
Analyzing Attack Strategies Against Rule-Based Intrusion
Detection Systems

Pooja Parameshwarappa
University of Maryland, Baltimore

County
Baltimore, MD

poojap1@umbc.edu

Zhiyuan Chen
University of Maryland, Baltimore

County
Baltimore, MD

zhchen@umbc.edu

Aryya Gangopadhyay
University of Maryland, Baltimore

County
Baltimore, MD

gangopad@umbc.edu

ABSTRACT
Intrusion Detection Systems (IDS) have been widely used to detect
cyber attacks in Cyber-Physical Systems (CPS). However, attackers
can often adapt their attacking strategies to evade detection. Many
commercial IDS are rule-based systems. This paper analyzes the
possible attacking strategies against a widely used rule-based IDS,
Snort, using hyper graph model and clustering. We present initial
results and discuss some techniques to prevent such attacks.

CCS CONCEPTS
• Security andprivacy→ Intrusion detection systems; •Com-
puting methodologies→ Machine learning;

KEYWORDS
Intrusion Detection Systems, Evasion, Indiscriminate Attack, Tar-
geted Attack
ACM Reference Format:
Pooja Parameshwarappa, Zhiyuan Chen, and Aryya Gangopadhyay. 2018.
Analyzing Attack Strategies Against Rule-Based Intrusion Detection Sys-
tems. In Proceedings of Workshop on Analytics for Security in Cyber Physical
Systems (ASCPS’18). ASCPS, Varanasi, India, 4 pages.

1 INTRODUCTION
CPS are an integration of Information Technology (IT) systems and
physical components [5, 12]. There are numerous vulnerabilities
associated with CPS [5]. IDS [9] have been widely used to detect
attacks in the cyber network of the CPS [4, 20]. IDS are used to
monitor a computer system or a network of systems and detect ma-
licious activities. IDS can be implemented as a rule-based system or
a machine learning based system. Rule-based systems are composed
of a set of signatures, the network traffic is parsed and matched
against these signatures, and actions are taken when there is a
match [7]. Machine learning based IDS are of two types [16], one
based on misuse detection and the other based on anomaly detec-
tion. In misuse detection, machine learning algorithms are trained
using labeled data to distinguish between benign and malicious
traffic. In anomaly detection, normal network traffic is modeled
and network packets that deviate from such a model are considered
to be malicious and necessary actions are taken.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASCPS’18, January 2018, Varanasi, India
© Copyright held by the owner/author(s).

The complexities of IDS are constantly increasing, and so is the
sophistication of the adversaries trying to evade IDS. There has
been research on vulnerabilities of machine learning based IDS
[11], evasions and attacks corresponding to these vulnerabilities
[2], and measures to make systems robust in order to counter such
attacks [10, 15]. There are also more recent studies on adversarial
attacks against deep learning models [6, 13]. However, because of
their commercial success, most IDS are rule-based systems [7]. One
additional benefit of rule-based IDS is that they can often indicate
the exact vulnerability being exploited and thus it is easier to come
up with mitigation solutions.

Our study focuses on identifying potential attack strategies
against rule-based IDS. We discuss two types of attacks [2]: targeted
attack, in which an adversary’s goal is to evade detection for a spe-
cific attack, and indiscriminate attack, in which the adversary’s goal
is to evade detection for any attack. These attacks are explained
in detail in the context of an IDS in the subsequent sections. Our
contribution can be summarized as follows:

(1) This paper proposed a method based on minimum-edge-
cover to analyze the vulnerability of a rule-based IDS for
indiscriminate attacks.

(2) This paper proposed a rule-clusteringmethod to help prevent
targeted attacks against a rule-based IDS.

(3) This paper presented some preliminary experimental results.

This paper is organized as follows. Section 2 explains theMinimum-
edge-cover method and the Rule-clustering method. It is followed
by experiments and initial results in Section 3. Section 4 presents
the future work and conclusion.

