
Storing XML (with XSD) in SQL Databases:
Interplay of Logical and Physical Designs

Surajit Chaudhuri, Member, IEEE, Zhiyuan Chen, Member, IEEE, Kyuseok Shim, Member, IEEE, and

Yuqing Wu, Member, IEEE

Abstract—Much of business XML data has accompanying XSD specifications. In many scenarios, “shredding” such XML data into a

relational storage is a popular paradigm. Optimizing evaluation of XPath queries over such XML data requires paying careful attention

to both the logical and physical designs of the relational database where XML data is shredded. None of the existing solutions has

taken into account physical design of the generated relational database. In this paper, we study the interplay of logical and physical

design and conclude that 1) solving them independently leads to suboptimal performance and 2) there is substantial overlap between

logical and physical designs: some well-known logical design transformations generate the same mappings as physical design.

Furthermore, existing search algorithms are inefficient to search the extremely large space of logical and physical design

combinations. We propose a search algorithm that carefully avoids searching duplicated mappings and utilizes the workload

information to further prune the search space. Experimental results confirm the effectiveness of our approach.

Index Terms—XML, physical design, relational databases.

�

1 INTRODUCTION

XML has become the standard for exchanging and
querying information over the Web. Furthermore,

much of business XML data increasingly relies on accom-
panying XSD schema specifications [1] to ensure mean-
ingful exchanges of information. Languages such as XPath
(http://www.w3.org/TR/xpath) and XQuery have been
proposed for querying XML data. One approach toward
supporting XPath1 over such XML data is building a native
XML repository [2]. Alternatively, in many scenarios,
“shredding” such XML data (with its associated XSD
specification) into a relational database is an attractive
alternative for storage as it can take the full advantage of
mature relational database technology [8], [4]. The latter
approach requires accomplishing the following two tasks to
ensure efficient execution of XPath queries over XML data:
1) design the logical mapping from XML schema to
relational schema and 2) select physical design structures
(i.e., indexes, materialized views, and partitioning) of the
relational database where XML is shredded.

There has been much work on the logical design step [5],

[9], [10], [12], [13], [15], [16], [18], [19], [20], [22]. However,

past work has ignored the role of physical design at the

relational level in the above optimization steps. This has

two important ramifications. First, solving logical and

physical designs independently leads to suboptimal query
performance. Second, taking physical design into account in

fact influences the definition of the appropriate search space
for logical designs as well as how this space can be

effectively searched. We begin by demonstrating each of

these issues.

1.1 Suboptimal Performance

We use DBLP (http://dblp.uni-trier.de/xml) data as an

example. DBLP stores publications in conference proceed-
ings with the following subelements: booktitle, title,

year, several authors, and pages. The schema of the
data is shown in Fig. 1a. Using the hybrid-inlining mapping

proposed in [20], publications are mapped to the following

relations:

Mapping 1

inproc(ID, PID, title, booktitle, year,

pages)

inproc_author(ID, PID, author)

The PID column in inproc_author table is a foreign

key column that references the ID column in inproc

table. An XPath query that returns the title, year, and

author of SIGMOD papers can be translated to the

following SQL statement using the sorted-outer union
approach proposed in [21].

SELECT I.ID, title, year, NULL

FROM inproc I

WHERE booktitle = ‘SIGMOD CONFERENCE’

UNION ALL

SELECT I.ID, NULL, NULL, author

FROM inproc I, inproc_author A

WHERE booktitle = ‘SIGMOD CONFERENCE’

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 12, DECEMBER 2005 1

. S. Chaudhuri is with the Microsoft Research, One Microsoft Way,
Redmond, WA 98052. E-mail: surajitc@microsoft.com.

. Z. Chen is with the Information Systems Department, University of
Maryland, Baltimore County, Baltimore, MD 21250.
E-mail: zhchen@umbc.edu.

. K. Shim is with the School of Electrical Engineering and Computer Science,
Seoul National University, Korea. E-mail: shim@ee.snu.ac.kr.

. Y. Wu is with the School of Informatics, Indiana University, Bloomington,
IN 47405. E-mail: yuqwu@indiana.edu.

Manuscript received 22 Dec. 2003; revised 30 Nov. 2004; accepted 8 June
2005; published online 19 Oct. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0265-1203.

1. In this paper, we focus on XPath since, at this time, it is the most
widely used subset of query languages.

1041-4347/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

AND I.ID = A.PID

ORDER BY I.ID

Since most publications have a small number of authors,
we consider the following relational mapping where the
first five authors of each publication are stored in the
inproc relation (how we choose five will be discussed in
Section 4.6), and the remaining authors are stored in the
inproc_author relation.

Mapping 2

inproc(ID, PID, title, booktitle, year,

author_1, ..., author_5, pages)

inproc_author(ID, PID, author)

Now, the SQL query becomes the following:

SELECT I.ID, title, year, author_1, ...,

author_5, null

FROM inproc I

WHERE booktitle = ‘SIGMOD CONFERENCE’

UNION ALL

SELECT I.ID, null, null, null, ..., null, author

FROM inproc I, inproc_author A

WHERE booktitle = ‘SIGMOD CONFERENCE’

AND I.ID = A.PID

ORDER BY I.ID

We ran both SQL queries on Microsoft SQL Server

2000 (the settings will be described in Section 5.1), both

with the indexes and materialized views recommended

by the Index Tuning Wizard of SQL Server [2], [7]. The

data size is 100 MB and the space limit for both indexes,

views, and data is set to 300 MB. The Tuning Wizard

recommended several indexes for both mappings. The

execution time using Mapping 2 was 0.25 second, and the

time using Mapping 1 was 5.1 second. Under Mapping 2,

the inproc_author relation is almost empty because

most publications have no more than five authors. Thus,

index-nested-loop join is used to join inproc and

inproc_author under Mapping 2, and the join cost is

much cheaper than the join cost under Mapping 1 where

hash join is used. On the other hand, the inproc relation

in Mapping 2 is larger than the inproc relation in

Mapping 1, but a covering index2 is recommended. Thus,

the cost to retrieve title and year (the SQL before

UNION ALL) is about the same under both mappings.
However, without indexes and materialized views, using

Mapping 2 took 27 seconds and using Mapping 1 took
21 seconds because hash join was used under both
mappings and it was more expensive to scan inproc

under Mapping 2. Thus, if we first select the logical
mapping without considering physical design, and then
optimize the physical design of the selected mapping, we
will wrongly select Mapping 1, leading to 20 times worse
performance.

1.2 Definition of Logical Space

Previous work has been proposed several mapping trans-
formations [5], [10], [18], [20] to represent different logical
design options. However, in proposing the space of such
mappings, the past work ignored the rich space of physical
design. If the physical design space is not considered, then
the logical design space gets inappropriately defined. As an
illustration, consider the previous example. A mapping
exploiting outlining transformation as proposed in [5], [10],
[20] splits the inproc relation into two partitions, one
consisting of columns referred in the query, the other
consisting of the rest of other columns. This mapping
achieves the same effect as a covering index under
Mapping 1 and, thus, is in fact subsumed completely by
physical database design. In this paper, we define that a
logical transformation is subsumed by physical design if
the performance benefits of applying the logical design
transformation on a given XSD schema can be achieved by
conducting physical design on the relational schema
mapped from the original XSD schema.

Previous work [5], [18] did not consider the impact of
physical design. Thus, a straightforward extension to their
algorithm to search both logical and physical design will
search outlining transformation along with physical design,
which is inefficient. For example, an instance of such an
extension (described in Section 4.2) took more than a day to

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 12, DECEMBER 2005

Fig. 1. XML schema for (a) DBLP and (b) Movie.

