
A Beam-Search Based Method to Select Classification and Imputation Methods for
Fair and Accurate Data Analysis

Dodavah Mowoh
Information Systems Department

University of Maryland-Baltimore County
Baltimore, Maryland 21250-0002

Email: dmowoh1@umbc.edu

Zhiyuan Chen
Information Systems Department

University of Maryland-Baltimore County
Baltimore, Maryland 21250-0002

Email: zhchen@umbc.edu

Abstract—Members from disadvantaged or minority groups
are often more likely to have missing values in their record.
Imputation is a common approach to deal with missing values
before the data is being analyzed. Several studies have found
interplay of imputation methods and classification methods
with respect to accuracy and fairness: different combinations
of imputation and classification methods will lead to different
accuracy and fairness results. However, it is unclear how to
choose the combination of imputation method and classification
method to optimize the tradeoff between accuracy and fairness.
An exhaustive search approach will be too expensive because
it needs to check all combinations and measure both accuracy
and fairness for every combination. This paper proposes a
beam-search based method to select the optimal combination of
imputation methods and classification methods. An empirical
study was also conducted to compare the performance of the
proposed method to exhaustive search. The proposed solution
achieves the same result as the exhaustive search method but
with much lower search cost.

1. Introduction

Missing data is a common data quality issue as it can
adversely impact the predicted outcomes of machine learn-
ing models, leading to predictions that are biased, missing
context and untrustworthy. Members from disadvantaged
or minority groups are often more likely to have missing
values in their record because they are often more reluctant
to provide sensitive information, or data acquisition may
simply be less complete and systematic for such groups
[1]. Imputation is a commonly used method to address this
issue before data analysis. Several studies [1], [2], [3], [4]
have found that there exists interplay between imputation
methods and subsequent machine learning methods such as
classification methods which leads to different accuracy and
fairness tradeoff. For example, Fernando et al. [1] found
that different imputation methods had different impact on
classifiers’ performance on different data sets.

However, it is unclear how to choose the combination
of imputation method and classification method to optimize
the tradeoff between accuracy and fairness. An exhaustive

search approach will be too expensive because it needs to
check all combinations of imputation method and classifi-
cation method, and measure both accuracy and fairness for
every combination.

This paper proposes a beam-search based method to
select the optimal combination of imputation methods and
classification methods. Beam search can be viewed as a
pruned version of breadth-first search where it only stores
a fixed number of best options in each level of the search
tree. It is more efficient than exhaustive search in terms of
both time and memory (only need to keep a fixed number
of combinations).

This paper has made the following contributions:

1) We proposed a beam search method to find optimal
combination of imputation method and classifica-
tion method.

2) We conducted an empirical study to compare the
performance of the proposed method to exhaustive
search. The proposed solution achieves the same
result as the exhaustive search method but with
much lower search cost.

The rest of the paper is organized as follows. Section 2
summarizes related work. Section 3 presents the proposed
method. Section 4 reports the empirical study and results.
Section 5 concludes the paper.

2. Related Work

There has been a rich body of work on fairness [5],
[6]. Techniques addressing fairness in machine learning can
be divided into three categories: 1) pre-processing tech-
niques that modify the data before model training to remove
discrimination [7]; 2) in-processing techniques that modify
the machine learning process to optimize both for accuracy
and fairness [8]; 3) post-processing techniques that modify
machine learning output to improve fairness [9]. This paper
proposes a method to choose the combination of imputation
methods and classification methods to optimize the balance
between fairness and accuracy. This method does not modify
the existing imputation or machine learning algorithms, so
it differs from existing approaches.

The commonly used imputation methods include statis-
tical methods such as mean/mode, regression, Expectation
Maximization and machine learning based methods such
as decision tree, k-nearest-neighbor (KNN), random forest
[10].