2 METHODS
This paper uses the Snort IDS [3] for demonstration purposes. The
Detection Engine component of the Snort analyzes the network
packets using the rules and identifies suspicious activities [8]. A
Snort rule has two major components: the rule header and the rule
option. A sample rule and the components are explained below.

alert tcp EXTERNAL_NET HTTP_PORTS -> HOME_NET any
(msg:"MALWARE-CNC Win.Trojan.BlackRev cnc allhttp
command"; flow:to_client,established;
content:allhttp|7C|; depth:8;...)

The rule header contains the rule action (alert), protocol (tcp), source
IP (EXTERNAL_NET), source port (HTTP_PORTS), direction (-
>), destination IP (HOME_NET) and destination port (any). Here,

ASCPS’18, January 2018, Varanasi, India P. Parameshwarappa et al.

HOME_NET is a user defined variable representing IPs of machines
to be protected and EXTERNAL_NET is a variable representing IPs
of other machines (e.g., those not in HOME_NET).

Rule options include a set of key value pairs. For example, in the
above mentioned rule, msg, flow, content and depth represent keys,
and "MALWARE-CNC Win.Trojan.BlackRev cnc allhttp command",
to_client, established, allhttp|7C| and 8 represent the corresponding
values. For a given packet, if all the conditions of a rule match, then
the corresponding action (here an alert) is triggered.

In an indiscriminate attack, the attacker tries to evade as many
rules as possible. For example, if most of the rules contain the rule
header EXTERNAL_NET -> HOME_NET, it might be possible to
compromise an internal machine which belongs to HOME_NET to
launch an attack. In a targeted attack, an adversary tries to evade a
specific rule by modifying the packets such that one or more rule-
options are not satisfied. For example, it might be possible to insert
meaningless bytes in the content to evade the content rule option.
In the next sub-sections we explain how minimum-edge-cover and
clustering can be used for analyzing these attacks.

2.1 Minimum-Edge-Cover Method
Given a set of Snort rules, Minimum-Edge-Cover method analyzes
vulnerability of these rules to indiscriminate attacks. This method
first represents Snort rules using hyper graph.

A hyper graph [23] is a generalization of a graph, which contains
a set of vertices X and subsets of X , E known as hyper edges and is
denoted by (X ,E). Figure 1 shows a hyper graph with five vertices
X = {v1,v2,v3,v4,v5}, and three hyper edges E = {e1, e2, e3} =
{{v1,v2,v3,v4}, {v2,v3,v4,v5}, {v2,v4}}.

v1
v2

v3

v4

v5
e1

e3

e2

Figure 1: Hyper graph

Minimum edge cover of a graphG is a set of edges Ec , such that,
each vertex inG is incident with at least one of the edges in the set
[14]. In Figure 1, the minimum edge cover is {e1, e2}.

For analyzing the Snort rules, each rule (rule ID) is represented
as a vertex, and each condition (rule header and rule options) is
represented as a hyper edge. A hyper edge contains all the rule IDs
with that condition. Minimal set of conditions that covers all the
vertices (rules) or a relevant set of vertices (rules) provides insight
into the possible attacking strategies. Suppose an adversary wants
to make all the rules or a subset of rules in the rule set useless,
the adversary needs to modify every condition in the minimum

edge cover. For example, in Figure 1, suppose the adversary wants
to evade all the rules. The minimum edge cover is {e1, e2}. So, the
adversary just needs to modify the conditions corresponding to e1
and e2. Finding minimum edge cover is NP-hard but there exists
fast approximation algorithms.

2.2 Rule-Clustering Method
For targeted attack, adversary needs to evade detection by the IDS
for a specific attack (e.g., an attack to exploit a certain vulnerability).
Adversary typically uses a variant of that attack to achieve this.
However, it is difficult to know all possible variants of attacks. On
the other hand, every Snort rule is used to detect a specific attack
so we can look at similar rules rather than similar attacks.

Rule-clustering groups similar rules together, so one can view
rules in the same cluster as different variants of the same attack.
One can use these clusters to generalize the rules [1] and create
variants of the rules that are not in the IDS in order to capture
zero-day attacks.