2. Defining covering index is a well known technique in relational
databases to improve query performance. A covering index “covers” all the
attributes of a table that are referenced in a query such that the query can be
evaluated from the index only, without accessing the table.

optimize the storage of DBLP data for a rather small
workload of queries. Such a tool is clearly not usable
because real-life workloads often consist of thousands of
queries and change over time, which requires reruning the
tool from time to time.

This paper solves the combined problem of logical
mapping from XML to relations and physical design of
the corresponding database to avoid the above short-
comings. Specifically, the contributions of our paper are:

1. We find that:

. Solving the logical mapping and the physical
design problem independently leads to a sub-
optimal solution.

. There is substantial overlap between logical and
physical design: Many well-known logical de-
sign transformations are subsumed by physical
design if they are applied alone. Therefore, the
search space can be reduced significantly by
pruning mappings generated by only applying
subsumed transformations.

. However, there also exists interactions between
different transformations: The subsumed logical
design transformations may be combined with
other transformations to generate mappings not
considered by physical design. However, we
will show in Section 4 that considering such
combinations does not introduce much over-
head to the search algorithm.

2. We propose a search algorithm that judiciously
explores the combined space of logical and physical
design. The algorithm carefully avoids searching
duplicated mappings and utilizes workload infor-
mation to further prune the search space. Through
experimental results, we demonstrate that the quality
(in terms of the time to execute the query workload
on resulting design) and efficiency (in terms of the
search time) of our search algorithm is significantly
better than existing known techniques.

We describe the previously proposed logical mapping
options in Section 2 and study the impact of physical design
on these mapping options in Section 3. We propose our
solution in Section 4 and evaluate it experimentally in
Section 5. We discuss related work in Section 6 and
conclude in Section 7.

2 REVIEW OF LOGICAL DESIGN ALTERNATIVES

In this section, we first give some preliminaries, then review
the previously proposed logical mapping alternatives [5],
[10], [18], [20], and finally define the problem of searching
the combined space of logical and physical design.

We assume that an XML data has its XSD schema [25].3

Following [18], we define a schema tree T ðV ;E;AÞ to
represent the XML schema.4 V is a set of nodes representing
the following type constructors: sequence (“,”), repetition

(“*”), option (“?”), union (also called choice) (“|”), tagname,
and simple type (corresponding to base types such as
integer). The nodes may also have “minOccurs” and
“maxOccurs” specifications in XSD. A set-valued element
(i.e., maxOccurs > 1) has its parent as ‘*’ node, and an
optional node (with zero or one occurrence, i.e., minOccurs =
0 and maxOccurs = 1) has a parent marked with “?.” E are
edges connecting nodes. A is a set of annotations for the
nodes which specifies that a node will be mapped to a
separate relation with the name as the annotation. Any
node with an in-degree not equal to one (e.g., nodes without
parents or with a ‘*’ parent) must have an annotation
because they must be mapped to a separate relation.

For example, Figs. 1a and 1b show part of the schema
tree of DBLP and movie data sets. The annotations are
specified in parentheses. Two types that are logically
equivalent (see [18] for definition) but have distinct
annotated parents are called shared type. For example, the
two title elements in Fig. 1a are shared type.

Given a XSD tree T ðV ;E;AÞ, the mapping M from XML
schema to relational schemaR, whereR is a set of relations,
is defined as follows:

1. Each node v with annotation in A is mapped to a
relation with the annotation as table name. It has two
default columns, an ID column as primary key that
stores a unique node ID and a PID column as a
foreign key that refers to the ID column in the table
mapped from its parent.

2. Each leaf node l as descendants of v is mapped to a
column in the table for v if there is no annotated
node along the path between l and v.

3. If two nodes have the same annotation, they are
mapped to the same table and the data instances for
these two nodes are mapped to separate rows in the
table.

2.1 Schema Transformations

A set of transformations on schema tree has been proposed
in [5], [18] to define the space of logical mappings. We give
a brief description below. Please refer to [5], [18] for details.

1. Outlining and inlining. Outlining introduces an
annotation to a node v in the schema tree and v
(along with its descendants) will be stored in a
separate table. Inlining is the reverse. Outlining and
inlining can group frequently coaccessed elements
into a single table.

2. Type Split/Merge. Type split renames an annotation
shared by multiple nodes. For example, author in
the DBLP schema shown in Fig. 1 can be split into
book_author and inproc_author. As a result,
two tables will be created: one storing authors of
book elements and the other storing authors of
inproc elements. Type merge is the reverse. Type
split and merge group frequently accessed occur-
rences of a shared type together.

3. Union Distribution/Factorization. Union distribu-
tion converts a schema fragment in form of ða; ðbjcÞÞ
to ða; bÞjða; cÞ. For example, the movie element
represented by title,year, aka_title, av-

g_rating, (box_office | seasons), after union

CHAUDHURI ET AL.: STORING XML (WITH XSD) IN SQL DATABASES: INTERPLAY OF LOGICAL AND PHYSICAL DESIGNS 3

3. Our work also applies to XML data with DTD by first transforming
DTD to XSD.

4. The schema tree can also represents recursive types using shared type
described below.

distribution and outlining, will be split into two
tables: the MovieShow table which stores title,
year, aka_title, avg_rating, box_office,
and the TVShow table which stores title, year,
aka_title, avg_rating, seasons. Union factor-
ization is the reverse. c can also be empty (i.e., b is
optional), which is called implicit union.

4. Repetition Split/Merge. Given a set-valued element
E, repetition split converts E� to k occurrences of E
followed by E�. It is followed by inlining the first k
occurrences of E into the parent table. For example,
in DBLP schema shown in Fig. 1, most books have
no more than five authors, so we can store the first
five authors of each book in the book table (by
adding five columns, one for each inlined author).
Repetition merge is the reverse. Repetition split can
reduce the cost of join between parent and child
tables. We have also limited repetition split to leaf
nodes in the schema tree because in experiments we
find that applying repetition split to intermediate
nodes generates extremely complex join conditions,
thus does not bring benefits.

5. Associativity and Commutativity. Associativity
groups several types into one relational table.
Commutativity changes order of types. Both of them
can be combined with other transformations to
generate new mappings.

Although we believe some of these transformations, such
as union distribution/factorization, are applicable to recur-
sive parts of schema as well. In this paper, we restrict
ourselves to nonrecursive parts of XSD schema as in [5], [18].

We also consider a subset of XPath queries containing
descendant and child axes because they are the most
commonly used axes. For example, a query //movie

[title = “Titanic”]/(aka_title |avg_rating)

returns the average rating and aka_title of the movie with
title “Titanic.” [title = “Titanic”] identifies the
selection condition and is called selection path. aka_title
and avg_rating are results being returned and are called
projection elements.

2.2 Problem Definition

Let W be an XPath workload that consists of a set of ðQi; fiÞ,
where Qi is an XPath query and fi is the weight associated
with Qi. Let a configuration F be a set of physical design
structures on relational schema R. Now, we define the
problem of selecting a logical mapping along with its
physical design.

Definition 1. Given an XSD schema T , an XPath workload W ,
and a storage bound S, find a mapping M that maps T to a
relational schemaR, and a configuration F onRwhose storage
requirement (including both data and physical design struc-
tures) does not exceed S, such that

P
Qi2W fi � costðQi;R;FÞ is

minimized. CostðQi;R;FÞ is the cost of running the SQL
statements translated from Qi onR with configuration F .