Fernando et. al. [1] found that records with missing
values often have fairer than the rest, so simply dropping
such records may not be appropriate. They also studied
the trade-off between accuracy and fairness when the rows
with missing values are used through imputation. In general
imputation improves accuracy, but its impact on fairness
varies. Martinez-Plumed et. al. presented a similar study in
[2]. Zhang and Long [3] conducted a theoretic study on
assessing fairness using incomplete data. They argue that
a fair algorithm on data without missing values may not
be fair when data with missing values are included. They
provided upper and lower bounds on the fairness estimation
error. However, all these work have not specified how to
select the combination of imputation and machine learning
methods to optimize accuracy-fairness tradeoff.

Wang and Singh [4] proposed pre-processing methods
that use reweighing and resampling based upon the missing
value generation process to reduce bias introduced by miss-
ing values and selection bias. However, this method requires
modification of existing imputation methods. The solution
proposed in this paper searches for the optimal combination
of imputation method and classification method, without
requiring changes to existing methods.

3. Methodology

Section 3.1 introduces some background and notations.
Section 3.2 describes the proposed beam search approach.

3.1. Background

We first introduce some notations. Given a data set D
consisting of n rows and m attributes, where attribute Am is
the target variable (e.g., whether a loan is approved). Each
attribute Ai in a record x ∈ D may have a value v or a
NULL value which means the value is missing.

A set of attributes A1, . . . AP ∈ AP are protective
attributes. For each protected attribute Ai ∈ AP , there is
a set of protected values V Pi. If a row x ∈ D has an
attribute Ai ∈ AP with value in V Pi, then x belongs
to a protected group. For example, we can have race and
gender as protected attributes, and if a record has race equals
Black or gender equals female then the record belongs to
the protected group.

Imputation Methods: Let Ai(x) be the value of attribute
Ai in record x. We assume that there is a set of imputation
methods IMi ∈ IM where each IMi is a function that
takes D as input and returns a data set D′ where there is
a one-to-one mapping between each record x′ ∈ D′ and
a record x ∈ D such that x′ has the same value as x in
attribute Aj if x has not null value on Aj , and if Aj’s value

in x is NULL, the method generates a value based on D,
x, and Aj .

Aj(x
′) =

{
Aj(x), if Aj(X) ̸= NULL.
IMi(D,x′, Aj), if Aj(x) = NULL.

(1)

We consider the following imputation methods in this
paper.

1) Most frequent value: this method replaces missing
values with the most frequent value in the column.

2) K-nearest neighbor imputation: for each record x
which has a missing value in column Aj , this
method finds k nearest neighbors in D that does
not have missing values on Aj , and replaces Aj(x)
with mean of Aj in these nearest neighbors.

3) Deleting rows: this method simply drops any row
with missing values. Strictly speaking this is not
an imputation method but it is commonly used in
dealing with missing values.

Problem Definition: We also have a set of classifiers CLi ∈
CL where each CLi takes each imputed record x′ ∈ D′ and
predicts a target variable value CLi(x

′), x′ ∈ D. We also
use CLi(D

′) to represent the vector of predictions over all
x′ ∈ D′. We typically consider binary classification and one
of the target variable value is considered positive (meaning
favorable outcome) and the other value is considered nega-
tive (meaning unfavorable outcome).

We also assume that there is a set of accuracy mea-
sures AMp(D, IMi, CLj) ∈ AM and fairness measures
FMq(D, IMi, CLj) ∈ FM such that these measures
are computed over D′ = IMi(D) and predicted values
CLj(D

′).
We use F1-score in this paper which equals

Precision×recall
precision+recall . Precision equals TP

TP+FP where TP
is number of true positives, FP is number of false
positives. Recall equals TP

TP+FN where FN is number of
false negatives.

We will use the following fairness measures [5] in this
paper:

1) Equal opportunity: protected and unprotected
groups have the same true positive rate or recall
for the favorable class.

2) Predictive parity: the protected and unprotected
groups have the same Positive Predicted Value or
precision for the favorable outcome.

Both metrics are based on confusion matrix (true posi-
tive, true negative, false positive and false negative) so they
can be computed along with the accuracy measures with
little additional computation effort.