For this study, hierarchical agglomerative clustering [18] was
used to cluster the rules, in which, each rule is in its own cluster to
begin with, and clusters are merged based on the distance, as one
moves up the hierarchy. A customized distance measure involving
Levenshtein distance [21] was used, which is explained below. Only
the rule options were used for the distance computation. Consider
the following two rules as an example for the distance computation.

alert tcp HOME_NET any -> EXTERNAL_NET [82,1087]
(msg:MALWARE-BACKDOOR Win.Backdoor.Rebhip.A
variant outbound connection type B;
flow:to_server,established; content:|70 C0 E4 28 02 26 11
3C 63 2F 8F 76 B4 55 DA 05|; fast_pattern:only;
metadata:impact_flag red, policy security-ips drop;
classtype:trojan-activity; sid:21969; rev:5;)

alert tcp HOME_NET any -> EXTERNAL_NET [82,1087]
(msg:MALWARE-BACKDOOR Win.Backdoor.Rebhip.A
variant outbound connection type A;
flow:to_server,established; content:32|7C 0A|; depth:4;
metadata:impact_flag red, policy security-ips drop;
classtype:trojan-activity; sid:21968; rev:5;)

• The rule options are converted to key-value format. Some
keys such as sid (rule ID) and rev (revision number) are not
considered, since their contribution to the measure of the
difference between the rules is not very significant
• Union of the keys (msg, flow, content, fast_pattern, metadata,
classtype, depth) and their intersection (msg, flow, content,
metadata, classtype) are computed
• key_distance is computed as shown below.
key_distance = lenдth(union(k1,k2))−lenдth(intersect (k1,k2))
In the above example, key_distance = 2
• For each key that is common to both the rules, Levenshtein
distance between the corresponding values is computed
(value_distance). In this example, there are 5 common keys,

Analyzing Attack Strategies Against Rule-Based Intrusion Detection Systems ASCPS’18, January 2018, Varanasi, India

Table 1: Coverage for Rule Headers

$HOME_NET any − > $EXTERNAL_NET $HTTP_PORTS 2487
$HOME_NET any − > $EXTERNAL_NET any 346
$HOME_NET any − > $EXTERNAL_NET 25 211
$EXTERNAL_NET $HTTP_PORTS − > $HOME_NET any 171
$EXTERNAL_NET $FILE_DATA_PORTS − > $HOME_NET any 164
$EXTERNAL_NET any − > $HOME_NET any 157
$EXTERNAL_NET any − > $HOME_NET $HTTP_PORTS 128
$EXTERNAL_NET any − > $SMTP_SERVERS 25 120

and the Levenshtein distance between the corresponding
values are: 1, 0, 43, 0, 0
• Final distance is computed as

f inal_distance = w1·key_distance+w2·sum(value_distance) =
46, wherew1 andw2 are weights. In the experiments,w1 =
w2 = 1.

3 EXPERIMENTS AND RESULTS
3.1 Hyper Graph Representation of the Rules
For this experiment, malware rules from Snort rule version 2.9.9.0
[19] were used. The rules directory consists of a set of files, where
each file has rules with common characteristics. We combined four
malware files (backdoor, cnc, tools and other) and there were 5030
rules in total. The experiments were conducted using R statistical
environment on a computer with 8 GB RAM and 2.5 GHz processor
running the Windows 10 operating system.

For the first experiment, each rule ID was represented as a vertex
and each rule header was represented as a hyper edge that included
all the rules (rule IDs) with that header. Table 1 shows the rule
headers for which the coverage (cardinality of the hyper edge, in
other words, number of rules associated with a certain rule header)
was greater than 100 rules. Figure 2 shows the cumulative coverage
(number of rules covered by more than one rule header. Eg: the first
two headers in Table1 together cover 2833 rules). For the second
experiment, each rule ID was represented as a vertex and each
rule option was represented as a hyper edge. Table 2 shows the
coverage for certain relevant rule options and Figure 3 shows their
cumulative coverage.

