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A large volume of network trace data are collected by the government, public, and private organizations, and can be analyzed for

various purposes such as resolving network problems, improving network performance, and understanding user behavior. However,

most organizations are reluctant to share their data with any external experts for analysis because it contains sensitive information

deemed proprietary to the organization, thus raising privacy concerns. Even if the payload of network packets is not shared, header

data may disclose sensitive information that adversaries can exploit to perform unauthorized actions. So network trace data needs

to be anonymized before being shared. Most of existing anonymization tools have two major shortcomings: 1) they cannot provide

provable protection; 2) their performance relies on setting the right parameter values such as the degree of privacy protection and the

features that should be anonymized, but there is little assistance for a user to optimally set these parameters. This paper proposes a

self-adaptive and secure approach to anonymize network trace data, and provides provable protection and automatic optimal settings

of parameters. A comparison of the proposed approach with existing anonymization tools via experimentation demonstrated that the

proposed method outperforms the existing anonymization techniques.
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1 INTRODUCTION

Many organizations in the government, public, or private sector generate a large volume of network traces, consisting

of data packets sent through a computer network. The information contained within these traces can be analyzed,

and the results of such analyses can be utilized to achieve organizational goals, such as to maintain network health,

improve network performance, or understand user behavior. However, most organizations prefer not to share their

internal data with any external entities for analysis because it contains sensitive and proprietary information about the

organization, thus raising privacy concerns. Some attempts to solve this problem include the removal of payload data,

but even if the payload is removed and not shared, header data may disclose sensitive information that adversaries
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can exploit to perform unauthorized actions. For example, IP addresses can be exploited by adversaries to identify

hosts in a network. Port numbers may be used to identify applications that generate the trace. This information can

be used in fingerprinting attacks to reveal that a certain application with suspected vulnerabilities is running on a

network. On the other hand, organizations must comply with privacy restrictions [27]. The sharing of data among

different Federal agencies or departments in the US government is codified and mandatory in an information sharing

environment through the use of anonymized data. Furthermore, "the use of such information is reasonably expected to

produce results materially equivalent to the use of information that is transferred or stored in a non-anonymized form"

and "such use is consistent with any mission of that department, agency, or component (including any mission under a

Federal statute or directive of the President) that involves the storage, retention, sharing, or exchange of personally

identifiable information."[26]. Therefore, data anonymization prior to sharing becomes a necessary, convenient and

sometimes required solution to organizations.

Anonymizing network data is not a simple task. On the contrary, it is quite a challenging one, as there are many

domain-specific requirements and constraints that one must balance for successful anonymization. In general, an

efficient and cost-effective anonymization method has to balance between the risk of re-identifying the original data,

and maintaining the utility of the anonymized data. Although, several anonymization methods are available [3, 21],

they have two major shortcomings. First, most of these methods cannot provide provable protection. Many of the

earlier methods rely on just anonymizing IP addresses [28]. However, as shown in [6] adversaries can inject packets

with specific patterns to be included in the dataset that will be anonymized, with the purpose of identifying these

injected patterns after the anonymization process, and subsequently re-identifying records, and potentially revealing

additional information about the original data. Second, the performance of most existing anonymization methods relies

on setting the appropriate parameter values, such as the degree of privacy protection and the features that should be

anonymized, but there is little assistance for a user to set these parameters optimally. For example, it is quite important

to identify and select the best combination of features to anonymize in order to optimize both the usefulness of the

anonymized data as well as the degree of privacy protection. Such decisions often depend on the type of analysis to be

performed on the anonymized data as well as the statistical properties of the data. A feature that is very important

for the analysis probably should not be anonymized. On the other hand, a feature that has many rare values probably

should be anonymized because it could be used by adversaries to reveal the identity of a record. This paper contains

detailed descriptions of the following contributions:

(1) A secure technique to anonymize network trace data. This approach provides a provable protection based on

differential privacy [10].

(2) A novel method to select features to anonymize based on properties of the data.

(3) A new approach to automatically identify optimal settings of parameters for the proposed anonymization

technique.

The reminder of the paper is organized as follows. Section 2 describes related work. Section 3 proposes our solution.

Section 4 presents experimental results. Section 5 concludes the paper.

2 RELATEDWORK

Related work on privacy protection techniques for general data can be mostly divided into two types of approaches:

1) masking or obscuring the values of fields that may be used to identify an individual or a device/machine (e.g.,

K-anonymity [25]) and 2) maintaining privacy of individuals by adding noise to results of a query (e.g., differential

2
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privacy [10]). The first approach better preserves data properties useful for subsequent analysis but does not provide

strong privacy protection. For example, adversaries can inject packets with specific patterns into network data and

even when the IP addresses are encrypted, adversaries can still re-identify injected packets and then use them to reveal

the binding between the original and anonymized data [6]. The second approach provides strong privacy protection,

but it often adds too much noise such that useful data properties are not preserved; consequently, most anonymization

methods for network data use the first approach.

For example, PCAPLIB [18] utilizes Wireshark dissectors to parse many of the protocol features and can therefore

anonymize up to the application layer. It uses an anonymization approach that preserves the semantics and length of

the fields. Crypto-PAn [28] anonymizes IP addresses using a prefix preserving anonymization approach, but it ignores

anonymization of other features. A more efficient online prefix-preserving method was proposed in [7]. A more recent

work uses the Feistel Network encryption method on IP addresses to preserve prefixes [8] and allows decryption.

TCPANON [14] is another tool that uses customized parsing to hide identities. Other tools such as SCRUB-TCPDUMP [17]

anonymize a small number of traffic features so their functionality is limited. Finally, tools such as TRACEWRANGLER

[4] only sanitize network captures. Note that all these methods do not provide provable privacy protection such as

differential privacy. Anonymized data can be still a target of several attacks, which include injection or inspection

attacks[6]. Most attacks that target anonymized flows are passive and can be executed after anonymization. Such

attacks work by matching the features of anonymized flows with the features of original flows to break anonymization

functions.

Data injection attacks are initiated by injecting records with known patterns in the original data sets then trying

to re-identify these records after anonymization. It is similar to the chosen plain text attack that targets encryption

algorithms. An injection attack has been described as a privileged attack since it gives an attacker more insight about

the data set compared to an external observer [6]. Data injection attacks are usually executed by sending IP packets

with random source and destination IP addresses, sending packets by spoofing IP addresses or sending packets by

forging packet headers to appear as anonymized traffic [5]. The adversary can then discover the mapping between the

injected packets before and after anonymization. Such attacks also succeed if the adversaries have some knowledge of

the original flows from relevant sources such as DNS and WHOIS. They may then inject some fake flows to the original

traces; then it then becomes easy to discover those fake flows in the anonymized data using matching algorithms. The

adversaries may also escalate their fingerprinting activities to discover other sensitive attributes such as the shared

prefixes of IP addresses in the network. Mohammady et al. mentioned that many of the existing anonymization schemes

have been shown to be vulnerable to injection attacks [21], including some very well-known anonymization approaches

such as Crypto-PAn [28]. In this paper we take into consideration injection attacks that inject records with known

patterns such as those in [6]. Mohammady et. al. [21] proposed a solution to make prefix-preserving encryption robust

to injection attacks, but their solution requires creating multiple variants of the same data and the recipient of the

anonymized data must run analysis multiple times (once for each variant). On the contrary, our approach does not

require any additional work.