We assume the presence of the XPath workload W as
previous workload-based physical design [2], [7], [23] and
logical design work [5]. In real life, the workload informa-
tion may not be available. Thus, a practical solution is to
start with some mapping (e.g., the hybrid inlining or shared

inlining mapping proposed in [20]) and use our workload-
based solution once the workload is known.

The combined search space of logical and physical
design is extremely large because the number of possible
combinations of physical design and logical design equals
the number of possible physical design multiplied by the
number of possible logical design, and the number of
possible logical and physical design is large. For example,
the number of indexes for a given set of relations is
exponential to the number of columns [23]. The search
space for logical design is also at least �ð2jV 0 jÞ, where V 0 is
the set of nodes with in-degree of one because each such
node can be either outlined or inlined. Thus, we need an
efficient search algorithm over the space. In the next section,
we study how physical design affects the space of logical
design, which will help us prune the search space.

3 IMPACT OF PHYSICAL DESIGN ON SEARCH SPACE

In this section, we study the impact of physical design on
the combined search space of logical and physical design.
The physical design structures we considered are indexes,
materialized views, and vertical partitioning. Specifically,
we find that:

1. Outlining, inlining, associativity, and commutativity
transformations alone are always subsumed by
vertical partitioning, thus we call them subsumed
transformations.

2. Other transformations bring extra benefits over
physical design, thus we call them nonsubsumed
transformations.

3. Subsumed transformations may be combined with
nonsubsumed transformations to generate map-
pings that are not considered by physical design,
thus the search space needs to include such
combinations.

3.1 Subsumed Transformations

We define vertical partitioning of a set of relations R as R0

such that 1) for each relation R 2 R, there exists one or more
relations in R0 such that the union of columns (except ID
and PID columns) of latter relations equal the set of
columns in R and 2) the latter relations share the same ID
and PID columns.

We first prove that outlining, inlining, associativity, and
commutativity transformations are subsumed by vertical
partitioning.

Let T ðV ;E;AÞ be the original XSD schema, C be a
sequence of the above four types of transformations, and T 0

be the schema after applying C to T . Let T0 be the XML
schema transformed from T by inlining all nodes in T

whose in-degree not equal to one.

Theorem 1. The relations mapped from T 0 are a vertical
partitioning of relations R0 mapped from T0.

Proof. The proof is straightforward. Any outlining, inlining,
associativity, and commutativity transformation creates
a vertical partitioning for a relation in R0 because it just
partitions the columns in the same relation. By induction,
any sequence of such transformations also creates a

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 12, DECEMBER 2005

vertical partitioning of R0. Note that the vertical
partitioning must be defined over the most inlined
schema T0 rather than T because, otherwise, the columns
from different relations in T may be stored in the same
relation by applying inlining. tu

For example, for the movie schema in Fig. 1b, after
applying commutativity on year and avg_rating, asso-
ciativity on title and avg_rating, and outlining title

andavg_rating, we create a vertical partitioning onmovie

table where one partition contains title and avg_rating

and the other contains the remaining columns.
Since the above four subsumed transformations always

generate a vertical partitioning of R0, these transformations
do not generate any new relational schema compared to
physical design on R0. Thus, if no transformations other
than the above are considered, logical design is completely
subsumed by physical design.

Note that if there is sufficient space for indexes and the
query workload does not include update queries, vertical
partitioning is also subsumed by covering indexes because
both of them let database engine access frequently accessed
columns instead of base tables [20].

3.2 Nonsubsumed Transformations

We now examine some examples of nonsubsumed trans-
formations. Type split and merge change the horizontal
layout of relations, so they are very similar to horizontal
partitioning. However, in physical design, horizontal
partitioning is based on either ranges or a random hash
function on a set of columns, not on the XSD type level.
Thus, type split and merge may generate relational schema
not considered by horizontal partitioning.

Similarly, union distribution and factorization also
generate relational schema not considered by horizontal
partitioning because they use the “choice” group semantics
in XSD to drop columns with all null values. For example,
union distribution on the movie schema in Fig. 1b generates
a movie table and a TV table where box_office columns
is dropped in TV table because TV element does not have
box_office.

Repetition split and merge are similar to a join view over
the repetition element and its parent element. However, a
join view needs to repeat the columns in the parent element
for all repeated child element, while repetition split avoids
such redundancy by storing such repeated occurrences in
separate columns. This is possible because repetition split
uses the “maxOccurs” semantics in XSD, which is not
considered by join view.

Overall, the above transformations are not subsumed by
traditional physical design because they use XSD specifica-
tion such as “choice,” “optional,” and maxOccurs which
imply complex constraints that are difficult to capture
solely via physical design in relational databases.

3.3 Combination of Subsumed and Nonsubsumed
Transformations

Although subsumed transformations alone do not generate
a new relational schema, they may be combined with
nonsubsumed transformations to generate a new relational
schema. For example, type merge requires the two types

being merged have exactly the same annotation. Thus, the
two title elements in DBLP schema in Fig. 1a cannot be
merged because they have different annotations (one with
annotation “title1,” the other with no annotation). However,
merging the two titles becomes available if we first inline
title of book (thus, the annotation “title1” will be deleted).
Therefore, we need to consider mappings generated by
combinations of subsumed and nonsubsumed transforma-
tions. There are two approaches of doing this: either
consider such combinations in the logical design space
and then conduct physical design, or add vertical partition-
ing to logical design space and delete it from physical
design space. We adopted the first approach because we do
not want to modify existing physical design tools.

4 SEARCH ALGORITHM

We first describe the architecture of our logical and physical
design tool (Section 4.1), then illustrate the problems of
directly extending existing search algorithms for logical
design (Section 4.2), and, finally, we describe our algorithm
(Section 4.3 to Section 4.8).

4.1 Architecture

Fig. 2 illustrates the architecture of our system. It contains
two key components: the logical design component that
enumerates mappings and the physical design tool (the
Index Tuning Wizard of Microsoft SQL Server 2000 in this
paper) that optimizes the physical design of a mapping and
returns the SQL query cost estimated by the query
optimizer.

Following previous work on logical and physical design
[2], [5], [7], [18], we use the query optimizer’s cost model to
estimate the query execution cost for each enumerated
configuration.

The logical design component also needs to pass to the
physical design tool the statistics on shredded relations
and columns. We adopt the same approach in [13], [18] to
collect statistics. The search always starts with a fully
split schema where all possible outlining, union distribu-
tion, type split, and repetition split transformations are
applied. Such a schema allows statistics to be collected on
the finest granularity. Later, any generated schema can be
transformed from the fully split schema by only using
merge transformations (inlining, union factorization, type
merge, and repetition merge). Thus, the statistics of such
schema can be accurately derived from the statistics on
the fully split schema. The reverse is not true because a
split transformation such as union distribution generates
difficulty for deriving statistics. For example, for the
movie schema in Fig. 1b, suppose after applying union

CHAUDHURI ET AL.: STORING XML (WITH XSD) IN SQL DATABASES: INTERPLAY OF LOGICAL AND PHYSICAL DESIGNS 5

Fig. 2. Architecture.

distribution, the Movie table is split into two tables:
TVShow and MovieShow. It will be difficult to infer the
statistics of elements shared by these two separated tables
(e.g., year, title) because they have a finer granularity
than the original Movie table. For example, the year

values of MovieShow may be substantially earlier than
the values in TVShow, which will be difficult to infer
from the combined distribution of year in Movie.

The work in [13], [18] collects statistics directly from the
XML data. For easiness of implementation, we collect
statistics directly on the relational data loaded using the
most split schema. The previous work collects the following
three types of statistics:

1. the range of ID,
2. the distribution of PID, and
3. the value distribution for each column mapped from

a base type.

Such statistics collected on relational data is exactly the
same as those collected on XML data.