The results show that a small number of conditions have very
high coverage, which indicates a potential for indiscriminate at-
tacks. For example, we found that 96% of rules use EXTERNAL_NET
in rule header. So attackers can compromise an internal machine
and launch attacks from that machine, which will evade the detec-
tion of 96% of rules. This means that in real life users should be
careful at setting EXTERNAL_NET. Setting it to represent IPs not
in HOME_NET will lead to fewer false alarms but adversary may
launch the above evasion attack. Setting it to represent any IP (both
in or not in HOME_NET) will prevent such attacks, but may lead
to more false alarms.

As another example, the rule option depth:4, indicates that the
IDS only scans the first 4 bytes of the payload and the attackers
may insert meaningless bytes in the beginning and evade the rules
with this rule option if insertion of these bytes does not change the
meaning of the packet.

Table 2: Coverage for Rule Options

flow:to_server,established 3935
distance:0 1543
flow:to_client,established 763
flowbits:noalert 303
content:POST 242
depth:4 178
depth:5 159
distance:1 136
depth:8 127
depth:6 122

Figure 2: Cumulative Coverage for Rule Headers

Figure 3: Cumulative Coverage for Rule Options

3.2 Clustering of Rules
For this experiment, for demonstration purposes, first 200 rules
fromfile-office rules were considered. Agglomerative clusteringwas
performed using the the distance measure mentioned in Section 2.2.
The computation of the initial distance matrix took 27.82 seconds.
The distance matrix was provided as input to the hclust function
in R [17], and the time taken for clustering was 0.72 seconds. For
different number of clusters, variance explained [22] was computed

ASCPS’18, January 2018, Varanasi, India P. Parameshwarappa et al.

and is shown in Fig 4. For k=125, sample rules from one of the
clusters is shown below.
alert tcp EXTERNAL_NET any -> SMTP_SERVERS 25 (msg:"FI
LE-OFFICE Microsoft Office Excel with embedded Flash file
attachment attempt"; flow:to_server,established; flowbits:
isset,file.xls; content:"RldTC";fast_pattern:only;
pcre:"RldTC[ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqr
stuv][A-Za-z0-9\\x2b\x2f][A-Za-z0-9\\x2\x2f]/";metadata:
service smtp; classtype:attempted-user; sid:19067; rev:7;)

alert tcp EXTERNAL_NET any -> SMTP_SERVERS 25 (msg:"FI
LE-OFFICE Microsoft Office Excel with embedded Flash file
attachment attempt"; flow:to_server,established;flowbits:
isset,file.xls; content:"Q1dTC";fast_pattern:only;
pcre:"Q1dTC[ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqr
stuv][A-Za-z0-9\\x2b\x2f][A-Za-z0-9\\x2\x2f]/";metadata:
service smtp; classtype:attempted-user; sid:19070; rev:7;)

The above rules in the same cluster are very similar. They only
differ on content ("RldTC" vs. "Q1dTC") and first part of pcre (signa-
ture). It can help in generalization [1] of the rules which can be used
to capture new attacks. For example, the string RldTC and QldTC in
the content and pcre in the above example could be replaced with
*ldTC to capture similar attacks.

Figure 4: Variance Explained vs Number of Clusters

4 CONCLUSION
In this paper, we analyzed attacks against rule-based IDS. We exam-
ined two types of attacks and presented the minimum-edge-cover
method and a clustering technique with custom distance measure
to analyze the strategies of the adversaries. As a part of the future
work, we intend to work on techniques for generalizing the rules
by using the clusters from the proposed method.

REFERENCES
[1] Uwe Aickelin, Jamie Twycross, and Thomas Hesketh-Roberts. 2007. Rule gener-

alisation in intrusion detection systems using SNORT. International Journal of
Electronic Security and Digital Forensics 1, 1 (2007), 101–116.

[2] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J Doug
Tygar. 2006. Can machine learning be secure?. In Proceedings of the 2006 ACM
Symposium on Information, computer and communications security. ACM, 16–25.

[3] Jay Beale, Andrew R Baker, and Joel Esler. 2007. Snort: IDS and IPS toolkit.
Syngress.

[4] Alvaro Cardenas, Saurabh Amin, Bruno Sinopoli, Annarita Giani, Adrian Perrig,
and Shankar Sastry. 2009. Challenges for securing cyber physical systems. In
Workshop on future directions in cyber-physical systems security, Vol. 5.