Since usually we do not have 100% fairness results,
these measures usually report the ratio between the protected
and unprotected group and a ratio of one means 100%
fairness. We also bound the fairness measure by one as if
the ratio is over one than there is discrimination against the
unprotected group.

We can combine both accuracy and fairness metrics into
a single score TM as a weighted sum of all metrics:

TM(D, IMi, CLj) =

|AM |∑
p=1

wpAMp(D, IMi, CLj)

+

|AM |+|FM |∑
q=|AM |+1

wqFMq(D, IMi, CLj)

(2)

Definition 1 (Optimize Imputation/Classification). Given
a data set D with a set of protected attributes AP ,
a set of imputation methods IM , a set of classifica-
tion methods CL, the goal is to find an optimal pair
of imputation method and classification method pair
(IM∗, CL∗) where IM∗ ∈ IM and CL∗ ∈ CL
and TM(D, IM∗, CL∗) ≤ TM(D, IMi, CLj) for any
IMi ∈ IM and CLj ∈ CL.

3.2. Beam Search

To evaluate each combination of imputation method and
classification method, one has to impute the data set (includ-
ing both training and testing data set), train the classification
model on the training data set, and then test it on the testing
data set and compute accuracy and fairness metrics. This is
quite time consuming and computationally expensive. So we
want a more efficient search strategy than exhaustive search.

Hyperparameter tuning has been well studied in machine
learning and deep learning [11]. The commonly used meth-
ods include 1) greedy search, which just keeps the local
optimal setting for each parameter; 2) random search, which
checks a number of randomly selected parameter settings;
3) Bayesian optimization, which determines the next hyper-
parameter value based on the previous results of tested
hyper-parameter values.

However, random search and Bayesian optimization are
typically more suitable for very large search spaces where
there are hundreds of possible parameters or parameter
settings. In our setting we have a relatively small number of
imputation methods and classification methods. So we use
a variant of greedy search called beam search.

Algorithm 1 shows the detail steps of the proposed beam
search method. The algorithm first splits the data set D into
training Dtrain and testing Dtest (line 1). It then randomly
selects an imputation method (line 2). Without loss of gen-
erality, let it be IM1. A set k-best-1 is used to keep track of
the best k combinations at phase 1 of the search process and
is initialized to an empty set (line 3). In the first phase of
the search, the algorithm first freezes the imputation method
(IM1) but varies classification methods because accuracy
metrics are often more important in practice. For each such
combination (IM1, CLj) (line 4 to 11), the algorithm calls
a function Evaluate (line 5), which imputes both Dtrain and
Dtest, trains a model M using CLj , and applies the model
on testing set, and computes both accuracy and fairness

Algorithm 1 Beam Search(D, IM,CL, k)
1: Randomly split the data set D into Dtrain and Dtest

2: Randomly select an imputation method IM1

3: Initialize k-best-1 combination to ∅
4: for each classification method CLj ∈ CL do
5: TM(D, IM1, CLj)=Evaluate(IM1, CLj , Dtrain, Dtest)
6: if k-best-1 has fewer than k combinations then
7: Add (IM1, CLj) to k-best-1
8: else if TM(D, IM1, CLj) is higher than TM of any

combination in x ∈ k-best-1 then
9: replace x with (IM1, CLj)

10: end if
11: end for
12: Initialize k-best-2 to ∅
13: for each combination IM1, CLb ∈ k-best-1 do
14: for each imputation method IMi ∈ IM and IMi ̸=

IM1 do
15: TM(D, IMi, CLb)=Evaluate(IMi, CLb, Dtrain, Dtest)
16: if k-best-2 has fewer than k combinations then
17: Add (IMi, CLb) to k-best-2
18: else if TM(D, IMi, CLb) is higher than TM of

any combination in x ∈ k-best-2 then
19: Replace x with (IMi, CLb)
20: end if
21: end for
22: end for
23: return the best combination in k-best-1 ∪ k-best-2
1: function EVALUATE(IMi, CLj , Dtrain, Dtest)
2: Impute Dtrain and Dtest using IMi