Only two works [3, 19] we are aware of use differential privacy for network trace data. However, the work by

McSherry and Mahajan does not allow data recipients to have direct access to anonymized data, instead they have to use

a query interface provided by data curator [19]. This often does not work in practice as data recipients typically prefer

to use their own analysis methods/tools. Aleroud et al. [3] propose a condensation-based solution, but the clustering

method used does not limit the impact of a single record (adding a record may cause major changes to many clusters),

and does not guarantee differential privacy. Another shortcoming of existing work is the requirements that users

3
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should select appropriate features of the data set to anonymize, which is often not a trivial task for users. A survey on

anonymizing network data [9] shows that a major difference between anonymizing network data versus other types

of data is the existence of domain specific requirements that dictate how network data will be used in analysis. For

example, it is often necessary to preserve certain parts of a field e.g., the prefix of an IP or MAC address. On the other

hand, the re-identification risk often depends on statistical characteristics of the data. For example, within a specific data

set, the vendor code of a MAC address may be unique, hence, it carries a high re-identification risk, while in another

data set there could be many MAC addresses with the same vendor code resulting in a much lower re-identification

risk. This paper proposes a solution that selects features to anonymize and considers both subsequent analysis and

re-identification risks.

There has been a rich body of work on hyperparameter tuning in machine learning [29]. However, there is little

work on parameter tuning for data anonymization techniques. This paper proposes a solution, which also includes a

method tailored to the specific problem of automated parameter tuning for anonymization purposes.

3 PROPOSED METHODOLOGY

This section provides a novel method to anonymize a network trace. It supports both differential privacy [10] and

k-anonymity [25]. k-anonymity is an easy to understand privacy model and it prevents attacks that link an anonymized

data set with other public data sets to reveal a person’s identity. It usually leads to better data utility as well. Differential

privacy is a stronger privacy model with a provable guarantee.

Differential privacy allows a user to specify the exact point between the degree of privacy and the level of accuracy

of a data set. This point is represented by the privacy-loss budget or simply the privacy budget. The privacy budget 𝜖

ranges from 0 (full privacy but no accuracy) to∞ (no privacy but absolute accuracy). It is used in the differential privacy

model to provide provable privacy protection. A larger budget allows more accurate analysis results on anonymized

data but provides less privacy protection. For example, in the US 2020 Census a high privacy budget of 19.61 was used

[16] resulting in more accurate results.

More specifically, let 𝐷1 and 𝐷2 be two data sets that differ by just one record. Let 𝐷′
be an anonymized data set.

An anonymization method A is differentially private if the probability of generating 𝐷′
from 𝐷1 to the probability of

getting 𝐷′
from 𝐷2 is bounded by 𝑒±𝜖 . Intuitively, differential privacy prevents adversaries from guessing whether a

record belongs to 𝐷 based on 𝐷′
. Formally, an anonymization method A is differentially private if it is bounded as

shown in Equation 3.1.

𝑒−𝜖 ≤ 𝑃 (A(𝐷1) = 𝐷′)
𝑃 (A(𝐷2) = 𝐷′) ≤ 𝑒𝜖 (3.1)

where 𝜖 is the privacy budget. Usually the smaller the 𝜖 , the better the privacy protection and the lower the accuracy

due to increased level of added noise [11].

Regarding 𝑘-anonymity, the value of 𝑘 requires that each record has at least 𝑘 − 1 other records that have the same

value on anonymized features. Consequently, adversaries cannot uniquely identify a record based on these features.

However, 𝑘-anonymity does not provide a worst-case privacy guarantee as adversaries with additional knowledge may

still identify a record. This is not a problem in our method since our solution also supports differential privacy, which

does provide a worst-case privacy guarantee.

Both differential privacy and 𝑘-anonymity require values for their input parameters, the privacy budget 𝜖 , and the

cluster size 𝑘 respectively. Those values must be known before anonymization takes place and must be set accordingly

in order to optimize the trade-off between accuracy and privacy protection.

4
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Algorithm 1 describes our overall anonymization algorithm for network traces. The core of this algorithm is a

clustering method that divides data into small clusters and replaces individual instances in each cluster with an

aggregated instance. To support differential privacy, the clustering is not sensitive to the addition or deletion of a single

instance, i.e., only a limited number of instances will change their cluster membership when a new record is added.

Such clustering method is called Insensitive MicroAggregation.

Hence, we call our method Anonymization with Insensitive MicroAggregation. It provides strong privacy protection

because it supports both k-anonymity and differential privacy.

The input to this algorithm is a data set 𝐷 , a privacy budget 𝜖 , and a 𝑘-anonymity measure 𝑘 . Algorithm 1 first

identifies IP or MAC addresses in the data set and applies prefix-preserving anonymization on these features. Prefixes

of such features often indicate whether two nodes belong to the same subnet and the remaining digits represent the

specific node within a subnet. In cyber security applications, it is important to ensure that if two nodes belong to the

same subnet, their anonymized IP addresses still belong to the same subnet, therefore, the anonymized instances of

such nodes should reflect this property.

Algorithm 1 Anonymization with Insensitive MicroAggregation

procedure Anonymize_With_IMA(𝐷 , 𝜖 , 𝑘)

Prefix preserving anonymization of IP or MAC address features

Select other features to anonymize based on data properties

Divide 𝐷 into subsets 𝐷1, . . . , 𝐷𝑙 such that each 𝐷𝑖 contains records with class label 𝑦𝑖 . If there is no class label,

just use one subset 𝐷1 = 𝐷 .

for Each 𝐷𝑖 do
Run insensitive microaggregation to divide 𝐷𝑖 into clusters 𝐶𝑖1, . . . ,𝐶𝑖𝑛
for Each cluster 𝐶𝑖 𝑗 , 1 ≤ 𝑗 ≤ 𝑛 do

for numerical features, compute mean of 𝐶𝑖 𝑗 on features to be anonymized and use Laplace mechanism

[10] to add noise to these features

for categorical features, use the exponential mechanism [20] to compute the perturbed most frequent

value within the cluster.

Replace each record in 𝐶𝑖 𝑗 with the perturbed mean or most frequent value.

end for
end for

end procedure

Algorithm 1 next applies a method to select additional features from 𝐷 to anonymize, as network trace data often

contain many features. Note that anonymizing all features in 𝐷 often damages important properties of the data that are

important for subsequent analysis. For example, a port number often indicates the type of services provided at the

host so anonymizing it may cause issues in subsequent analysis. On the other hand, some features may have many

unique values in the data set so adversaries can easily use them to identify records. Clearly there is a need to select

appropriate features for anonymization to optimize the balance between privacy protection and utility of data. The

selection method considers for each feature both its relationship with the target variable as well as privacy risks and

suggests a subset of features to be anonymized. This process is explained in detail in section 3.3.

Algorithm 1 next divides the data set into subsets based on the class label. This helps improve the utility of anonymized

data because one does not want to blur the boundary between records with different class labels. If 𝐷 does not have a

class label then the whole data set will be treated as a single subset (class).

5
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For each subset 𝐷𝑖 , Algorithm 1 divides it into clusters such that each cluster has at least 𝑘 records, such that the

records in the same cluster have similar values. In order to preserve differential privacy, it is important to make sure that

adding or deleting a record to 𝐷𝑖 has a limited impact on resulting clusters. Our previous work using a condensation

method for anonymization in [3] does not satisfy this property so it may not lead to differential private output. Instead,

in Algorithm 1 we use an insensitive microaggregation method [24] which ensures that adding a record can only cause

limited changes to resulting clusters. Details of our insensitive microaggregation process are described in Section 3.2.