4.2 Drawbacks of Existing Solutions

A greedy algorithm has been previously proposed for
logical design in [5], [18]. The algorithm iteratively
enumerates mappings generated from the current mapping
by applying transformations, and selects the mapping with
the lowest cost to replace the current mapping and stops if
there is no more cost reduction. We can certainly extend this
algorithm to both logical and physical design by invoking
the physical design tool instead of the query optimizer to
estimate the cost of each mapping. However, such
straightforward extension is not sufficient because the
combined search space of logical and physical design is
extremely large. The state-of-the-art physical design tool [2],
[7] often requires hundreds of query optimizer calls and
many database operations (such as creating tables and
statistics). For each enumerated transformation on the XSD
schema, the physical design tool needs to be called. We
have implemented an instance of such extension. It needs to
search 271 transformations on DBLP and tens of thousands
of mappings (a mapping is generated by applying a
sequence of transformations). Thus, it took more than a
day to optimize a fairly small workload on DBLP which
contains 10 queries. Since real-life workloads often consist
of thousands of queries and change over time (requiring
reruning the tool from time to time), reducing the tool’s
running time is crucial for the usability of the tool.

We have two key observations to improve the efficiency
of search algorithm:

1. Avoid searching duplicated mappings. As illu-
strated in Section 3, we can reduce the number of
mappings that need to be searched because many
transformations are subsumed by physical design.

2. Prune search space using workload. Since the
goal is to improve the performance of the given
query workload, the workload itself can be used
to prune the search space. For example, query
//movie[title = “Titanic”]/ (aka_title

| avg_rating) likely benefits from repetition
split on aka_title, which reduces the cost of

join movie and aka_title relations, and union
distribution on avg_rating, which enables the
query engine to only access those movies with an
avg_rating. All other transformations are un-
likely to be beneficial to this query.

We next describe how to avoid searching subsumed
configurations (Section 4.3) and how to use workload to
prune the search space (Section 4.4 to 4.8).

4.3 Pruning of Subsumed Mappings

As described in Section 3.1, for a given XSD schema T , all

relational schemas generated by subsumed transforma-

tions can be generated by vertical partitioning of the fully

inlined schema T0 transformed from T . Thus, our search

algorithm only enumerates nonsubsumed transformations

at each step. For each such transformation c, the schema

after applying c is further fully inlined, and then the

physical design tool is called to estimate the cost of that

schema. This optimization is able to prune the search

space significantly because the number of subsumed

transformations is exponential in the XSD schema size.

For example, the number of outlining/inlining transfor-

mations is 2jV
0 j, where jV 0j is the number of nodes whose

in-degree does not equal to one.
However, as discussed in Section 3.3, a combination of

subsumed and nonsubsumed transformations may gener-
ate mappings not subsumed by physical design. For
example, merging the two title elements in Fig. 1a requires
inlining one of them first. We adopt the deep merge solution
proposed in [18] to solve this problem. The solution
considers not only all directly applicable nonsubsumed
transformations, it also considers all nonsubsumed trans-
formations applicable after applying a sequence of either
subsumed or nonsubsumed transformations. In the above
example, type merging title becomes available after
inlining the title element under book. It is important to
note that identifying available nonsubsumed transforma-
tions does not require query cost estimation. Therefore, it
does not add much overhead for search because the
physical design tool needs not be called.

4.4 Workload-Based Pruning

The workload can be used to limit both the transformations
we consider and to reduce the number of queries that need
to be passed to physical design tool. We propose the
following optimization techniques:

1. Candidate selection, which limits transformations by
analyzing the query format of each individual query
and only selects the transformations that will benefit
that query.

2. Candidate merging, which avoids overfitting indivi-
dual queries by generating candidate transforma-
tions that may improve the performance of multiple
queries. Since there are many possible transforma-
tions generated by merging, we use a heuristic
algorithm to further limit the number of merged
transformations.

3. Cost derivation, which reduces the cost of calling
physical design tool by deriving the cost of queries

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 12, DECEMBER 2005

using the new configuration from cost the obtained
under previously enumerated configuration. This
technique will reduce the number of queries need to
be passed to the physical design tool. The physical
design tool in turn takes less time to optimize a
smaller workload instead.

Fig. 3 shows the sketch of the Greedy algorithm. For
illustration, we omit the details of generating fully inlined
mapping and deep merging in the algorithm. The algorithm
first selects a set of candidate transformations at line 1. The
merge type candidates are stored in C1 and split type
candidates are stored in C2. It then generates an initial fully-
split mapping M0 at line 2 by applying all split type
candidates. At line 3, candidates are merged. These newly
generated candidates are added to C along with previously
generated merge type candidates. At line 5, the algorithm
calls the physical design tool to select physical design
structures on M0 using the SQL workload WSQL translated
from the XML query workload W at line 4. Lines 6 to 19
repeatedly select the minimal-cost mapping Mmin that is
transformed from the current mapping M0 with a transfor-
mation in C.5 In each round, the minimal cost mapping
Mmin is initialized as M0. For each transformation c 2 C,
lines 8 to 16 enumerate a mapping M transformed from M0

using c (line 9), and call the physical design tool to return

the cost and physical configuration of M (lines 10 and 11).

Lines 12 to 15 replace Mmin with M if the cost of M is lower

than the cost of Mmin. At the end of the round, line 17

returns if no better mapping is found. Otherwise, line 18

replaces M0 with Mmin, deletes from C the transformation

cmin that generates Mmin and proceeds to the next round.
The complexity of the algorithm is OðjCj2P Þ, where jCj is

the number of candidate transformations and P is the time

for one call of the physical design tool. Next, we describe

how to reduce jCj by candidate selection and merging, and

how to reduce P by cost-derivation.

4.5 Candidate Selection

We analyze every Q 2 W and select the transformations

that may improve the performance of Q as follows:

1. Subsumed transformations are not selected because
they are subsumed by vertical partitioning or
indexes. Such transformations may still be combined
with a nonsubsumed transformation, but they will
not be applied alone.

2. Generate a union distribution/factorization or type
split/merge if Q accesses less than half of the
partitions generated by applying this transforma-
tion. For example, for the movie schema in Fig. 1b, if

CHAUDHURI ET AL.: STORING XML (WITH XSD) IN SQL DATABASES: INTERPLAY OF LOGICAL AND PHYSICAL DESIGNS 7

5. A sequence of subsumed transformations may be applied along with c.

Fig. 3. Greedy Search Algorithm.

the query only accesses box_office, a union
distribution over (box_office | seasons) will
be generated. In experiments, we find that if more
than half of the partitions are accessed, then such a
transformation usually does not bring substantial
benefits.

3. Generate a repetition split for set-valued element v if
Q refers v in projection or selection path, and v’s
maximal cardinality is less than a threshold cmax or
more than x percent of v have cardinality less than
cmax. These parameters can be tuned and we use
cmax ¼ 5 and x ¼ 80 in our experiments. The next
section will explain why we choose the repetition
split count in such a way.

Note that all split type candidates will be applied at once
to generate the initial mapping, and later only merge type
candidates will be applied during the greedy search.

4.6 Selection of Repetition Split Count

The problem is how to choose the number of repeated
elements tobe inlined inparent tablewhen themaxOccursof
a set-valued element is unspecified or large. Let k be the
number to be inlined.A small kmaynot savemuch of the join
cost, and a large k may introduce too many nulls in parent
relation and blowup the space.We find that repetition split is
still effective if the distribution of the cardinality is skewed to
the low cardinality region, and under such cases a good k is
the smallest k such that most instances of the element have
cardinality smaller than k. For example, in the DBLP data,
eachpublication couldhaveup to 20authors, but 99percent
publications have nomore than five authors. For this specific
data set, we find that splitting the first five authors achieves
the best balance between performance and space. Note that
here, we use the statistics of the cardinality of set-valued
elements in addition to the maxOccurs specification to
decide the count.