3: Train a model M using CLj over imputed Dtrain

4: Apply M to predict target variable on Dtest

5: Compute accuracy metrics and fairness metrics us-
ing results of prediction

6: Compute TM using Equation 2
7: return TM
8: end function

Start

CL1, IM1

CL2, IM1

CL3, IM1

CL4, IM1

CL1, IM2

CL1, IM3

CL3, IM2

CL3, IM3

Figure 1. A beam search example.

metrics based on prediction results. The combined metric
score TM is returned. At line 6, the algorithm checks
whether the k-best-1 set has fewer than k combinations.
If so, it directly adds the combination (IM1, CLj) to k-
best-1 because this combination is among the best k so far.
Otherwise, if the combined score of (IM1, CLj) is higher
than any combination x in k-best-1, this means (IM1, CLj)
is in top k. So the algorithm replaces x with (IM1, CLj)
in k-best-1 (line 9). In this way, the k combinations with
highest TM are preserved.

Figure 1 shows an example of running Algorithm 1.
Let k = 2, in Phase 1 the algorithm checks four combina-
tions and preserve the two combinations (CL1, IM1) and
(CL3, IM1) because they have the best combined scores.

In Phase 2 of beam search, the algorithm first initializes
a set k-best-2 to empty set, which will be used to store
the top k combinations in this phase. For each of the k
preserved combinations in k-best-1 (line 13), the algorithm
freezes the classification method but varies the imputation
methods for each imputation method that is in IM but
is not the imputation method IM1 which is selected in
Phase 1 (line 14). Again, for each considered combination
(CLi, IMj), the method calls Evaluate function (line 15) to
compute the combined score TM . If k-best-2 has fewer than
k combinations, (CLi, IMj) will be added to the set (line
16 and 17). Otherwise, if (CLi, IMj) has higher combined
score than an existing combination x in k-best-2, x will be
replaced with (CLi, IMj) (line 18 and 19). At the end k-
best-2 will have the best k combinations examined in Phase
2. The algorithm then returns the combination with the best
combined score in k-best-1 union k-best-2 (line 23).

In Figure 1, from (CL1, IM1) the method will consider
(CL1, IM2) and (CL1, IM3) because there are three im-
putation methods and IM1 is already used in the preserved
pair. The algorithm examines four more combinations in
Phase 2 and (CL3, IM2) and (CL1, IM2) are the best
combinations at Phase 2. The best combination in k-best-1
and k-best-2 is (CL1, IM1).

Beam search is more efficient than exhaustive search
because it only preserves k best combinations at each step.
A simple greedy search that keeps the best option for each
parameter can be seen as a variant of beam search where k =
1. In general, higher the value of k, the more combinations
beam search will check, and more likely it will find the
best combination. On the other hand, the search cost also
increases. In our setting we find that k = 2 leads to a good
balance between quality of results and search cost.

4. Experiments

Section 4.1 describes setup of the experiments. Section
4.2 presents the results.

4.1. Setup

Data sets: we used three data sets: Adult [12], Titanic [13],
and Recidivism [14]. These are all popular benchmark data
sets used in fairness research.

Data set Attribute # NULLs (percentage)
Adult Workclass 1836 (5.6%)

occupation 1843 (5.7%)
native country 583 (1.8%)

Titanic age 263 (20%)
fare 1 (0.0008%)

cabin 1014 (77%)
Recidivism Gang Affiliated 2215 (8.6%)

Supervision Risk Score First 319 (1.2%)
Percent Days Employed 313 (1.2%)

Jobs Per Year 551 (2.1%)
Supervision Level First 1193 (4.6%)

Prison Offense 2282 (8.8%)
TABLE 1. NUMBER OF MISSING VALUES IN EACH DATA SET

The adult census dataset consists of information about
adults in the United States. It contains attributes such as
age, marital status, gender, native-country and work class
etc. The protected attributes are gender and race. The target
variable is whether someone’s income is over 50k. The
dataset consisted of 32561 rows.