Once these clusters are generated, Algorithm 1 computes the mean of numerical features that need to be anonymized

in each cluster, and adds Laplace noise to the mean values to ensure differential privacy. Each record in a cluster is

then replaced with another one containing these perturbed mean values on those features. For categorical features, the

algorithm uses exponential mechanism to return the most frequent value within a cluster [20]. Note that there is a

small probability that a value other than the most frequent value will be returned to ensure differential privacy.

One issue of Algorithm 1 is that the input parameters 𝜖 and 𝑘 have significant impact on the output so they need

to be tuned appropriately to optimize the balance between privacy protection and data utility. This is an important

problem to solve, and we propose an automatic parameter tuning method to address this issue.

The rest of this section provides details of each step in Algorithm 1. Section 3.1 describes anonymization of IP

addresses. Section 3.2 presents the insensitive microaggregation method and proves differential privacy. Section 3.3

describes our proposed method that selects the features to be anonymized based on properties of the data set 𝐷 . Section

3.4 describes the automatic parameter tuning method.

3.1 Anonymization of IP/MAC addresses

Our method first automatically detects IP/MAC addresses and applies prefix-preserving anonymization to the address

fields. The digits of each address are split into the leading digits and the remaining digits. The split is decided by the

type of the address. The leading digits (network part of the IP address) are anonymized by random permutation. The

remaining digits (host part of the IP address) are treated as a regular field and are anonymized along with other fields.

If the prefix length of an IP address is already specified (e.g., in the CIDR notation the address ends with /x where x is

length of prefix), then our method uses the specified length. If the prefix length is not specified, we use the first 24 bits

as prefix for IPv4 addresses as that is the most commonly used prefix length [3]. For an IPv6 address field, our method

first decides whether it is unicast or multicast by checking whether the first 8 bits are all ones (signifying multicast) or

not (unicast). For unicast, usually the first 48 bits need to be preserved because they represent routing prefix and subnet

ID, and the last 80 bits should be anonymized because they identify a specific computer [1]. For multicast, usually the

first 96 bits are the prefix.

After anonymizing the network part, the addresses are then clustered into k clusters based on the host part of the

address. The average value of every 8 bits in the host part of IP addresses (within the same cluster) is calculated. Then

the host address digits in each cluster are replaced using this computed average value.

3.2 Insensitive Microaggregation

Algorithm 2 presents the insensitive microaggregation (IMA) approach, which ensures that the addition of a record has

a minimal effect on clusters. The algorithm first computes a boundary point 𝑃 , where 𝑃 takes the minimal value of each

feature to be anonymized. All records are sorted by their distance to 𝑃 . The method then forms a cluster with the 𝐾

points closest to 𝑃 . These points are removed from the data set. This process repeats until no more than 2𝐾 points are

left. Finally, the remaining points form the last cluster.
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Figure 1 illustrates the basic idea behind this method on an example dataset containing nine points (records). The

circles identify clusters, and 𝐾 = 3. The triangle represents the boundary 𝑃 with minimal value on each dimension. The

nine points are sorted by their distance to 𝑃 and a first cluster is generated containing the three points closest to 𝑃 .

Then, these points are removed from the data set and a second (and finally a third) cluster is generated with the next

three closest points.

Algorithm 2 Insensitive Microaggregation

procedure IMA(𝐷𝑖 ,𝜖 ,𝑘)

Compute a boundary node 𝑃 which takes minimal value in 𝐷𝑖 on every feature to be anonymized

for Each record 𝑥 ∈ 𝐷𝑖 do
Compute distance between 𝑥 and 𝑃

end for
Sort records in 𝐷𝑖 by their distances to 𝑃

while 𝐷𝑖 contains at least 2𝑘 records do
Form a new cluster 𝐶𝑖 𝑗 by taking the first 𝑘 records in 𝐷𝑖 with shortest distance to 𝑃

Delete these records from 𝐷𝑖

end while
if 𝐷𝑖 is not empty then

Form a new cluster with the remaining records in 𝐷𝑖

end if
end procedure

Boundary P

Fig. 1. Example of insensitive microaggregation

In order to prove that our algorithm is differentially private, it is sufficient to show that the addition of a record 𝑧 has

limited impact on the result. Suppose a point 𝑧 is added, and its distance to 𝑃 is in between 𝑥𝑖 and 𝑥𝑖+1. Suppose these

points are sorted by their distance to 𝑃 as 𝑥1, 𝑥2, . . . , 𝑥𝑛 . Clearly the first cluster around 𝑃 is formed by 𝑥1, . . . , 𝑥𝑘 , and

the next cluster is formed by 𝑥𝑘+1, . . . , 𝑥2𝑘 and so on. Only clusters formed after 𝑥𝑖 are affected by the addition of 𝑧 and

the difference between such a cluster before and after the addition of 𝑧 will be at most one point. This allows us to

bound the sensitivity (i.e., the maximal impact) of adding 𝑧 on cluster mean by
𝐴𝑚𝑎𝑥

𝑘
where 𝐴𝑚𝑎𝑥 is the maximal value

of a feature and 𝑘 is the minimum cluster size. There are at most 𝑛/𝑘 clusters affected. As a result, a Laplace noise with

mean zero and standard deviation
𝐴𝑚𝑎𝑥𝑛

𝑘2𝜖
can be added to ensure 𝜖 differential privacy.
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3.3 Selection of Features for Anonymization

The problem of selecting a subset of features for anonymization is similar to the problem of feature selection. However,

the former needs to consider both privacy risks and the subsequent analysis tasks while the latter only considers

accuracy of the analysis task.

In general, if we know the benefits (better privacy protection) and costs (loss of accuracy in subsequent analysis) of

anonymizing each feature, the problem of recommending the best features for anonymization is still NP-hard because it

is equivalent to the Knapsack problem. Therefore, we use a greedy method which ranks each feature based on its privacy

risks and usefulness for subsequent analysis. We present three methods to recommend features for anonymization,

described next.

𝐶𝑈𝑆 Method: This method measures how unique a value of a record for a particular feature is, within the context

of the entire set of values of that feature. The rationale behind this method lies with the scarcity of each value in the

feature: the fewer times a value is repeated in the feature, the easier it is to re-identify a specific record. Formally, for

each feature 𝑥𝑖 , a Context uniqueness Score (𝐶𝑢𝑆) is calculated for each distinct value 𝑣𝑖 𝑗 of 𝑥𝑖 where 𝐶𝑢𝑆 (𝑣𝑖 𝑗 ) equals
the percentage of records with 𝑣𝑖 𝑗 . The context uniqueness score for the feature 𝑥𝑖 is defined in Equation 3.2:

𝐶𝑢𝑆 (𝑥𝑖 ) = min

𝑣𝑖 𝑗 ∈𝑥𝑖
𝐶𝑢𝑆 (𝑣𝑖 𝑗 ) (3.2)

𝐶𝑢𝑆 (𝑥𝑖 ) measures the re-identification risk of feature 𝑥𝑖 . The lower the 𝐶𝑢𝑆 value, the higher the risk or re-

identification. For example, a feature with rare values will have a lower 𝐶𝑢𝑆 score than a feature without rare values

because the rare value has lower frequency in the data set and higher re-identification risks because adversaries can

use the rare value to infer the identity of a record.