[5] Alvaro A Cárdenas, Saurabh Amin, and Shankar Sastry. 2008. Research Chal-
lenges for the Security of Control Systems.. In HotSec.

[6] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and
Patrick McDaniel. 2016. Adversarial perturbations against deep neural networks
for malware classification. arXiv preprint arXiv:1606.04435 (2016).

[7] Sailesh Kumar. 2007. Survey of current network intrusion detection techniques.
Washington Univ. in St. Louis (2007).

[8] Vinod Kumar and Om Prakash Sangwan. 2012. Signature based intrusion de-
tection system using SNORT. International Journal of Computer Applications &
Information Technology 1, 3 (2012), 35–41.

[9] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan Tung.
2013. Intrusion detection system: A comprehensive review. Journal of Network
and Computer Applications 36, 1 (2013), 16–24.

[10] Wei Liu and Sanjay Chawla. 2010. Mining adversarial patterns via regularized
loss minimization. Machine learning 81, 1 (2010), 69–83.

[11] Daniel Lowd and Christopher Meek. 2005. Adversarial learning. In Proceedings
of the eleventh ACM SIGKDD international conference on Knowledge discovery in
data mining. ACM, 641–647.

[12] Robert Mitchell and Ing-Ray Chen. 2014. A survey of intrusion detection tech-
niques for cyber-physical systems. ACM Computing Surveys (CSUR) 46, 4 (2014),
55.

[13] Nicolas Papernot, PatrickMcDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. 2016. The limitations of deep learning in adversarial
settings. In Security and Privacy (EuroS&P), 2016 IEEE European Symposium on.
IEEE, 372–387.

[14] Sriram Pemmaraju and Steven Skiena. 2003. Computational Discrete Mathematics:
Combinatorics and Graph Theory with Mathematica®. Cambridge university
press.

[15] Roberto Perdisci, Guofei Gu, and Wenke Lee. 2006. Using an ensemble of one-
class svm classifiers to harden payload-based anomaly detection systems. In Data
Mining, 2006. ICDM’06. Sixth International Conference on. IEEE, 488–498.

[16] Leonid Portnoy, Eleazar Eskin, and Sal Stolfo. 2001. Intrusion detection with
unlabeled data using clustering. In In Proceedings of ACM CSS Workshop on Data
Mining Applied to Security (DMSA-2001. Citeseer.

[17] R Core Team. 2016. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.
org/

[18] Lior Rokach and Oded Maimon. 2005. Clustering methods. In Data mining and
knowledge discovery handbook. Springer, 321–352.

[19] Snort Rules. [n. d.]. ([n. d.]). Retrieved November 13, 2017 from https://www.
snort.org/downloads/registered/snortrules-snapshot-2990.tar.gz

[20] Yanan Sun, Xiaohon Guan, Ting Liu, and Yang Liu. 2013. A cyber-physical moni-
toring system for attack detection in smart grid. In Computer Communications
Workshops (INFOCOM WKSHPS), 2013 IEEE Conference on. IEEE, 33–34.

[21] Robert A Wagner and Michael J Fischer. 1974. The string-to-string correction
problem. Journal of the ACM (JACM) 21, 1 (1974), 168–173.

[22] Xiaobei Zhao and Albin Sandelin. [n. d.]. CRAN GMD: UserâĂŹs Guide (0.3. 3).
([n. d.]).

[23] Alexander Aleksandrovich Zykov. 1974. Hypergraphs. Russian Mathematical
Surveys 29, 6 (1974), 89–156.

https://www.R-project.org/
https://www.R-project.org/
https://www.snort.org/downloads/registered/snortrules-snapshot-2990.tar.gz
https://www.snort.org/downloads/registered/snortrules-snapshot-2990.tar.gz

	Abstract
	1 Introduction
	2 Methods
	2.1 Minimum-Edge-Cover Method
	2.2 Rule-Clustering Method

	3 Experiments and results
	3.1 Hyper Graph Representation of the Rules
	3.2 Clustering of Rules

	4 Conclusion
	References