The titanic data set consists of records of Titanic pas-
sengers. The protected attribute is class of passenger and
gender. The target variable is whether the passenger sur-
vived. Unlike other data sets, the female survival rate is
significantly higher than that of male passengers. So we
treat male as the protected group rather than female. Before
imputation the entire dataset consisted of 1309 rows.

The recidivism data set consists of records of inmates.
The target variable is whether the inmate commits recidi-
vism. The protected attributes are race and educational level.
This recidivism dataset consisted of 54 columns, however
only 14 fields were useful for model training. Before impu-
tation the entire dataset consists of 25835 rows.

Table 1 shows the columns with missing values in each
data set and the number of missing values. It can be seen that
Titanic has significant portion of rows with missing values
while Adult and Recidivism have relatively lower portion of
missing values.

Pre-processing: For each data set, we first convert all cate-
gorical attributes into numerical ones using one hot encoding
because some of the classifiers such as K-nearest neighbor
requires numerical input. One hot encoding will represent a
category attribute with t distinct values as t binary attributes
and the attribute representing its current value will be set to
one and other attributes will be set to zero.

Imputation and classification methods: we considered
three imputation methods: deleting rows with missing val-
ues, KNN imputation, and most frequent value. We consid-
ered the following classification methods: logistic regres-
sion, K-nearest-neighbor (KNN), decision tree, and support
vector machine (SVM). We do not use deep learning meth-
ods here because these data sets are relatively small and
deep learning methods work better for large data sets.

Search methods: we considered two search methods: 1)
beam search, which is the proposed method; 2) exhaustive
search, which checks all combinations of imputation meth-

ods and classification methods. As mentioned in Section
3, we use F1-score to measure classification performance
and use equal opportunity and predictive parity to measure
fairness.

In each data set, beam search will first pick an impu-
tation method and then vary the classification methods in
the first step. We set beam width k = 2. For weights in
Equation 2, we set the weight for accuracy and fairness at
the same importance, so the weight for F1-score is 0.5. We
have two fairness metrics (Equal Opportunity and Predictive
Parity) and two protected attributes in each data set. So we
have four fairness measures (for each fairness metric and
protected group combination), and the weight is 0.125 for
each combination.

4.2. Results and Discussion

Search cost: Since search each combination takes about the
same time, we measure the search cost with the number
of combinations of imputation method and classification
method. Since there are four classification methods, beam
search will consider four combinations in Phase 1. We also
assume that it selects deleting rows with missing values
as the default imputation method at Phase 1. Since beam
width k = 2, after Phase 2 two combinations with the
highest combined score are stored. At Phase 2, beam search
freezes the classification method of a stored combination,
and varies the imputation methods. Since there are two
unchecked imputation methods for each stored combination,
Phase 2 will check four more combinations. So in total
beam search will check eight combinations while exhaustive
search will check all twelve combinations (3 by 4 as there
are 3 imputation methods and 4 classification methods).

Results after Phase 1: Next we show the combinations at
Phase 1, the F1 score, and fairness scores for each data set.
Table 2 shows the results. DEL or Delete stands for deleting
rows with missing values, F stands for most frequent value
imputation, and KI stands for k-nearest-neighbor impu-
tation. For classification methods, LR stands for logistic
regression, KNN stands for k-nearest-neighbor, DT stands
for decision tree classification, and SVM stands for support
vector machine. EO stands for equality opportunity fairness
measure, and PP stands for predictive parity. Since we
compute a ratio between a protected group to an unprotected
group, we also specify the protected attribute value for each
group in our results. E.g., Black/White means it is the ratio
between Black and White (race).

Figure 2 shows the combinations considered in each
phase of beam search on Adult. Figure 3 and Figure 4 shows
the combinations considered in each phase of beam search
on Titanic and Recidivism, respectively. The combinations
selected in each phase are boldfaced.