4.7 Candidate Merging

Candidate selection tries to optimize each query, but it may
miss transformations that may benefit multiple queries.

For example, assume the year element is also optional
in the Movie schema shown in Fig. 1. Consider the
following two queries:

Q1: //movie/year

Q2: //movie/avg_rating.

Q1 returns year element of movies. Q2 returns
avg_rating element of movies. Let c1 and c2 be implicit
union distribution on year and avg_rating, respectively.
c1 creates two tables, one stores those movies with year

element, and the other stores those movies without year
element. Q1 only needs to access the first partition.
However, those movies with avg_rating element may
or may not have year element. Thus, Q2 must access both
partitions, so c1 does not improve the performance of Q2.
Similarly, c2 helps Q2 but not Q1.

Now, consider a transformation c3 which splits the
movie relation into two partitions: one storing the movies
having either year or avg_rating, the other storing the
rest of movies. Even though c3 is not selected by candidate
selection, it improves the performance of both queries. c3
can be seen as the result of mergingc1 and c2.

Let C0 be the set of implicit union distribution candidates
chosen after candidate selection. Since there may be Oð2jC0jÞ
possible merged transformations, we use a cost-based
greedy algorithm to efficiently search useful merging. The
algorithm first examines all pairs ci; cj 2 C0 that can be
merged (i.e., they are on the same relation, and the set of
optional nodes of ci is not a subset of that of cj or vice
versa). Each such pair is merged into a new candidate c on
the union of the optional nodes of c1 and c2. We estimate a
benefit for c. The algorithm then chooses the merged
pair cmax with the maximal benefit. cmax is output as a new
candidate, and added to input C0 to replace the original pair
of candidates used to generate it. This process is repeated
until no new candidate is added. Finally, since we only
consider merge type candidates in search, each output
candidate will be replaced with their union factorization
counterparts. The complexity of the algorithm is OðjC0j3Þ
because in each round jC0j2 pairs are considered and there
can be at most jC0j rounds.

For efficiency reasons, we use a heuristic model to
estimate the benefit of a merged candidate. Note that we
only use this model to prune out bad candidates and later
use query optimizer cost model during search. In experi-
ments, we also found that using the heuristic model does
not degrade the quality of results (see Section 5.3.2 for
details). The model only considers I/O savings. Let ci be an
implicit union on relation R. If a query Q accesses more
than half of partitions generated by ci, the benefit is
assumed zero. Otherwise, let RA be the partitions that Q

accesses, RSðQÞ be the set of relations referred by Q, and
costðQÞ be the cost of Q under the current mapping
(obtained by calling optimizer). The I/O saving of ci over
the query Q is

sðci; QÞ ¼ ððjRj �
X

Ri2RA

jRijÞ=
X

Rj2RSðQÞ
jRjjÞ � costðQÞ;

where jRj denotes the size of R.
P

Ri2RA
jRij andP

Rj2RSðQÞ jRjj denote the total sizes of partitions of R

and relations accessed by Q. The model assumes the cost
is proportional to the total sizes of relations being
accessed. We define the total saving of ci over W asP

Q2W sðci; QÞfQ, which is the weighted sum of savings
over each query. For example, consider the previous
example. The benefit of merging implicit union on
avg_rating and year for Q1 (or Q2) equals the size
of movies having neither avg_rating nor year divided
by the size of all movies times the cost of Q1 (or Q2). The
benefit for both queries is positive and, thus, the merged
candidate will be selected.

4.8 Cost Derivation

The physical design tool is called for every enumerated
mapping and accounts for most of the running time. Hence,
we consider how to reduce this time by deriving the cost of
queries under a new mapping from the cost under
previously enumerated mappings. The intuition is that a
transformation only changes one or two relations, thus, it is
likely that the cost of many queries in the workload are not
affected.

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 12, DECEMBER 2005

Let IðQ;MÞ be the set of relational objects (indexes,
materialized views, relations, and partitions) that the query
engine uses to answer query Q under mapping M, and
costðQ;MÞ be the cost of running Q under mapping M. We
assume that if IðQ;M 0Þ ¼ IðQ;MÞ for a new mapping M 0,
costðQ;M 0Þ ¼ costðQ;MÞ because the same query plan will
be used if the same set of relational objects is used to answer
the query.

Suppose M 0 is transformed from M using transforma-
tion c, we use the following heuristic rules to decide
when IðQ;M 0Þ ¼ IðQ;MÞ.

. Irrelevant relation rule: let RSðQÞ be the set of
relations referred by Q, if c does not change any
relation in RSðQÞ, then IðQ;M 0Þ ¼ IðQ;MÞ.

. Repetition split rule: suppose R 2 RSðQÞ, and the plan
under M accesses a covering index I on R but not
the base relation R. If c is a repetition split over v,
and v is not referred by the SQL statement translated
from Q, then IðQ;M 0Þ ¼ IðQ;MÞ.

The intuition of repetition-split rule can be explained by
the following query

Q3://movie[year >¼ “1998”]/

(title | box_office) .

Suppose we are considering a hybrid inlining map-
ping M0 and a mapping M1, where the first five
aka_titles are stored in its parent table movie. If a
covering index I1 on year, title, and box_office is
recommended for both mappings, the index has the
same size under both mappings because the movie

relations in both mappings have the same number of
tuples and the indexed columns are not affected by the
repetition-split. Thus, IðQ3;M0Þ ¼ IðQ3;M1Þ.

. Union distribution/factorization and type split/merge
rule: if c is an (implicit) union distribution/factoriza-
tion or type split/merge on R 2 RSðQÞ, IðQ;M 0Þ ¼
IðQ;MÞ for either of the following two cases: 1) Q
refers all partitions generated (or merged) by c, but
none of the partitions participates in joins and 2) a
repetition split is applied on R in M.

The intuition of this rule can be explained by the
following example. Consider query //movie/title and
a mapping M2 after applying union distribution on
box_office and seasons. They satisfy the first condition
of the union distribution rule because the query accesses
both partitions of movie and there is no join. The query
plan selects the title on both relations and concatenates
the results. The cost of concatenation accounts for a small
portion of total execution time because the results for each
relation are already in memory and there is no need for
duplicate removal.

The second condition of the rule is satisfied if a repetition
split is applied on movie. Remember that repetition split is
only applied when most movies will be stored in its parent
table. Thus, the movie relation is almost empty. Hence,
applying union distribution/factorization or type split/
merge on movie does not affect the performance because
the cost associated with movie relation is neglectable.

Now, we describe how to use cost derivation. Given a
new mapping M 0, we assume there is a W 0 � W such that
for queries Qi 2 W 0, a mapping Mi has been enumerated
and IðQi;M

0Þ ¼ IðQi;MiÞ. We further assume the physical
design tool returns the indexes and materialized views in
IðQi;MiÞ and their sizes. We approximate the cost of
queries under M 0 as follows: For all Qi 2 W 0, we assume
the physical design tool recommends exactly the same
physical design structures in IðQi;MiÞ. Thus, we have
costðQi;M

0Þ ¼ costðQi;MiÞ, where costðQi;MiÞ has been
already computed. For all Qj 2 W �W 0, we assume the
physical design tool recommends exactly the same
physical design structures as we call the tool with
workload W �W 0 and with a new space limit S0 equals
to old limit S subtracted by the sizes of indexes and
materialized views in

S
Qi2W 0 IðQi;MiÞ.