Mutual InformationMethod: This method utilizes mutual information, which is a measure of dependence between

two variables, in essence, it identifies how much information we can obtain about one variable by observing the other

variable. In order to measure utility, we use mutual information between the feature and the target variable that needs

to be predicted in the subsequent analysis because it works for both discrete target variables (e.g., attack or not attack)

and numerical target variables (e.g., the performance of transferring large files over WLAN). Let 𝑥𝑖 be a feature and 𝑦

be the target variable. Mutual information 𝐼 (𝑥𝑖 , 𝑦) = 𝐻 (𝑥𝑖 ) − 𝐻 (𝑥𝑖 |𝑦) where 𝐻 (𝑥𝑖 ) is the amount of entropy of 𝑥𝑖 and

𝐻 (𝑥𝑖 |𝑦) is the conditional entropy of 𝑥𝑖 given 𝑦. The Mutual Information method simply ranks features by their mutual

information in ascending order. Features with the lowest mutual information will be recommended for anonymization

because they contribute less to predicting the target variable.

𝐶𝑈𝑃 Method: Finally, we also propose a method that builds on the previous two mentioned methods. It combines

the Context Uniqueness Score and the Mutual Information score. We call it a Combined Utility-Privacy (𝐶𝑈𝑃 ) score for

X and it is defined in Equation 3.3:

𝐶𝑈𝑃 (𝑥𝑖 ) = 𝐼 (𝑥𝑖 , 𝑦) ×𝐶𝑢𝑆 (𝑥𝑖 ) (3.3)

This method uses 𝐶𝑈𝑃 to sort features in ascending order. The top ranked features have a high re-identification risk,

since they have either a low𝐶𝑢𝑆 score or low mutual information with the target variable. Therefore, these features are

recommended to be anonymized. Regardless of the proposed recommendations by our method, the data owner always

reserves the right to review these recommended features before making a final decision of which features to anonymize.
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3.4 Automatic Parameter Tuning

Our anonymization method requires two important parameters: the privacy budget 𝜖 used in differential privacy and

the minimal cluster size 𝑘 . When we increase 𝜖 , the noise added in Algorithm 2 becomes less, so the degree of privacy

protection becomes lower and the analysis results over anonymized data are more accurate. When we decrease 𝜖 the

opposite happens.

The impact of 𝑘 is more subtle. When we decrease 𝑘 , our method generates more clusters, which should lead to less

privacy protection and more accurate results. However, since the noise added in Algorithm 2 is reciprocal to 𝑘 , more

noise will be added, increasing privacy protection and generating less accurate results. Therefore, the overall impact of

𝑘 is less certain.

The problem of automatically tuning and identifying parameter values is not new. There has been a lot of work on

tuning hyperparameters [29]. The most popular methods include grid search, random search, and Bayesian optimization.

Grid search picks a few values for each parameter and then exhaustively tries all combinations of these values, so it is

quite expensive if there are many parameters or many possible values. Random search each time checks a few random

combinations and selects the best one. It is more applicable when there are many parameters. Bayesian optimization

is a popular optimization strategy for a black-box objective function that does not assume any functional forms. It is

usually employed to optimize expensive-to-evaluate functions [13]. In parameter tuning Bayesian optimization is used

to find the parameter setting that optimizes an objective function (e.g., the accuracy).

Overall, none of the above methods if used by themselves is sufficient to address parameter tuning for anonymization.

Specifically, in anonymization of data sets one has two objectives to optimize: the accuracy of subsequent analysis

conducted on anonymized data and the degree of privacy protection. Both objectives can be measured using different

metrics. For example, we can use true positive rate (TPR) and false positive rate (FPR) for data used in cyber security.

However, it is not trivial to estimate TPR and FPR because they are data dependent. So getting an accurate estimation

of these metrics often requires several experimental attempts. To describe our tuning approach we will use a cyber

security dataset as an example and will calculate values for 𝑘 and 𝜖 parameters. An important part of this process is to

provide a metric that measures the effectiveness of combinations of 𝑘 and 𝜖 values. Next, we describe a way to measure

the quality of a specific combination of 𝑘 and 𝜖 parameter values and then we propose a hybrid method that selects the

𝑘 and 𝜖 parameter values.

Measuring quality as a combination metrics: Within the scope of a cyber security dataset, we use TPR and

FPR for attack class, weighted F1 score for both attack and normal classes, and privacy level to measure the quality of

a combination. TPR and FPR are more commonly used than accuracy in cyber security because cyber security data

sets are often very imbalanced and accuracy is not a good measure for imbalanced data. TPF and FPR only measure

performance of the attack class. F1 score measures performance on both classes and combines both precision and

recall. Since 𝜖 only measures worst-case privacy, we use a privacy level metric in [2] because it is easy to interpret,

and represents on average how close the original value lies to the anonymized value. Suppose the original value of

a feature 𝑥𝑖 can be estimated in the range of [𝑣1, 𝑣2] with 95% confidence, this metric computes a privacy level at

(𝑣2 − 𝑣1)/𝑠𝑡𝑑 (𝑥𝑖 ) where 𝑠𝑡𝑑 (𝑥𝑖 ) is the standard deviation of the original feature. It then averages this privacy level over

all anonymized features. For example, a privacy level of two means the original value can be estimated at an interval

twice the size of the standard deviation. In essence, the longer the length of the confidence interval, the higher degree

of privacy protection. We also take a log of the privacy level because unlike TPR, FPR, and F1 score, the privacy level is

not bounded within [0, 1] and a privacy level greater than two is often sufficient because the original data can be only

9
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estimated to the range plus or minus one standard deviation from anonymized data. Hence, by consolidating all these

metrics together, we construct Equation 3.4 to measure the overall quality 𝑄 .

𝑄 = 𝑤1 ×𝑇𝑃𝑅 −𝑤2 × 𝐹𝑃𝑅 +𝑤3 × F1 score +𝑤4 × log(privacy level) (3.4)

In practice users can set values for weights 𝑤1,𝑤2,𝑤3,𝑤4 based on their preferences. We set 𝑤1,𝑤2,𝑤3 to 1 and

𝑤4 to 0.1 for experiments in Section 4 because our experiments used intrusion detection data where higher priorities

should be given to accuracy of intrusion detection using anonymized data than to privacy protection.

Hybrid Algorithm: Based on these observations, we propose a hybrid approach described in Algorithm 3. It is

called hybrid because it uses both the crude grid search and the greedy search. The basic idea is to first perform a crude

grid search to identify a few promising combinations, and then uses greedy search around the area in each promising

combination. This allows us to find near optimal combination in very few number of attempts.

The algorithm takes input a data set 𝐷 , a set of selected features 𝐹 to anonymize, an initial grid size 𝑠 (we set 𝑠

between three and four in this paper), two range parameters 𝛿𝑘 and 𝛿𝜖 which defines the area to search around a

promising combination, and two stopping thresholds: 𝑡𝑞 for minimal improvement and 𝑡𝛿 for minimal range.

