Analysis of Multiple Discrete Surrogates

- methods review, especially latent class regression

Jan. 27, 2006

Scientific Questions

- Data arising as multiple correlated discrete variables are common in bio-medical applications. e.g.
 - □ Multiple questions are asked to uncover latent depression
 - □ Multiple indicators for evaluating underlying functioning
- How to <u>assess the latent variable</u> through those multiple correlated indicators?
- How to quantify the <u>association between the latent</u> <u>variable and risk factors</u>?
- How to quantify the <u>direct effect from covariates to</u> <u>outcome</u> after adjusting for this underlying latent variable?

Example: multiple discrete Outcome

Observed Pattern frequency

Y pattern	frequency	percent	Y pattern	frequency	percent
000000	239	5.26	101011	662	14.57
000001	300	6.60	110001	112	2.46
001011	109	2.40	110011	152	3.34
100001	321	7.06	111001	148	3.26
100011	259	5.70	111011	446	9.81
101001	335	7.37	111111	78	1.72

Outline

- Review typical methods to deal with multiple correlated discrete outcomes.
 - □ Summarize then Analyze (STA)
 - □ Analyze then Summarize (ATS)
 - □ Summarize and Analyze (SAA)
- Introduce Huang and Bandeen-Roche's latent class regression model (2000).
 - □ Review model contruction: LCA \rightarrow LCR-1 \rightarrow LCR-2
 - Identifiability, estimation, diagnosis
 - □ Selection: the number of latent classes

Notation

- Multiple correlated discrete outcomes:
 - $\Box Y_1, Y_2, \dots Y_K \ (k=1, \dots K)$
 - \square To ease the presentation, let Y to be binary.
 - □ Ordinal case is presented in Huang's thesis.
- Covariates:
 - \square X₁, X₂, ... X_p (p=1, ... P) primary confounders and risk factors, related to latent variable
 - $Z_1, Z_2, \dots, Z_K \quad (k=1, \dots, K) \text{covariates matrix related to} \\ \text{measured indicators } Y_1 \dots Y_K. \quad \begin{bmatrix} 1, & 1, \dots, & 1 \\ & & & \\$
 - □ Two sets of X and Z: mutually exclusive, or overlap.

Summarize then Analyze (STA)

- Scoring Analysis
 - Easiest and most commonly used in questionnaire responses
- Summary score = $\sum_{k=1}^{K} \omega_k Y_k$
 - \Box Equal weights: Summation or average item ratings
 - □ Unequal weights: principle component analysis, and others
- Analysis:
 - □ Regression: summary score ~ covariates.
- Cons:
 - Differential associations between X and Ys are masked.
 - Ignore potential direct confounding effect from item-specific Z on item-specific outcome.

Analyze then Summarize (ATS)

Estimation function methods

- Godambe (1960), Durbin (1960), Wedderburn(1974)
- Liang and Zeger (1986) extended quasi-score function from univariate responses to multivariate correlated responses.
- GEE1 β : parameter of interest, α : nuisance.
 - Separate estimating function for **mean parameter** β and **association parameter** α in covariance matrix.
 - $\square \hat{\beta}$ is consistent, even specify covariance matrix wrongly.
- GEE2 β and α : parameter of interest.
 - \square Joint model and estimate β and α
 - □ GEE2 is more efficient than GEE1.
 - $\hat{\beta}$ is **NOT** consistent if covariance matrix is wrongly specified.
- More appropriate for nicely defined correlated data.

Continue: ATS

- Random Effect Model (Laird and Ware, 1982, 1984)
 - □ Aim for **individual based** model inference and result interpretation.
 - Assumption: correlation among multiple responses arise from <u>natural heterogeneity across people</u>
 - □ Heterogeneity subject-specific regression coefficients, e.g. α_i , and $\alpha_i \sim N(a, \sigma^2)$
- Marginal Model (Heagerty and Zeger, 1996)
 - □ Aim for **population average based** model inference and result interpretation.
 - \square Outcome logistic regression (for each item) ~ X β ,
 - \Box Joint model: log[odds ratio matrix] ~ Z α
 - For ordinal items: Proportional odds model and log[Global odds ratio matrix]

SAA - Latent Variable

- $\bullet\,$ an unobservable variable.
- Realist existing variable, measure indirectly from manifest variables **Y**.
- Instrumentalist a summary construct (η) which can explain all the association among item responses.

$$Pr(\mathbf{Y}_{i} = \mathbf{y}_{i} | \eta_{i} = j) = \Pi_{k=1}^{K} Pr(Y_{ik} = y_{ik} | \eta_{i} = j)$$
(1)

- η_i : latent class-membership
- Index: i individual;
 - j-class membership;
 - k-item reponses.