For example, consider a workload consisting of Q3 above
and the following query

Q4: //movie[year ¼ “1997”]/

(aka_title | title).

Suppose the space limit is set to 2 GB and we have
enumerated a mapping M0 shown in Fig. 1b and the tool
has recommended a covering index I1 for Q3 with size
100 MB and two indexes I2 and I3 for Q4 with total size
200 MB. For new mapping M1 where repetition split is
applied on aka_title, IðQ3;M1Þ ¼ IðQ3;M0Þ by the
repetition split rule. We reestimate costðQ4;M1Þ by calling
the Tuning Wizard with the space limit of 1.9 GB (2 GB
minus size of I1) and workload fQ4g.

In practice, these heuristic rules may not hold. So, in the
Greedy algorithm, we only use cost-derivation when we
compute the costs of enumeratedmappings (line 11 in Fig. 3),
and reestimate the cost of the minimum cost mapping
selected in each round (line 18) without cost-derivation.

5 EVALUATION OF SEARCH ALGORITHMS

This section experimentally evaluates various search algo-
rithms. Our major findings are: 1) It is important to search
logical and physical design together because the algorithm
searching them independently leads to query performance
on average a factor of two worse than the algorithms
searching them together. 2) The optimization techniques
(avoiding searching subsumed transformations and work-
load-based pruning) proposed in Section 4 drastically
reduce the running time of the algorithm (on average by
two orders of magnitude) with little or no degradation in
terms of quality of results.

5.1 Setup

5.1.1 Algorithms

We implemented our Greedy algorithm in Fig. 3 with all the
optimization techniques proposed in Section 4. Our
program uses SQL Server 2000’s index tuning adviser as a
physical design tool.

We also implemented two other algorithms: 1) a Naive-
Greedy algorithm as a straightforward extension of the
greedy algorithm proposed in [5], [18], which calls the
physical design tool for every enumerated logical mapping
and 2) a Two-Step algorithm that first greedily selects the

CHAUDHURI ET AL.: STORING XML (WITH XSD) IN SQL DATABASES: INTERPLAY OF LOGICAL AND PHYSICAL DESIGNS 9

minimal cost logical mapping without considering physical
design, then selects the physical design for the previously
selected logical mapping. Both Naive-Greedy and Two-Step
make no distinction between subsumed and nonsubsumed
transformations, and do not use workload to prune the
search space. The Two-Step algorithm also assumes a
clustered index on primary key (i.e., the ID column) and a
nonclustered index on PID column (used in the join with
the parent relation) in its first phase. These two indexes
represent the best guess of physical design without
considering workloads or calling the Tuning Wizard.

5.1.2 Data Set

We used a synthetic data set Movie and a real data set
DBLP. The characteristics of these two data sets and space
limits are listed in Table 1. Movie data set simulates a
movie site. The values in Movie data set follows uniform
distribution. The DBLP [1] data set contains publication
records. Both schemas are complex enough to apply all
types of schema transformations listed in Section 2 (the
number of such transformations and the number of unions,
repetitions, and shared types are listed in Table 1). The
space limit is determined such that there is enough space
for all indexes recommended by the physical design tool.

5.1.3 Workload

The workloads are generated randomly by varying two
parameters: the selectivity of selection conditions and the
number of projections. We vary the selectivity (0.01-0.1 or
0.5-1) and the number of projections (1-4 or 5-20) in each
workload. We expect split-based transformations (outlin-
ing, type split, union distribution, and repetition split) will
benefit queries with smaller number of projections because
such queries will access only some of the partitions
generated by split transformations. On the other hand, we
expect merge-based transformations (inlining, type merge,
union factorization, repetition merge) will benefit queries
with many projections because such queries will access
most partitions.

Each workload consists of 20 queries. The number of
joins in each workload depends on the logical design and
varies from 0 to 8. The workloads are named after their

characteristics. For example, a workload “HP-LS-20” con-
sists of 20 queries with large number of projections and low
selectivity. An example of such query on DBLP returns
nine elements of papers published in the conference
proceedings in the year 2000.

/dblp/inproceedings[year=”2000”]/(title |

year | cdrom | cite | author | editor | pages |

booktitle | ee)

The following query belongs to “LP-HS-20.”

/dblp/inproceedings/(title | author)

For DBLP data, because Naive-Greedy did not stop after
running for five days, we also tested four smaller workloads
each consisting of 10 queries. Thus, we have eight work-
loads for DBLP and four workloads for Movie.

5.1.4 Quality Measure

We measured the quality of various algorithms by real
execution time of queries on loaded relational databases
with recommended indexes and materialized views. Since
in practice, workload information may not be available, we
compare the mappings returned based on workload
information with the hybrid inlining mapping proposed
in [20]. The hybrid inlining mapping is selected because it is
not only one of the mappings with the best performance in
[20], we also find in our experiments that it performs better
than the fully split mapping when combined with physical
design for the following reasons:

1. It inlines all subelements except those with in-degree
not equal to one. Thus, it reduces the number of joins
and join is expensive to compute.

2. Although hybrid inlining generates wide tables,
physical design tool can recommend indexes, ver-
tical partitions, and views on frequently accessed
columns.

The execution time is normalized to the time under the
hybrid inlining mapping with recommended indexes and
materialized views.

We used a computer with two 2.4 GHZ CPU, 512 MB
RAM, 40 GB single hard disk, and running Windows XP

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 12, DECEMBER 2005

TABLE 1
Characteristics of Data Used in Experiments

Professional for our experiments. All queries were ran
sequentially using SQL Server 2000. Each workload was
ran in a cold cache, and the reported time was the
average of three executions. The SQL Server does not
allow users to set the memory size, but we observed that
the memory used by different configurations for the same
query was roughly the same.

5.2 Comparison of Various Algorithms

We first compare the quality of results returned by various
algorithms. Figs. 4a and 4b report the query execution time
of mappings returned by Two-Step, Naive-Greedy, and
Greedy with recommended indexes and materialized views
for DBLP and Movie data sets. We were unable to obtain
results of Naive-Greedy for 20-query workloads on DBLP
because it did not stop after five days. We have the
following observations.

First, the results demonstrate the benefits of considering
workloads. Greedy, Naive-Greedy, and Two-Step (except in
one case) achieve significant improvement over the default
hybrid inlining mapping.

Second, the results show the importance of considering
interactions between logical and physical design: Two-Step
algorithm leads to significantly worse performance than
Greedy and Naive-Greedy (on average 77 percent worse for
the DBLP data set and 47 percent worse for the Movie data
set) and returns a mapping worse than the hybrid inlining
mapping for one workload (LP-LS-20 for DBLP).

Finally, the results also demonstrate that Greedy and
Naive-Greedy have almost the same quality for all work-
loads. Hence, the optimization techniques proposed in
Section 4 lead to little loss of quality.

Fig. 5 reports the time of running Greedy, Two-Step, and
Naive, normalized to the running time of Two-Step
algorithm because it just does physical design once and is
expected to be the fastest among the three algorithms.

Fig. 6 reports the number of transformations searched
by Greedy and Naive (Two-Step searches the same set of

transformations as Naive). Table 1 reports the number of
all transformations and the number of nonsubsumed
transformations.

The results demonstrate the clear advantage of avoiding
searching subsumed transformations and using workload-
based pruning techniques: Greedy searches about 10-
40 times fewer transformations than Naive Greedy and
Two Step for the DBLP data and about 5-10 times fewer
transformations for the Movie data. The number of
nonsubsumed transformations is also about a factor of
two fewer than the total number of transformations.