Algorithm 3 Hybrid method for parameter tuning

procedureHybridTuning(data set 𝐷 , feature set 𝐹 to anonymize, initial grid size 𝑠 , range 𝛿𝑘 and 𝛿𝜖 quality threshold

𝑡𝑞 and range threshold 𝑡𝛿 )

Choose minimal and maximal value for 𝜖 and 𝑘

Generate a grid with 𝑠 × 𝑠 cells over 𝜖 and 𝑘
for Each combination of 𝜖𝑖 and 𝑘 𝑗 in the initial grid do

D’=Anonymize_With_IMA (𝐷 ,𝜖𝑖 ,𝑘 𝑗 )

Train a model using 𝐷′
and compute score(𝜖𝑖 , 𝑘 𝑗 ) using Equation 3.4

end for
Select a few combinations with best score

for Each selected combination of 𝜖𝑢 and 𝑘𝑣 do
repeat

if not the first iteration 𝑘𝑣 = 𝑘
′
𝑣 /*replace start point with current local optimal*/

Fix 𝜖 at 𝜖𝑢 , do a size 𝑠 grid search of 𝑘 in the range of [max{𝑘𝑣 (1 − 𝛿𝑘 ), 𝑘𝑚𝑖𝑛},min{𝑘𝑣 (1 + 𝛿𝑘 ), 𝑘𝑚𝑎𝑥 }]
and find a local optimal 𝑘′𝑣 (i.e., with highest score)

𝛿𝑘 = 𝛿𝑘/2
until score(𝑘′𝑣, 𝜖𝑢 )-score(𝑘𝑣, 𝜖𝑢 ) < 𝑡𝑞 or 𝛿𝑘 < 𝑡𝛿 /*stop if improvement is less than a threshold or the range

reaches minimal threshold*/

repeat
if not the first iteration 𝜖𝑢 = 𝜖′𝑢 /* replace start point with local optimal */

Fix 𝑘 = 𝑘′𝑣 , do a grid search to find a local optimal 𝜖′𝑢 in the range of [max{𝜖𝑢/(1+𝛿𝜖 ), 𝜖𝑚𝑖𝑛}),min{𝜖𝑢 (1+
𝛿𝜖 ), 𝜖𝑚𝑎𝑥 }]

𝛿𝜖 = 𝛿𝜖/2
until score(𝑘′𝑣, 𝜖′𝑢 ) -score(𝑘′𝑣, 𝜖𝑢 ) < 𝑡𝑞 or 𝛿𝜖 < 𝑡𝛿

end for
Return the pair of (𝜖′, 𝑘′) with the highest score

end procedure

Our algorithm first decides the minimal and maximal value of each parameter as follows. Let these values be

𝜖𝑚𝑖𝑛, 𝜖𝑚𝑎𝑥 , 𝑘𝑚𝑖𝑛 , and 𝑘𝑚𝑎𝑥 . For 𝑘 we select minimal value of 20 for data sets with fewer than one thousand records

and a value of 100 otherwise. Smaller 𝑘 will cause the noise added in Algorithm 2 to be too large. We set the maximal
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value of 𝑘 at 𝑛/𝑐 such that at least 𝑐 clusters will be generated (so cluster size will be at most 𝑛/𝑐) to make sure the

anonymized data captures enough properties of the original data. We use 𝑐 = 200 in this paper. Note that records that

fall within the same cluster will have the same value on each anonymized feature.

For 𝜖 we let users select its minimal and maximal value. In this paper we used a minimal value of 0.01 and a maximal

value of 1.

The algorithm then generates a 𝑠 × 𝑠 grid in the allowed 𝜖 and 𝑘 ranges. The best few combinations are selected; we

choose one combination in this paper. For 𝑘 the algorithm divides it in equal-sized grids. For 𝜖 the algorithm divides it

in equal-sized grids in logarithmic scale because 𝜖 can take very small values.

For each selected combination (𝜖𝑢 , 𝑘𝑣), the algorithm first fixes the value of 𝜖 , and does a local search on 𝑘 . Note that

this step is greedy because the algorithm ignores other 𝜖 values. We also optimize 𝑘 first because we found that it has a

larger impact on results compared to 𝜖 .

The algorithm uses a step 𝑠 grid search in the local search step on an interval of [max{𝑘𝑣 (1 − 𝛿𝑘 ), 𝑘𝑚𝑖𝑛},min{𝑘𝑣 (1 +
𝛿𝑘 ), 𝑘𝑚𝑎𝑥 }] where the 𝑘 value falls between 𝑘𝑣 (1−𝛿𝑘 ) and 𝑘𝑣 (1+𝛿𝑘 ) and is bounded by the previously selected minimal

and maximal value of 𝑘 . For example, if 𝑘𝑣 = 500 and 𝛿𝑘 = 0.2, it will search in the range of [400, 600]. Grid search is

used here because the relationships between 𝑘 and quality metrics are more complex and not necessarily monotonous.

But this grid search is only conducted on only one parameter so it is still quite efficient.

The algorithm then replaces 𝑘𝑣 with local optimal 𝑘′𝑣 and 𝛿𝑘 with 𝛿𝑘/2. The range 𝛿𝑘 is halved to focus on smaller

areas. This process repeats the local grid search on 𝑘 until the improvement is lower than a threshold 𝑡𝑞 or the range 𝛿𝑘

is less than 𝑡𝛿 .

The algorithm then fixes 𝑘 at the found local optimal 𝑘′𝑣 and uses a grid search to find a local optimal value for 𝜖 in

the neighborhood of [max{𝜖𝑢/(1 + 𝛿𝜖 ), 𝜖𝑚𝑖𝑛}),min{𝜖𝑢 (1 + 𝛿𝜖 ), 𝜖𝑚𝑎𝑥 }]. This process is similar to the step in finding a

local optimal 𝑘 . But the algorithm searches in the range of 𝜖/(1 + 𝛿𝜖 ) to 𝜖 (1 + 𝛿𝜖 ) because 𝜖 is divided into grids in

logarithmic scale. For example, if 𝜖𝑢 = 0.1, 𝛿𝜖 = 1, the search takes place in the range of [0.05, 0.2].
Again a one-dimensional grid search is used, because although each individual quality metric is monotonous with

respect to 𝜖 , the overall score in Equation 3.4 may not be monotonous. Specifically, when 𝜖 increases, the accuracy

metrics (TPR, FPR, F1 score) should yield better results. However, the privacy level should decrease because less noise is

added to the original data. As a result, it is unclear whether the combined score in Equation 3.4 will increase or decrease.

Finally the algorithm returns the best combination found in all searched combinations.

Complexity Analysis: Algorithm 3 searches a total of 𝑂 (𝑠2 + 𝑠 logmax{𝛿𝑘/𝑡𝛿 , 𝛿𝜖/𝑡𝛿 }) combinations because the

initial grid search checks 𝑠2 combinations and then the local search only checks 𝑂 (𝑠) combinations in each iteration,

and can have at most logmax{𝛿𝑘/𝑡𝛿 , 𝛿𝜖/𝑡𝛿 } iterations because each time the two range parameters are halved. The

value of 𝑠 can be set quite low compared to a typical grid search so in practice our hybrid algorithm is more efficient.

Quality wise we observed through experiments that Algorithm 3 produces results that are comparable to a grid search

with much larger number of combinations.

4 EXPERIMENTAL RESULTS

In this section we discuss the experiments that we conducted in order to evaluate our anonymization approach and

compare it with other existing tools or methods. The goal of anonymization is not only to obscure a data set, but

also to ensure that an analysis of the anonymized data set is as close as possible to the one performed on the original

non-anonymized data set. Therefore we also compare our results with those on the original data set. Furthermore, we

evaluated the capability of our approach to thwart injection attacks on the data set; we also describe our evaluations on
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selecting and recommending the most appropriate features in a data set for anonymization. Finally, we evaluated the

parameter setting and tuning of our main Anonymization_With_IMA approach. In order to conduct all these evaluations,

we needed to use specific data sets. Since network data is used for many purposes and in several domains, such as

in cyber security, it makes sense to use cyber security data sets to conduct experiments and evaluate our proposed

methods within the scope of this research.

4.1 Setup

Data sets: The data sets that we used in our evaluation are: PREDICT [15] and UNSW-NB15 [23]. We chose these

datasets because they contain network trace information for cyber security purposes. In addition, they are labeled and

contain a variety of cyber attacks, thus enabling a more accurate subsequent analysis. The PREDICT dataset contains

500K rows and 13 fields such as IP information and other flow statistics. UNSW-NB15 has 42 numerical fields and we

used about 120K rows. Detailed attributes in UNSW-NB15 dataset allow us the opportunity to experiment with the

feature selection process, such as TCP connection setup time. Both data sets are split into around 70% training and 30%

testing.

