a new space a using Prin‐
cipal Component Analysis. In the new space Z1, Z2, Zp are independent components.
Then, a random data Z

′

i
 with similar statistical features of Zi is generated. Finally,

Z
′

1, Z
′

2, Z
′

3 are combined into one dataset.

3 Experiments and Evaluation

While it is straightforward to simulate the generation of benign and suspicious traces
using tools such as softflowd [24] by listening to network interface, this approach does
not capture all intended characteristics of benign activities. PREDICT (A Protected
REpository for Defense of Infrastructure against Cyber Threats) has shared real-world
datasets for cyber security research. We use packet captures from the 2013 National
Collegiate Cyber Defense Competition (nccdc.org) in our experiments. We created a
tool to generate benign and suspicious flows from packets. The flow information for
training and evaluation is shown in Table 1.

Table 1. The characteristics of the dataset used in our experiments

Features Types of activities
• Isrc, Source IP • Benign
• Idst, Destination IP • Potentially Bad Traffic
• Psrc, Source port • Attempted User Privilege Gain
• Pdst, Destination port • Generic Protocol Command Decode
• Prot, Protocol • Attempted Information Leak
• Pckts, Number of packets in the flow • Web Application Attack
• Octs, Number of octets in the flow • Detection of a Network Scan
• Tstart, Start time of the flow • Access to Vulnerable Web Application
• Tend, End time of the flow Number of selected flows 400893 70 % is used

for training, 30 % for testing• D, Flow duration

3.1 Evaluation Measures

Privacy: Conditional privacy is used to measure the privacy of anonymized traces [25].
It is an average measure of privacy that was originally proposed in the context of distri‐
bution reconstruction after additive perturbation. The measure is based on differential
entropy of the random variable. The differential entropy of A given B = b is

h(A|B) = − ∫
ΩA,B

fA,B(a, b)log2 fA|B=b(a)da db (1)

Where A is a random variable that describes the data, and B is the variable that gives
information on A.ΩA,B identifies the domain of A and B. Therefore, the average condi‐
tional privacy of A given B, is:
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∏
(A|B) = 2h(A|B) (2)

Accuracy: Several accuracy measures are used to validate the effectiveness of our
anonymization algorithms such as TP Rate, FP Rate, Precision, Recall, F-Measure, MCC
(Matthews correlation coefficient), and ROC (Receiver Operating Characteristic) Area.
We prove that our model works reliably and is able to produce satisfactory classification
accuracy values while preserving privacy.

3.2 Results

Figure 4 shows the conditional privacy measures for the de-identified dataset using
different techniques when changing the values of K.

Fig. 4. Conditional privacy using different anonymization methods/PREDICT dataset

Our algorithm performed better than most existing techniques. While the Black
Marker technique performs better in terms of privacy, we show that it has low accuracy
values. We utilized two types of condensation approaches. First, we performed the main
condensation without preserving the Prefix of IP. Secondly, we performed condensation
with prefix preserving anonymization on IP addresses. It is obvious that the main
condensation attains higher privacy values than prefix-preserving condensation. To
evaluate if our approach can differentiate between benign activities and attacks on
anonymized data, we ran an experiment to compare accuracy before and after anonym‐
ization using K-Nearest Neighbor classifier (Table 2). We also compared our approach
with existing anonymization techniques such as Black Marker, Permutation and Trun‐
cation. Our approach to anonymize IP addresses using prefix preserving technique, in
addition to the conventional condensation for non-IP features leads to no significant
information loss. Compared to other techniques, it achieves higher attack detection rate
and lower false positives with both classifiers.
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Table 2. PREDICT Data-KNN classification on anonymized data

TP Rate FP Rate P R F-Measure ROC Area PRC Area Class
Original 0.78 0.03 0.96 0.78 0.86 0.87 0.87 Attack

0.96 0.21 0.77 0.96 0.86 0.87 0.76 Normal
0.86 0.11 0.88 0.86 0.86 0.87 0.82 Avg

Condensation-Per
Class

0.66 0.00 1.00 0.66 0.79 0.83 0.81 Attack
1.00 0.33 0.78 1.00 0.87 0.83 0.78 Normal
0.84 0.18 0.88 0.84 0.84 0.83 0.79 Avg

Condensation All Class 0.47 0.10 0.46 0.47 0.47 0.68 0.30 Attack
0.89 0.30 0.89 0.89 0.89 0.68 0.89 Normal
0.82 0.20 0.82 0.82 0.82 0.68 0.79 Avg

Pure Condensation 0.69 0.31 0.70 0.69 0.69 0.68 0.64 Attack
0.68 0.30 0.67 0.68 0.67 0.68 0.60 Normal
0.68 0.31 0.68 0.68 0.68 0.68 0.63 Avg

Prefix-preserving (IP) &
Generalization (other
features)

0.51 0.03 0.94 0.51 0.66 0.73 0.75 Attack
0.96 0.48 0.60 0.96 0.74 0.73 0.60 Normal
0.71 0.23 0.79 0.71 0.70 0.73 0.68 Avg

Permutation 0.38 0.05 0.95 0.38 0.54 0.66 0.83 Attack
0.94 0.61 0.33 0.94 0.49 0.66 0.32 Normal
0.52 0.19 0.80 0.52 0.53 0.66 0.70 Avg

Truncation 0.78 0.39 0.98 0.78 0.87 0.69 0.98 Attack
0.60 0.21 0.05 0.60 0.10 0.69 0.04 Normal
0.78 0.39 0.96 0.78 0.85 0.69 0.96 Avg

4 Conclusions

Our method anonymizes network traces using prefix preserving and condensation. It
utilizes a novel perturbation technique with a very strong privacy guarantee and
preserves data utility. In addition, it clusters flows based on their features. Each cluster
contains flows with similar features. Our experiments show that our method performs
better than existing ones in terms of privacy-utility tradeoff. We plan to investigate other
privacy techniques such as differential privacy which has stronger privacy guarantee
against injection attacks. Scalability comparison with other methods and large scale
parallelizable experiments using Hadoop are possible extensions of this work.
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