The results show the importance of selecting the
best combination of imputation method and classification
method. For example, the best combination for Titanic is
(Delete, Decision Tree). It has a F1-score of 0.9, and fairness

Start

Delete, Logistic
Regression

Delete,
Decision Tree

Delete, KNN

Delete, SVM

Most Frequent
Value, Logistic
Regression

KNN Imputation,
Logistic

Regression

Most Frequent
Value,

Decision Tree

KNN Imputation,
Decision Tree

Figure 2. Beam Search on Adult Dataset

Start

Delete, Logistic
Regression

Delete,
Decision Tree

Delete, KNN

Delete, SVM

Most Frequent
Value, SVM

KNN Imputation,
SVM

Most Frequent
Value,

Decision Tree

KNN Imputation,
Decision Tree

Figure 3. Beam Search Titanic Dataset

metrics for both gender and class of passengers are over 0.8.
On the other hand, using the combination (Delete, Logistic
regression) only has a F1-score of 0.78, and its fairness
results are around 0.5-0.6 in three out of four measures.

The best two combinations in Phase 1 for Adult are
(Delete, Logistic Regression) and (Delete, Decision Tree).
Both combinations have the highest F1-score, and very high
fairness scores ranging from 0.87 to 1.0. (Delete, Logistic
regression) has slightly lower F1 score than (Delete, De-
cision Tree), but higher fairness scores and its combined
score is also higher than that of the latter. The (Delete,
KNN) combination has lower F1-score and Predictive Parity
for Black group. The (Delete, SVM) combination has lower
Predictive Parity score for female group.

The best two combinations in Phase 1 for Titanic are
(Delete, Decision Tree) and (Delete, SVM). Both combina-
tions have high F1-scores and fairness values. The difference

Data set Combination F1 Protected values EO PP TM
Adult DEL,LR 0.8 Female/Male 1.0 1.0 0.9

Black/White 1.0 1.0
Adult DEL, DT 0.81 Female/Male 1.0 1.0 0.88

Black/White 0.95 0.87
Adult DEL, KNN 0.78 Female/Male 1.0 1.0 0.85

Black/White 0.97 0.71
Adult DEL, SVM 0.80 Female/Male 1.0 0.82 0.87

Black/White 1.0 0.98
Titanic DEL, LR 0.78 Male/Female 0.54 0.62 0.72

Third class/First class 0.94 0.59
Titanic DEL,DT 0.9 Male/Female 0.85 0.87 0.92

Third class/First class 1.0 1.0
Titanic DEL, KNN 0.73 Male/Female 0.98 0.60 0.78

Third class/First class 1.0 0.71
Titanic DEL,SVM 0.89 Male/Female 1.0 0.75 0.91

Third class/First class 1.0 0.96
Recidivism DEL,LR 0.71 Black/White 0.97 0.96 0.83

Less than High School/Some college 0.91 0.93
Recidivism DEL,DT 0.69 Black/White 0.97 0.96 0.81

Less than High School/Some college 0.92 0.88
Recidivism DEL, KNN 0.60 Black/White 0.98 0.94 0.77

Less than High School/Some college 0.96 0.88
Recidivism DEL, SVM 0.57 Black/White 0.99 0.69 0.73

Less than High School/Some college 0.87 0.99
TABLE 2. RESULTS FOR COMBINATIONS IN PHASE 1

Start

Delete, Logistic
Regression

Delete,
Decision Tree

Delete, KNN

Delete, SVM

Most Frequent
Value, Logistic
Regression

KNN Imputation,
Logistic

Regression

Most Frequent
Value,

Decision Tree

KNN Imputation,
Decision Tree

Figure 4. Beam Search on Recidivism Dataset

between these two combinations is quite small. The other
two combinations have significantly lower F1 scores.

For the Recidivism data set, the best combinations in
Phase 1 are (Delete, Logistic regression) and (Delete, De-
cision Tree). Both combinations have high F1-scores and
fairness scores.