Methods: We compared the proposed Anonymization with Insensitive Micro Aggregation (Anonymize_with_IMA)

method against two categories of existing anonymization methods. The first category includes general purpose data

anonymization tools, while the second category is more specific to network data anonymization tools. Regarding

general anonymization tools, we selected ARX [12] because it is a popular anonymization tool and implements multiple

anonymization methods and privacy models. We selected two main anonymization methods implemented in ARX: 1)

generalization and suppression, and 2) micro aggregation. Both methods enforce k-anonymity. Note that our method

enforces both k-anonymity and differential privacy. For the case of generalization and suppression, ARX allows users to

create a generalization hierarchy for each quasi-identifier attribute. For example, packet sizes can be generalized into

intervals and higher level intervals can be divided into smaller intervals at a lower level. ARX then searches for the

optimal combination of generalization of all quasi-identifier attributes to satisfy k-anonymity and at the same time

minimizes loss of utility. The micro aggregation method in ARX is similar to the clustering step of our method that

divides data into clusters and then replaces the quasi-identifier attributes of records in each cluster with their mean. But

there are two major differences: 1) the method in ARX may mix records with different class labels (e.g., malicious and

normal traffic) in the same cluster, which leads to lower utility; 2) ARX does not enforce differential privacy whereas

our method does.

The second category of tools refers to those that are specific for network data. Examples of such tools include

PCAPLIB [18], Crypto-PAn [28], TCPANON [14], SCRUB-TCPDUMP [17], and TRACEWRANGLER [4]. All of them

use prefix-preserving anonymization methods on IP addresses. For the other fields, they use a number of simple

masking/obscuring techniques including:

(1) Random permutation (i.e., values of a field are randomly permuted within the data set);

(2) Black marker (a field value is replaced with a constant);

(3) Truncation (the last few digits of a field are removed).

In order to enable a comparative analysis between the above tools and ours, we implemented these three techniques,

applying prefix-preserving anonymization for IP addresses and then using one of these three techniques for the other

fields. Since there is a degree of randomness in Anonymize_With_IMA Algorirhtm (because it adds randomly generated
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noise to cluster means), we experimented by executing Anonymize_With_IMA five times and reported the average of

the results. We did not notice much variation of results between the different executions.

Metrics: In our experiments we measure both the degree of privacy protection and the preservation of data properties

(utility) for subsequent analysis. As other methods do not enforce differential privacy, we use the confidence interval

metric [2] as a privacy metric, which is the length of the 95% confidence interval of the difference between the original

data and the anonymized data (the larger the interval the higher the privacy protection). Since different fields have

different ranges, we normalized the confidence interval by the standard deviation of each column. For data utility we

use the weighted F1 score (for all classes). Cyber security data is often unbalanced (a data set contains way more normal

records than attack records) therefore, the F1 score is a better measure than accuracy. In addition, we use true positive

rate (TPR, i.e., the fraction of attacks being detected) and false positive rate (FPR, i.e., the fraction of false alerts) for the

attack class. TPR and FPR are important metrics in cyber security. For completeness, we also include the True Negative

Rate (TNR, fraction of normal instances being predicted as normal) and False Negative Rate (FNR, fraction of attacks

being missed). TNR = 1-FPR, and FNR = 1-TPR. In general, better results are those that yield higher values of F1 score,

TPR, TNR, and lower values of FPR and FNR.

4.2 Comparative Analysis with Other Anonymization Methods

Both the UNSW-NB15 and the PREDICT cyber security data sets were used to conduct the same experiment. First, each

data set was anonymized. Then, an intrusion detection analysis was performed on it to identify cyber attacks using a

training set (approximately 70%) and a testing set (approximately 30%) of the data set. Subsequently, we conducted the

same intrusion detection analysis on the original non-anonymized data set, and compared the anonymized analysis

results to the non-anonymized ones.

Since injection attacks can be applied to many fields, such as packet size, or timestamp, we decided that all methods

should anonymize all fields except the class label (attack or not attack). This approach enables a straight-forward

comparison of the tools.
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Fig. 2. Intrusion detection results using several anonymization tools/methods on the UNSW-NB15 data set using K-NN classifier.
Tools/Methods (from left to right): Original data, Anon-IMA (Anonymize_with_IMA), ARX-Generalization, Blackmarker, Truncation,
Random Permutation, ARX Microaggregation. Metrics: True positive rate, False positive rate, F1 score, True negative rate, and False
negative rate
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Fig. 3. Intrusion detection results using several anonymization tools/methods on the PREDICT data set using K-NN classifier.
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Fig. 4. Privacy levels for various methods on UNSW-NB15 data

We set the privacy budget to 0.1 and cluster size 𝑘 = 500 in our solution. We used the default setting for all other

methods, and set 𝑘 = 500 in ARX.

Figure 3 and Figure 2 report the values of F1 score, TPR, FPR, TNR, and FNR of intrusion detection experiments on

data anonymized by various methods for the PREDICT and the UNSW-NB15 datasets respectively. K-NN is used to

predict whether a test instance is an attack because it gives the highest accuracy on these datasets. First, we compare

the analysis results using our anonymization approach with those on the original data set. The results show that our

approach better preserves data properties important for subsequent analysis. For the PREDICT data, TPR using our

approach reaches 98% and weighted F1 score is 97%, both within 1% of the results on original data. For UNSW-NB15,

the TPR of our method is around 88% and overall F1 score is 92%, slightly lower than those on the original data, but

still higher than the other anonymization methods. The FRP of our approach is also around 1.6% for the PREDICT

data and 8% for the UNSW-NB15 data, slightly higher than the FPR on the original data. The TNR of our approach is

around 98% for PREDICT and 92% for UNSW-NB15. The FNR of our aporoach is around 2% for PREDICT and 12% for

14



729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

A Self-Adaptive and Secure Approach to Share Network Trace Data Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

0

0.5

1

1.5

2

2.5

3

3.5

Methods

ANON-IMA ARX-Generalization Blackmarker Truncation Random Permutation ARX-Microagg

Pr
iv

ac
y 

Le
ve

l

Fig. 5. Privacy levels for various methods on Predict data

UNSW-NB15. Overall based on these experiments the Anonymization_With_IMA method achieves performance similar

to the original data, and at the same time it preserves data utility.

Next we compare our Anonymization approach with the other tools/methods using various metrics.

In terms of true positive rate and false negative rate, our approach along with Truncation and ARX with micro

aggregation produced acceptable results on the UNSW-NB15 data set. All other methods gave near zero TPR and close

to 100% FNR. On the PREDICT data set, our approach, Blackmarker and Truncation showed good results (near 100%

TPR and near zero FNR). Truncation seems to work well for both data sets because it still preserves enough useful

information by just removing the least significant digits of attributes in the data set. ARX with micro aggregation works

well for UNSW-NB15 but does not work well for PREDICT, possibly because the PREDICT data set is more skewed with

very few malicious instances. Since ARX with micro aggregation may put together malicious instances with normal

instances in the same cluster, it may introduce a larger distortion for skewed data sets.

In terms of false positive rate and true negative rate, all methods work relatively well on the UNSW-NB15 data set

except ARX with micro aggregation, which produces around 67% FPR and less than 33% TPR. This happens probably

due to the micro aggregation method in ARX putting together malicious instances with normal instances. For the

PREDICT data set, our approach and the two ARX methods work relatively well, however, Truncation, Blackmarker

and Random permutation lead to a high FPR and low TNR.