Latent Class Model (LCA)

Pros of LCA vs.

Latent Trait Model (LTM)

- 1. Y are all binary, latent classes are interpretable as summary of outcome patterns
- 2. No requirement of the known distribution of the latent variable.

Measurement Piece Υı Y₂ Yκ

Applications

LTM: determine univariate scales of ability LCA: cluster analysis tool to find homogeneous groups

Continue - LCA

- Key idea realist
 - target population = comprised of finite sub-populations
 - responses = imperfect indicator of the subpopulation to which a subject belongs.

LCA could be considered as a tool to help cluster people into depression groups according to their item response patterns.

- Key idea Instrumentalist
 - Describing associations among the 6 binary responses.
 - Describing the patterns in which multiple positive responses co-occur.

LCA: Assumptions

1. Internal homogenous

$$Pr(Y_{ik} = y | \eta_i = j) = P_{kj}(y)$$

2. Item responses' conditional independency | pressure class: $Pr(\mathbf{Y}_i = \mathbf{y}_i | \eta_i = j) = \Pi_{k=1}^K Pr(Y_{ik} = y_{ik} | \eta_i = j)$

LCA: Model & Parameters

• K-latent-class LCA with binary responses:

$$Pr(\mathbf{Y}_{i} = \mathbf{y}_{i}) = \sum_{j=1}^{J} \pi_{j} \prod_{k=1}^{K} P_{kj}^{y_{ik}} (1 - P_{kj})^{1-y_{ik}},$$

with,
$$\sum_{j=1}^{J} \pi_{j} = 1$$

Parameters: $P_{kj}, \quad k = 1, \dots, K; j = 1, \dots, J.$
$$\pi_{j} = Pr(\eta_{i} = j), j = 1, \dots, J-1.$$

Latent Class Regression (LCR -1)

LCR-1: Assumptions

- 1. Item responses are **conditionally independent** given class membership.
- 2. Internal homogeneity
- 3. Non-differential measurement condition (often, for LCR)
 the effect of covariates on responses is totally mediated by

latent class membership.

$$Pr(Y_{ik} = y | \eta_i = j, \mathbf{X}_i) = Pr(Y_{ik} | \eta_i = j)$$

 $i = 1, \dots, n; k = 1, \dots, K; j = 1, \dots, J$

LCR-1: Model & Parameters

• J-latent-class regression model (LCR) with binary responses:

$$Pr(\mathbf{Y}_{i} = \mathbf{y}_{i} | \mathbf{X}_{i}) = \sum_{j=1}^{J} \pi_{j}(\beta_{j}^{T} x_{i}) \prod_{k=1}^{K} P_{kj}^{y_{ik}} (1 - P_{kj})^{1 - y_{ik}},$$

$$\pi_{j}(\beta_{j}^{T} x_{i}) = Pr[\eta_{i} = j | \mathbf{X}], \text{ and } \sum_{j=1}^{J} \pi_{j}(\beta_{j}^{T} x_{i}) = 1$$

Parameters: $P_{kj} = Pr(Y_{ik} = 1 | \eta_{i} = j), k = 1, ..., K.$

$$\beta_{jp}, \quad j = 1, ..., J - 1; p = 0, ..., P$$

• Ignoring the effect of Xs - J-latent-class analysis. (π_j, P_{kj})

(Dayton, Macready 1988; Bandeen-Roche, 1999)

Huang & Bandeen Roche: LCR -2

LCR-2: Model Assumptions

Relax: internal homogeneity & nondifferential measurement, to
 Conditioning on class membership, responses are only associated with z_i

$$Pr(Y_{i1} = y_{i1}, \dots, Y_{iK} = y_{iK} | \eta_i = j, X_i, Z_i) = Pr(Y_{i1} = y_{i1}, \dots, Y_{iK} = y_{iK} | \eta_i = j, Z_i)$$