Results after Phase 2: Table 3 reports the two best combi-
nations for each data set after Phase 2. We varied imputation
methods for each combination selected in Phase 1. Please
note that all the best two combinations in phase 2 happen
to use most frequent value imputation.

In Phase 2, the best two combinations for Adult are

(Most frequent value, Decision Tree) and (Most Frequent
Value, Logistic Regression). But both combinations are no
better than the two best combinations found in Phase 1.
The best combination in both phases is (Delete, Logistic
Regression) from Phase 1 with a combined score of 0.9.

In Phase 2, the best two combinations for Titanic are
(Most frequent value, Decision Tree) and (Most frequent
value, SVM). However, both combinations are no better
than the two combinations stored in Phase 1. The best
combination in both phases is (Delete, Decision Tree) with
a combined score (TM) of 0.92.

For Recidivism, the best two combinations in Phase 2
are (Most frequent value, DT) and (Most frequent value, Lo-
gistic regression). The best combination overall is (Delete,
Logistic regression) returned in Phase 1 with a combined
score of 0.83.

We also observed that in our experiments the beam
search always returns the same combination as the exhaus-
tive search. So it does not compromise quality of results.

Discussion: The experimental results showed that differ-
ent combinations of imputation methods and classification
methods have different accuracy and fairness performance.
So there is a need to find the optimal combination. The
results also showed that the proposed beam search approach
is quite effective. It finds the best combination but is more
efficient than exhaustive search.

We also find that deleting rows with missing values is
the preferred imputation method in all three data sets. A
possible reason is that existing imputation methods may still
introduce bias because they are either statistics based or
machine learning based, and often rely more on records from
unprotected groups because unprotected groups are often
larger. Deleting rows with missing values will not introduce

Data set Combination F1 Protected values EO PP TM
Adult F , DT 0.82 Female/Male 1.0 0.82 0.87

Black/White 0.89 1.0
Adult F , LR 0.81 Female/Male 1.0 0.93 0.88

Black/White 0.88 1.0
Titanic F,DT 0.91 Male/Female 0.84 0.86 0.91

Third class/First class 0.88 1.0
Titanic F, SVM 0.76 Male/Female 0.95 1.0 0.87

Third class/First class 1.0 1.0
Recidivism F,DT 0.69 Black/White 0.98 0.96 0.81

Less than High School/Some college 0.89 0.91
Recidivism F,LR 0.7 Black/White 0.96 0.97 0.82

Less than High School/Some college 0.90 0.94
TABLE 3. RESULTS FOR BEST TWO COMBINATIONS IN PHASE 2

Classification
Method

Selected in Phase 1 Selected in Phase 2 Overall

Decision
Tree

3 3 1

Logistic
Regression

2 2 2

SVM 1 1 0
KNN 0 0 0

TABLE 4. NUMBER OF TIMES A CLASSIFIER IS SELECTED IN TOP k IN
EACH PHASE OF BEAM SEARCH AND AS FINAL BEST COMBINATION.

more bias.
Table 4 shows the number of times a classifier is selected

as top k in each phase of beam search and as the final best
combination.

The results showed that decision tree appears most often
in top k combinations of each search phase. It is in the top
2 list in both phases and in all three data sets. One possible
reason for the good performance of decision tree is that
it is a very flexible model and does not make too much
assumptions about data distribution. It has high F1-scores
in all three data sets and also high fairness scores.

The other classification methods’ performance seems to
be more data dependent. Logistic regression works well in
Adult and Recidivism data sets, and is selected in the best
combination overall in both data sets. But it performs poorly
in Titanic data set (it has the lowest combined score in Phase
1). One possible reason is logistic regression assumes that
there is a linear relationship between independent variables
and log-odds of the target variable. This assumption may
hold in Adult and Recidivism but not in Titanic.

SVM has high F1 scores in Adult and Titanic and is
selected as top k in both phases on Titanic data set, but has
low F1 scores in Recidivism data set. KNN only has high
F1 score in Adult data set, and has low Predictive Parity
scores for Black. So it is never selected as top k.