As a result, Greedy is, on average, about two orders of
magnitude faster than Naive-Greedy for DBLP and an order
faster than Naive-Greedy for Movie (note the logarithm
scale). The reason for lower speed-up for Movie is that
Movie has a smaller schema than DBLP. Thus, the speed-up
due to pruning transformations is lower. The number of
transformations searched by Greedy also increases slightly
as the workload size increases because there are more
transformations that may benefit the additional queries in
the workload.

Greedy’s running time is comparable to Two-Step
because Two-Step only searches physical design structures
for a single logical mapping. However, Greedy returns
configurations with much better query performance than
Two-Step because Two-Step ignores interactions between
logical and physical design. Thus, Greedy is the clear
winner of the three algorithms.

5.3 Breakdown of Optimization Techniques

We next break down the effect of candidate selection,
candidate merging, and cost derivation for the 20 query
workloads on DBLP.

5.3.1 Effectiveness of Candidate Selection

Fig. 7 reports the speed-up of running time of Greedy due
to avoiding searching subsumed transformations and the
overall speed-up due to all candidate selection rules

CHAUDHURI ET AL.: STORING XML (WITH XSD) IN SQL DATABASES: INTERPLAY OF LOGICAL AND PHYSICAL DESIGNS 11

Fig. 4. Query execution time of mappings returned by Greedy, Naive-Greedy, and Two-Step, normalized to hybrid inlining mapping. (a) DBLB and

(b) Movie.

proposed in Section 4. The results demonstrate that

ignoring subsumed transformations is the major factor of

speed-up (ranges from 8 to 12). The other candidate

selection rules bring about a further factor of 2 speed-up.

The results show the importance of considering only the

mappings not subsumed by physical design. Moreover, we

observe no quality drop due to candidate selection for all

workloads.

5.3.2 Effectiveness of Candidate Merging

Fig. 8 reports the query execution time and the running time

of Greedy algorithm with three different merging strategies

for 20-query workloads. The merging strategies are greedy

merging, no merging, and exhaustive merging that enu-

merate all possible merged candidates. The results show the

importance of candidate merging: The cost of results

without merging is substantially higher than results with

merging (the difference is on average a factor of 2). The

results also show the greedy merge algorithm is effective

because it has about the same quality as the exhaustive

merging, but is 2 to 10 times faster, and is almost as fast as

no merging. We find that greedy merging tends to merge

candidates on relations with large sizes referred in

expensive queries, and such transformations account for

most performance improvement. We also find our heuristic

cost model works reasonably well, especially when the

query plans contain table scan or index scan operators

because such operators’ cost is often proportional to relation

sizes.

5.3.3 Effectiveness of Cost Derivation

Fig. 9a reports the query execution time of the mappings

returned by Greedy algorithm using or not using the cost

derivation for the 20-query workloads. The running time is

reported in Fig. 9b. The results show that cost-derivation

leads to little drop of quality (up to 3 percent of the hybrid

inlining mapping cost), but it speeds up the algorithm by a

factor of 4 to 10. This confirms that the physical design tool

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 12, DECEMBER 2005

Fig. 5. Running time of Greedy and Naive Greedy on DBLP, normalized to Two-Step. (a) DBLP. (b) Movie.

Fig. 6. Number of transformations searched by Greedy and Naive Greedy on DBLP. (a) DBLP. (b) Movie.

and query optimizer demonstrate some stable property

such that the same indexes and materialized views are often

recommended for the cases we use cost-derivation in

Section 4, and the same query plans are selected by the

optimizer.

6 RELATED WORK

There has been lots of work on XML-to-relational storage

mapping [5], [9], [9], [12], [15], [18], [19], [20], [22]. The NP

hardness of the problem is proved in [16]. Deutsch et al. [10]

proposed to use data mining techniques to identify

frequently occurring portions of XML documents and store

them in relations. A DTD-based approach was proposed in

[20], and several heuristic mappings were proposed. An

Edge-based approach was proposed for schema-less XML
data in [12]. Bohannon et al. proposed a cost-based
approach to find a relational schema using workload
information [5]. Ramanath et al. further improved their
algorithm by proposing a few new types of transformations
(type split/merge, etc.). They also considered the interac-
tions between logical design transformations and proposed
the deep merge technique in [18]. However, all of the above
work has not addressed the interplay of logical mapping
and physical design. As described in Section 5, solutions
ignoring such interplay can suffer in quality and efficiency.

Most major commercial relational database systems [4],
[8] provide a default way to map XML documents to
relational storage and allow users to specify their own
mappings, which is often quite tedious given the complex-
ity of the problem. Our work can be used to guide and
advise the users.

Physical database design has been examined signifi-
cantly [2], [7], [23]. However, our focus is on storing XML in
relational databases, and we use existing physical design
techniques. The optimization techniques (candidate selec-
tion, candidate merging, and cost derivation) we propose
have the same spirit as those used in index and materialized
view selection [2], [7]. However, our techniques are specific
for XML-to-relational mapping and exploit the properties of
mappings and their interplay with physical design.

Translating XML queries to SQL statements were studied
in [11], [21]. Our focus is on combining logical and physical
design, and we use existing query translation techniques
[21]. In [16], [17], the authors found that there exists
interaction of logical design with query translation, but
physical design is not considered. Further understanding of
the interaction of logical and physical design with query
translation will be future work.

There also exists work on XML specific indexing
structures [24] and query processing techniques [6]. How-
ever, our focus is to use relational techniques.

CHAUDHURI ET AL.: STORING XML (WITH XSD) IN SQL DATABASES: INTERPLAY OF LOGICAL AND PHYSICAL DESIGNS 13

Fig. 7. Speed-up due to candidate selection on DBLP data.

Fig. 8. (a) Query execution time (normalized to hybrid inlining mapping) and (b) algorithm running time (normalized to no merging) of Greedy on

DBLP with various merging algorithms.

7 CONCLUSIONS

In this paper, we find that optimizing the “shredding” of

XML data in relational databases must take the interplay of

logical and physical design into account. We point out that

existing logical design transformations can be divided into

two categories, those are subsumed by physical design and

those are not. Transformations in the first category may be

combined with those in the second category to generate

mappings not considered by physical design. We further

proposed an efficient search algorithm that uses workload-

based pruning and avoids searching mappings considered

by physical design. Our experiments demonstrated that the

proposed algorithm recommends significantly better com-

bination of logical and physical design compared to some of

the existing algorithms (Two-Step) and takes significantly

less time to find the recommendation compared to the rest

of existing algorithms (Naive-Greedy). For future work, we

plan to consider more general XML queries (including

update queries).

ACKNOWLEDGMENTS

The work was done when Z, Chen worked at Microsoft

Research.

REFERENCES

[1] DBLP, XML records, http://dblp.uni-trier.de/xml/, 2005.
[2] S. Agrawal, S. Chaudhuri, and V.R. Narasayya, “Automated

Selection of Materialized Views and Indexes in SQL Databases,”
Proc. Very Large Data Bases Conf., 2000.

[3] S. Agrawal, V.R. Narasayya, and B. Yang, “Integrating Vertical
and Horizontal Partitioning into Automated Physical Database
Design,” Proc. ACM SIGMOD, pp. 359-370, 2004.

[4] S. Banerjee, V. Krishnamurthy, M. Krishnaprasad, and R. Murthy,
“Oracle8i—The XML Enabled Data Management System,” Proc.
Int’l Conf. Data Eng., 2000.

[5] P. Bohannon, J. Freire, P. Roy, and J. Simeon, “From XML Schema
to Relations: A Cost-Based Approach to XML Storage,” Proc. Int’l
Conf. Data Eng., 2002.