In terms of F1 score, our Anonymization_With_IMA approach achieves F1 score quite close to the original data on

both data sets. On the PREDICT data set, Truncation, and ARX with generalization achieve an F1 score near 80%, lower

than that of our approach. Other methods have an F1 score around 40% or less. On the UNSW-NB15 data, the remaining

methods except ARX with micro aggregation produce an F1 score around 80%, which is acceptable but lower than that

of our Anonymization_With_IMA.

Overall, Anonymization_With_IMA achieves good performance across all metrics on both data sets. In addition, the

analyses difference conducted using the anonymized and the original data is also small. The remaining methods exhibit

a lower performance compared to Anonymization_With_IMA on some metrics.

Next we briefly explain the variations of the results accross the different tools/methods. Both datasets (also true

for many network datasets) contain many fields that need to be anonymized due to injection attacks. Since ARX with

generalization/suppression generalizes each field independently, it often has to generate extremely low resolution data
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to provide enough privacy protection. For example, suppose each anonymized field is generalized into two distinct

values. The number of possible combinations of 40 fields will be over one trillion but the number of records in the

dataset is far smaller. So many anonymized records will have unique values which can be easily re-identified. As a

result ARX generalizes the majority of fields to just one distinct value. This leads to poor accuracy as K-NN using ARX

anonymized data predicts all UNSW-NB15 test data as normal, missing all the attacks (it has zero TPR and FPR, and F1

score is high simply because 80% of records are normal). For PREDICT its TPR is also only 60%, missing many attacks.

ARX with micro aggregation puts together malicious instances with normal instances in the same cluster. This leads

to high false positive rate and low F1 score for UNSW-N15B. Its performance on PREDICT is similar, leading to K-NN

predicting all testing instances as normal, thus missing all malicious instances. Anonymization_With_IMA avoids this

problem by running clustering for each class separately. It also enforces differential privacy.

Blackmarker basically reduces each anonymized field to a constant. So K-NN just predicts every record to be an

attack (the case of PREDICT where TPR=FPR=1) or normal (the case of UNSW-NB15 where TPR=FPR=0).

Random permutation does not preserve data properties since the correlation between features and the target variable

is lost. In the UNSW-NB15 data it classifies almost all test data as normal. This leads to near zero TPR meaning it missed

all the attacks. The F1 score is still 0.83 simply because most test instances are normal. The PREDICT data has more

balanced test data. Random permutation incorrectly classifies many attacks and normal instances and has low TPR,

high FPR, and low F1 score.

Truncation gives more reasonable results because it preserves some portion of original values (only the last few

digits are lost). But it still distorts fields with small values (e.g., if it removes the last 3 digits then any number from 0 to

999 will become zero). This behavior explains the results (e.g., in PREDICT data its FPR is quite high and in UNSW-NB15

its TPR is only around 81%). In addition as shown in Figure 5 and Figure 4, its privacy level is significantly lower than

the privacy level of our method. It is also vulnerable to injection attacks as it provides no strong privacy protection as

differential privacy.

Figures 4 and Figure 5 show privacy level (in terms of confidence interval). Our approach achieves a similar or higher

level of privacy than other methods except random permutation on UNSW-NB15, but random permutation does not

preserve utility (it missed all attacks in the UNSW-NB15 dataset).

Table 1 and Table 2 show a sample of a few records in the UNSW-NB15 original and anonymized data. It can be

seen that IP addresses with the same prefixes in the original data still have the same prefix after anonymization; hence,

the anonymization process preserves prefixes of IP addresses. The values of numerical features are perturbed after

anonymization but they are still in a similar order. For example, the first and the fourth record have larger src bytes than

the other two records in the original data set and the same is true in the anonymized data set. This helps in conducting

analysis using the anonymized data because properties of the original data are preserved to a large extent.

Results of Simulated Injection Attacks:We conducted experiments to examine whether the proposed Anonymiza-

tion_With_IMA algorithm can thwart injection attacks. Injection attacks insert packets or flows of packets with certain

patterns (e.g., specific destination port numbers, with specific delay between packets) which are incorporated into the

original data. When attackers obtain access to the anonymized data, they can identify these injected patterns, and

then may uncover original data based on relationships between injected and original records. For UNSW-NB15, we

randomly created a total of 750 injection flows, divided into sets of 150 flows, each set for one of the five different

patterns proposed in [6]. Then we try to identify the injected patterns from the anonymized data using K-NN-search.

The K-NN-search algorithm finds the nearest neighbor of the injected pattern from the anonymized dataset. It results in

the row number of the nearest neighbor. If the row number is a match with the original row number of the injected
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Table 1. Original Data

Src IP Dest IP Duration Src Dest

Bytes Bytes

59.166.0.0 149.171.126.9 0.036 528 304

59.166.0.6 149.171.126.7 0.0012 146 178

59.166.0.5 149.171.126.5 0.0012 132 164

175.45.176.2 149.171.126.16 0.17 8168 268

Table 2. Anonymized Data

Src IP Dest IP Duration Src Dest

Bytes Bytes

135.126.163.4 71.29.51.5 0.034 5257 300

135.126.163.8 71.29.51.7 0.0019 263 211

135.126.163.2 71.29.51.1 0.0018 298 189

147.171.114.1 71.29.51.15 0.58 26070 257

data, then the attack is successful. We compared the performance of our method with the original dataset, general

truncation and ARX with generalization, and measure the recovery rate, which is the percentage of recovered instances.

Lower recovery rate means that the anonymization method is more robust and can defend against injection attacks. For

both our Anonymization_With_IMA Algorithm and the ARX with generalization, we used 𝑘 = 50 for k-anonymization

method. Table 3 shows the results of the injection attack re-identification.

Table 3. Recovery rate of injection attacks for various anonymization methods with 95% confidence interval

Original data Truncation ARX-Generalization Anonymization_With_IMA

85.33% ±0.57% 3.60% ±0.029% 14.40±0.095%% 0.27% ±0.0095%

Table 3 shows the recovery rate of injection attacks with 95% confidence interval over various anonymization

methods. We observe that our method works better than the other methods in thwarting injection attacks.

4.3 Evaluation of Feature Selection Method

In addition, we conducted experiments to identify whether our selection methods can assist in identifying which

features are good candidates to anonymize in a given dataset. Therefore, we compared three selection methods to select

features to anonymize as well as a baseline that anonymizes all features.

(1) 𝐶𝑈𝑃 : this method uses the combined utility-privacy score in Equation 3.3 to rank features. Only the top ranked

features are anonymized.

(2) 𝐶𝑈𝑆 : this method uses only the privacy score in Equation 3.2 to produce its output.

(3) Mutual Information: this method only uses mutual information term in Equation 3.3.

All three selection methods selected 20 out of 42 features for anonymization. We set 𝜖 = 1 and 𝑘 = 500 in this set of

experiments. Table 4 shows the results on UNSW-100K data set. The weighed score is computed using Equation 3.4. We

do not report results on PREDICT because on that data set even anonymizing all columns produces high values in TPR,

F1 score and a very low FPR, making feature selection less important.