As for the overall best combination, Logistic Regression
is selected twice (in Adult and Recidivism data sets) and
Decision Tree is selected once (in Titanic data set). However,
the performance of Decision Tree seems to be more stable
as the combination with Decision Tree just has a slightly
worse combined score than the best combination in Adult
and Recidivism. The combination with Logistic Regression
on the other hand has much lower combined score in Titanic
compared to the best combination.

5. Conclusion

Missing values are often ignored in research on fairness
in machine learning. This paper proposes a beam search
method to find the optimal combination of imputation meth-
ods and classification methods in both accuracy and fairness,
without the need to modify the imputation or classification
methods. We conducted an empirical study on three data
sets and the results showed that the proposed method always
found the optimal combination but was more efficient than
exhaustive search.

We also found that simply deleting rows with missing
values often lead to better accuracy fairness tradeoff, pos-
sibly because imputation methods often introduce new bias
to the data. Decision tree works well in all cases in our
study, possibly due to its flexibility. The other classifiers’
performance vary more with the data sets. We plan to
conduct experiments on more data sets in future.

References

[1] M.-P. Fernando, F. Cèsar, N. David, and H.-O. José, “Missing the
missing values: The ugly duckling of fairness in machine learning,”
International Journal of Intelligent Systems, vol. 36, no. 7, pp. 3217–
3258, 2021.

[2] F. Martı́nez-Plumed, C. Ferri, D. Nieves, and J. Hernández-Orallo,
“Fairness and missing values,” arXiv preprint arXiv:1905.12728,
2019.

[3] Y. Zhang and Q. Long, “Assessing fairness in the presence of missing
data,” Advances in neural information processing systems, vol. 34, pp.
16 007–16 019, 2021.

[4] Y. Wang and L. Singh, “Analyzing the impact of missing values and
selection bias on fairness,” International Journal of Data Science and
Analytics, vol. 12, no. 2, pp. 101–119, 2021.

[5] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan,
“A survey on bias and fairness in machine learning,” ACM Computing
Surveys (CSUR), vol. 54, no. 6, pp. 1–35, 2021.

[6] S. Caton and C. Haas, “Fairness in machine learning: A survey,” ACM
Computing Surveys, vol. 56, no. 7, pp. 1–38, 2024.

[7] Z. Zhang, S. Wang, and G. Meng, “A review on pre-processing meth-
ods for fairness in machine learning,” in The International Conference
on Natural Computation, Fuzzy Systems and Knowledge Discovery.
Springer, 2022, pp. 1185–1191.

[8] M. Wan, D. Zha, N. Liu, and N. Zou, “In-processing modeling tech-
niques for machine learning fairness: A survey,” ACM Transactions
on Knowledge Discovery from Data, vol. 17, no. 3, pp. 1–27, 2023.

[9] M. Hort, Z. Chen, J. M. Zhang, M. Harman, and F. Sarro, “Bias
mitigation for machine learning classifiers: A comprehensive survey,”
ACM Journal on Responsible Computing, vol. 1, no. 2, pp. 1–52,
2024.

[10] W.-C. Lin and C.-F. Tsai, “Missing value imputation: a review and
analysis of the literature (2006–2017),” Artificial Intelligence Review,
vol. 53, pp. 1487–1509, 2020.

[11] L. Yang and A. Shami, “On hyperparameter optimization of machine
learning algorithms: Theory and practice,” Neurocomputing, vol. 415,
pp. 295–316, 2020.

[12] B. Becker and R. Kohavi, “Adult,” UCI Machine Learning Repository,
1996, DOI: https://doi.org/10.24432/C5XW20.

[13] T. C. Frank E. Harrell Jr., “Titanic dataset,” oct 2017. [Online].
Available: https://www.openml.org/d/40945

[14] J. Larson, S. Mattu, L. Kirchner, and J. Angwin, “How we analyzed
the compas recidivism algorithm,” ProPublica (5 2016), vol. 9, no. 1,
pp. 3–3, 2016.