Class membership probabilities are associated with \mathbf{x}_i only: $Pr(\eta_i = j | X_i, Z_i) = Pr(\eta_i = j | X_i)$

Conditional independency

$$Pr(Y_{i1} = y_{i1}, \dots, Y_{iK} = y_{iK} | \eta_i = j, Z_i) = \Pi_{k=1}^K Pr(Y_{ik} = y_{ik} | \eta_i = j, Z_{ik})$$

LCR-2: Model & Parameters

J - latent classes:

$$Pr(\mathbf{Y}_{i} = \mathbf{y}_{i} | \mathbf{X}_{i}, Z_{i}) = \sum_{j=1}^{J} \pi_{j}(X_{i}\beta_{j}) \prod_{k=1}^{K} P_{ikj}^{y_{ik}} (1 - P_{ikj})^{1 - y_{ik}},$$

$$\pi_{j}(X_{i}\beta_{j}) = Pr[\eta_{i} = j | \mathbf{X}], \text{ and } \sum_{j=1}^{J} \pi_{j}(X_{i}\beta_{j}) = 1$$

$$P_{ikj} = Pr(Y_{ik} = 1 | \eta_{i} = j, Z_{ik}) = logit^{-1}(\gamma_{kj} + Z_{ik}\alpha_{k})$$

Parameters:

$$\gamma_{kj}, \quad j = 1, \dots, J - 1; k = 1, \dots, K$$

 $\beta_{jp}, \quad j = 1, \dots, J - 1; p = 0, \dots, P$
 $\alpha_{lk}, \quad l = 1, \dots, L; k = 1, \dots, K.$

LCR-2: Identifiability

• Globally identifiable \hookrightarrow

 $\forall \boldsymbol{\theta}, \boldsymbol{\theta}' \in \Theta: f(\boldsymbol{y} | \boldsymbol{\theta}) = f(\boldsymbol{y} | \boldsymbol{\theta}'), \, \forall \boldsymbol{y} \in \boldsymbol{Y} \Longleftrightarrow \boldsymbol{\theta} = \boldsymbol{\theta}'$

Y: the distribution support.

- Locally identifiable at θ₀ ↔
 ∃N, such that ∀θ' ∈ N : f(y|θ₀) = f(y|θ'), ∀y ∈ Y ⇔ θ₀ = θ'.
 N is a open neighborhood of θ₀.
- Methods to demonstrate local identifiability developed by Goodman, and Bandeen-Roche et al.

(Goodman, 1974; Bollen, 1989; Bandeen-Roche, 1997; Casella, 2002;)

LCR-2: Estimation

- Maximum Likelihood Approach Often use EM algorithm
 - Standard error

estimation: (Matrix of observed Fisher Information)⁻¹.

- No assumption on prior.
- **Bayesian Approach** use MCMC algorithm.
 - Display the posterior distribution for parameters.
 - CI: posterior interval.
- **Cons for both**: computationally intensive; local maximum problem; depend on the fully specified likelihood function.

LCR -2 : Diagnosis

- Failure of Person- x² test & likelihood ratio goodness-offit test.
 - □ P_{ikj} = $Pr(Y_{ik} = 1 | \eta_i = j, Z_{ik})$ Not homogenuous in jth class, so could not use Poisson approximation.
 - Parameter space(a smaller model) as a special case where a subset of parameters of a larger model is set to the boundary of their parameter space.
- Deviance residual is developed to evaluate fit.
- Similar to Bandeen-Roche (1997), propose a pseudoclass membership procedure to check model assumptions specifically.

Selection: number of classes

- <u>AIC</u>: popular, but favor bigger models, (theoretically) not consistent, need refit models.
- **<u>BIC</u>**: popular, sometime favor smaller models, (theoretically) consistent, need refit models.
- Connection factor analysis & LCA
 - Number of factors and number of latent classes the number of dimensions needed to characterize the systematic part of the response distribution.
- <u>Thm 5.1</u> construct sample pseudo-residual correlation matrix, then follow principle component analysis to choose the number of latent classes to began with.

Thanks !

Your comments and questions are welcome after Brian's follow-up discussion.