[6] N. Bruno, N. Koudas, and D. Srivastava, “Holistic Twig Joins:
Optimal XML Pattern Matching,” Proc. ACM SIGMOD, 2002.

[7] S. Chaudhuri and V.R. Narasayya, “An Efficient Cost-Driven
Index Selection Tool for Microsoft SQL Server,” Proc. Very Large
Data Bases Conf., 1997.

[8] J.M. Cheng and J. Xu, “XML and DB2,” Proc. Int’l Conf. Data Eng.,
1999.

[9] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl, “From
Structured Documents to Novel Query Facilities,” Proc. ACM
SIGMOD, 1994.

[10] A. Deutsch, M.F. Fernandez, and D. Suciu, “Storing Semistruc-
tured Data with STORED,” Proc. ACM SIGMOD, 1999.

[11] M.F. Fernandez, A. Morishima, and D. Suciu, “Efficient Evalua-
tion of XML Middle-Ware Queries,” Proc. ACM SIGMOD, 2001.

[12] D. Florescu and D. Kossmann, “Storing and Querying XML Data
Using an RDBMS,” IEEE Data Eng. Bull., 1999.

[13] J. Freire, J.R. Haritsa, M. Ramanath, P. Roy, and J. Simon, “StatiX:
Making XML Count,” Proc. ACM SIGMOD, pp. 181-191, 2002.

[14] H.V. Jagadish, S. Al-Khalifa, A. Chapman, L.V.S. Lakshmanan, A.
Nierman, S. Paparizos, J.M. Patel, D. Srivastava, N. Wiwatwatta-
na, Y. Wu, and C. Yu, “Timber: A Native XML Database,” VLDB
J., vol. 11, no. 4, 2002.

[15] M. Klettke and H. Meyer, “XML and Object-Relational Database
Systems—Enhancing Structural Mappings Based on Statistics,”
Proc. Third Int’l Workshop Web and Databases, 2000.

[16] R. Krishnamurthy, V.T. Chakaravarthy, and J.F. Naughton,
“Difficulty of Finding Optimal Relational Decompositions for
XML Workloads: A Complexity Theoretic Perspective,” Proc. Int’l
Conf. Database Theory, 2003.

[17] R. Krishnamurthy, R. Kaushik, and J.F. Naughton, “Efficient
XML-to-SQL Query Translation: Where to Add the Intelligence?”
Proc. Very Large Data Bases Conf., pp. 144-155, 2004.

[18] M. Ramanath, J. Freire, J.R. Haritsa, and P. Roy, “Searching for
Efficient XML-to-Relational Mappings,” Xsym, pp. 19-36, 2003.

[19] A. Schmidt, M.L. Kersten, M. Windhouwer, and F. Waas,
“Efficient Relational Storage and Retrieval of XML Documents,”
Proc. Third Int’l Workshop Web and Databases, 2000.

[20] J. Shanmugasundaram, G. He, K. Tufte, C. Zhang, D. DeWitt, and
J. Naughton, “Relational Databases for Querying XML Docu-
ments: Limitations and Opportunities,” Proc. Very Large Data Bases
Conf., 1999.

[21] J. Shanmugasundaram, E.J. Shekita, R. Barr, M.J. Carey, B.G.
Lindsay, H. Pirahesh, and B. Reinwald, “Efficiently Publishing
Relational Data as XML Documents,” Proc. Very Large Data Bases
Conf., 2000.

[22] T. Shimura, M. Yoshikawa, and S. Uemura, “Storage and Retrieval
of XML Documents Using Object-Relational Databases,” Proc.
10th Int’l Conf. and Workshop Database and Expert Systems
Applications, 1999.

[23] G. Valentin, M. Zuliani, D.C. Zilio, G.M. Lohman, and A. Skelley,
“DB2 Advisor: An Optimizer Smart Enough to Recommend Its
Own Indexes,” Proc. Int’l Conf. Data Eng., 2000.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 12, DECEMBER 2005

Fig. 9. (a) Query execution time (normalized to hybrid inlining mapping) and (b) algorithm running time (normalized to with cost derivation) of Greedy

on DBLP with and without cost-derivation.

[24] H. Wang, S. Park, W. Fan, and P.S. Yu., “Vist: A Dynamic Index
Method for Querying XML Data by Tree Structures,” Proc. ACM
SIGMOD, 2003.

[25] World Wide Web Consortium, XML Schema, 2001, http://
www.w3.org/XML/Schema.

Surajit Chaudhuri received the PhD degree
from Stanford University in 1991 and worked at
Hewlett-Packard Laboratories, Palo Alto from
1991-1995. He leads the Data Management and
Exploration Group at Microsoft Research http://
research.microsoft.com/users/surajitc. In 1996,
Surajit started the AutoAdmin project on self-
tuning database systems at Microsoft Research
and developed novel automated physical design
tuning technology for SQL Server 7.0, SQL

Server 2000, and SQL Server 2005. More recently, he has begun work
in the area of data cleaning and integration techniques. Part of this
research has been incorporated in Micrsooft SQL Server 2005. Dr.
Chaudhuri is also interested in the problem of querying and discovery of
information in a flexible manner exploiting text search as well as DBMS
querying functionality. He was awarded the 2004 ACM SIGMOD
Contributions award for developing the Conference management
Service at Microsoft Research. He is a member of the IEEE.

Zhiyuan Chen received the PhD degree in
computer science from Cornell University in
2002. Presently, he is an assistant professor in
the Information Systems Department at the
University of Maryland, Baltimore County. His
research interests include XML and semistruc-
tured data, privacy-preserving data mining, data
integration, automatic database tuning, and
database compression. He is a member of
ACM and IEEE.

Kyuseok Shim received the BS degree in
electrical engineering from Seoul National Uni-
versity in 1986, and the MS and PhD degrees in
computer science from the University of Mary-
land, College Park, in 1988 and 1993, respec-
tively. He is currently an associate professor at
Seoul National University, Korea. Previously, he
was an assistant professor at the Korea Ad-
vanced Institute of Science and Technology
(KAIST), Korea. Before joining KAIST, he was

a member of technical staff (MTS) and one of the key contributors to the
Serendip data mining project at Bell Laboratories. He also worked for
Quest Data Mining project at IBM Almaden Research Center. Dr. Shim
has been working in the area of databases focusing on data mining,
bioinformatics, data warehousing, query processing and query optimiza-
tion, XML, and semistructured data. He is currently on the editorial
boards of the VLDB Journal and the IEEE Transactions on Knoweldge
and Data Engineering. He has served as a program committee member
for ACM SIGKDD, ACM SIGMOD, ICDE, ICDM, PAKDD, and VLDB
conferences. He is a member of the IEEE.

Yuqing Wu received the BS and MS degrees
from Peking University, China, and the PhD
degree in computer science from the University
of Michigan, Ann Arbor, in 2004. is an assistant
professor in the School of Informatics and
adjunct assistant professor in the Computer
Science Department, Indiana University, Bloo-
mington. Dr. Wu is one of the founders of the
TIMBER project under development at the
University of Michigan, a high-performance

native XML database system capable of operating at large scale,
through use of a carefully designed tree algebra and judicious use of
novel access methods and optimizations techniques. Her research
covers XML data storage, XML indexing, query processing, query
optimization, query parsing and rewriting, and focuses on cost-based
query optimization of XML queries. She is also involved in research
related to data mining, Web data integration, and data extraction. She is
a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHAUDHURI ET AL.: STORING XML (WITH XSD) IN SQL DATABASES: INTERPLAY OF LOGICAL AND PHYSICAL DESIGNS 15