The results show that all three selection methods have higher TPR, and F1 score than anonymizing all columns. So

anonymizing fewer columns does improve utility of the anonymized data. Anonymizing all columns does have slightly

higher privacy level, but that is offset by reduced utility as shown in its lower weighted score compared to the three

selection methods.
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Table 4. Experiment results for selecting candidate features for anonymization on the UNSW-100K data set

Method TPR FPR F1 Privacy Level Weighted Score

All Columns 0.888 0.091 0.914 3.7555 1.768

𝐶𝑈𝑃 0.958 0.05 0.95 3.17 1.908

𝐶𝑈𝑆 0.959 0.05 0.955 3.22 1.914

Mutual Information 0.958 0.05 0.951 3.29 1.91

For this data set all three methods perform quite well. The performance of 𝐶𝑈𝑃 and Mutual Information are similar

because many features have unique values and thus their 𝐶𝑈𝑆 scores are similar. Since 𝐶𝑈𝑃 score equals 𝐶𝑈𝑆 score

multiplied by Mutual Information, 𝐶𝑈𝑃 and Mutual Information method share many top ranked features. We also

observe that 𝐶𝑈𝑆 exhibits very good results. There are two possible reasons for this: First, around 60% of features are

selected by both 𝐶𝑈𝑆 and 𝐶𝑈𝑃 , because many features having high Mutual Information also have rare values. Second,

our anonymization method is quite effective at preserving data properties important for subsequent analysis so even

after anonymizing the features identified by 𝐶𝑈𝑆 subsequent analysis is still quite accurate.

Table 5 shows the top 10 features ranked by𝐶𝑈𝑃 . It can be seen that many of these features can help identify attacks.

For example, synack is considered an important feature [22] because a longer TPC connection setup time often indicates

denial of service attacks. Most of these features also have integer or float values, meaning they are likely to have more

unique values with high privacy risks.

Table 5. Top 10 features ranked by𝐶𝑈𝑃

Feature Name Data Type Description

synack Float TCP connection setup time, between the SYN and the SYN_ACK packets.

is_sm_ips_ports Binary If source and destination IP addresses equal and port numbers equal then

this variable takes value 1 else 0

smeansz integer Mean of the flow packet size transmitted by the src

ct_state_ttl integer No. for each state according to specific range of values

for source/destination time to live

ct_flw_http_mthd Integer No. of flows that has methods such as Get and Post in http service

dmeansz integer Mean of the fow packet size transmitted by the dst

ct_srv_dst integer No. of connections that contain the same service and destination address

in 100 connections according to the last time

dwin integer Destination TCP window advertisement value

Spkts integer Source to destination packet count

Dpkts integer Destination to source packet count

4.4 Evaluation of Hybrid Parameter Tuning Method

We compared our hybrid parameter tuning method (Algorithm 3) with a standard grid search approach. The hybrid

method starts with a 3 × 3 grid search and then performs a greedy search around the best combination found in the

initial grid search. We set range 𝛿𝑘 = 0.2, 𝛿𝜖 = 1, performance improvement threshold 𝑡𝑞 = 0.001, range threshold

𝑡𝛿 = 0.05. The standard grid search algorithm has a larger grid sized 6 × 6. In this experiment we report results when all

features are anonymized. When conducting experiments after using the feature selection methods we also observe

similar results.
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Table 6 shows the results of each stage of the Hybrid algorithm on UNSW-100K data. The results on PREDICT

are similar. The weighted score is computed based on Equation 3.4. The initial grid search checked 9 combinations

and the best combination found is 𝑘 = 500, 𝜖 = 0.1. The greedy search on 𝑘 checked 3 combinations and found no

improvement. The greedy search on 𝜖 found some better combinations so it stopped after two iterations of grid search

(i.e., six combinations). The final combination returned is 𝑘 = 500, 𝜖 = 0.17.

Table 6. Hybrid Parameter Tuning Results on UNSW-100K

Stage # of Combinations Best (𝑘, 𝜖) TPR FPR F1 Privacy Level Weighted Score

Initial Grid Search 9 𝑘 = 500, 𝜖 = 0.1 0.877 0.079 0.921 3.848 1.777

Greedy search on 𝑘 3 𝑘 = 500, 𝜖 = 0.1 0.877 0.079 0.921 3.848 1.777

Greedy search on 𝜖 6 k=500, 𝜖 = 0.17 0.914 0.098 0.912 3.785 1.786

Table 7. Hybrid Parameter Tuning vs. Grid Search on UNSW-100K

Algorithm # of Combinations Best (𝑘, 𝜖) TPR FPR F1 Privacy Level Weighted Score

Hybrid 18 k=500, 𝜖 = 0.17 0.914 0.098 0.912 3.785 1.786

Grid 36 𝑘 = 500, 𝜖 = 0.1 0.877 0.079 0.921 3.848 1.777

Table 7 shows the best combinations observed using the hybrid method compared to the standard grid search method.

The results show that the Hybrid approach actually finds a slightly better combination than the standard grid search

and it is more efficient: it only checks about half the number of combinations than the standard grid search method. The

savings in terms of time are also significant: on average it took around fifteen minutes to evaluate a combination, which

includes the time to anonymize the data, to train a machine learning model on the anonymized data, and to apply the

model on test data to measure TPR, FPR, and F1 score. Since our hybrid method checks just half of the combinations of

the standard grid search, we can extrapolate that the hybrid model saves hours of tuning time compared to the standard

grid search algorithm for this data set.

The hybrid method works well in this case because it first uses an initial grid search to locate promising areas, and

then uses a greedy search to explore each promising area in more detail. This is a more efficient approach compared to

the standard grid search which treats all cells (combinations) uniformly. As a result the standard grid search does not

delve quickly around the most promising area (which is 𝑘 = 500, 𝜖 = 0.1 in this case).

5 CONCLUSION

This paper deals with the problem of anonymizing a data set to be used for analysis under the conditions that the

privacy of the included data must be preserved as much as possible, it must withstand injection attacks, and maintain its

utility. This is an important problem with a lot of applications in cyber security, network management, health care, and

many other domains. In order to provide a solution to this problem, we proposed a self-adaptive and secure approach

to anonymizing network trace data. Most existing anonymization methods for network data neither provide strong

privacy protection, nor support automatic tuning of parameters. The proposed approach uses an anonymization with

insensitive microaggregation method to provide strong privacy protection. A hybrid search approach is also introduced

to automatically tune parameters. In addition, we proposed three methods for selecting the most appropriate features to

anonymize. All three methods to select the best candidate features for anonymization also work equally well. In order
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to evaluate our methods and our algorithms, we conducted several experiments. The experimental results validated our

approach and verified that our techniques better preserve important properties in the data set and provide a strong

privacy protection compared to other existing methods. In addition, when we applied our parameter tuning method

and then anonymized our datasets, we observed results that were quite similar to those of a more expensive grid search

approach.

5.1 Limitations and Future Work

There are two limitations in our approach. First, it assumes that class labels are present and data will be later classified.

We also only used labeled data sets in our experiments. However, in practice, the data sets may not be labeled or only be

partially labeled. It is possible though to directly apply our method on unlabeled data by just assuming that the entire

data set belongs to one class. However, this may lead to a decrease of accuracy in subsequent analysis. In future work

we plan to conduct experiments on unlabeled data sets. The second limitation is about the methods to select features for

anonymization. So far all proposed methods only use properties of data. In the future we plan to consider data usage

for selecting the most relevant features to anonymize. We also plan to further study various ways to help users fine

tune the anonymization method based on specific analysis tasks. For example, if users want to detect scanning attacks

where adversaries scan the network to gather information to launch attacks, it makes sense to preserve external source

IP addresses in scanning traffic (where adversaries scan a range of IPs to collect information before attacking) because

such addresses are used by adversaries to launch attacks.
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