Analysis of Multiple Discrete Surrogates

- methods review, especially latent class regression Jan. 27, 2006

SLAM Working Group

Yi Huang

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health

Scientific Questions

- Data arising as multiple correlated discrete variables are common in bio-medical applications. e.g.
\square Multiple questions are asked to uncover latent depression
\square Multiple indicators for evaluating underlying functioning
- How to assess the latent variable through those multiple correlated indicators?
- How to quantify the association between the latent variable and risk factors?
- How to quantify the direct effect from covariates to outcome after adjusting for this underlying latent variable?

Example: multiple discrete Outcome

Observed Pattern frequency

Y pattern	frequency	percent	Y pattern	frequency	percent
000000	239	5.26	$\mathbf{1 0 1 0 1 1}$	$\mathbf{6 6 2}$	$\mathbf{1 4 . 5 7}$
000001	300	6.60	110001	112	2.46
001011	109	2.40	110011	152	3.34
100001	321	7.06	111001	148	3.26
100011	259	5.70	$\mathbf{1 1 1 0 1 1}$	446	9.81
101001	335	7.37	$\mathbf{1 1 1 1 1 1}$	$\mathbf{7 8}$	$\mathbf{1 . 7 2}$

Outline

- Review typical methods to deal with multiple correlated discrete outcomes.
- Summarize then Analyze (STA)
- Analyze then Summarize (ATS)
- Summarize and Analyze (SAA)
- Introduce Huang and Bandeen-Roche’s latent class regression model (2000).
\square Review model contruction: LCA \rightarrow LCR-1 \rightarrow LCR-2
- Identifiability, estimation, diagnosis
- Selection: the number of latent classes

Notation

- Multiple correlated discrete outcomes:
$\square \mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots \mathrm{Y}_{\mathrm{K}}(\mathrm{k}=1, \ldots \mathrm{~K})$
\square To ease the presentation, let Y to be binary.
\square Ordinal case is presented in Huang's thesis.
- Covariates:
$\square \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{p}}(\mathrm{p}=1, \ldots \mathrm{P})$ - primary confounders and risk factors, related to latent variable
- $\mathrm{Z}_{1}, \mathrm{Z}_{2}, \ldots \mathrm{Z}_{\mathrm{K}}(\mathrm{k}=1, \ldots \mathrm{~K})$ - covariates matrix related to measured indicators $\mathrm{Y}_{1} \ldots \mathrm{Y}_{\mathrm{K}}$.
$\left[\begin{array}{ll}1, & 1, \ldots \ldots . \\ Z_{11}, & Z_{12}, \ldots \\ \ldots \ldots \ldots . . \\ Z_{L 1}, & Z_{L 2}, \ldots \\ L M\end{array}\right]$
\square Two sets of X and Z : mutually exclusive, or overlap.

Summarize then Analyze (STA)

- Scoring Analysis
\square Easiest and most commonly used in questionnaire responses
- Summary score $=\sum_{k=1}^{K} \omega_{k} Y_{k}$
\square Equal weights: Summation or average item ratings
\square Unequal weights: principle component analysis, and others
- Analysis:
\square Regression: summary score \sim covariates.
- Cons:
\square Differential associations between X and Ys are masked.
\square Ignore potential direct confounding effect from item-specific Z on item-specific outcome.

Analyze then Summarize (ATS)

- Estimation function methods
\square Godambe (1960), Durbin (1960), Wedderburn(1974)
\square Liang and Zeger (1986) extended quasi-score function from univariate responses to multivariate correlated responses.
- GEE1- β : parameter of interest, α : nuisance.
\square Separate estimating function for mean parameter β and association parameter α in covariance matrix.
$\square \hat{\beta}$ is consistent, even specify covariance matrix wrongly.
- GEE2 - β and α : parameter of interest.
\square Joint model and estimate β and α
\square GEE2 is more efficient than GEE1.
$\square \hat{\beta}$ is NOT consistent if covariance matrix is wrongly specified.
- More appropriate for nicely defined correlated data.

Continue: ATS

- Random Effect Model (Laird and Ware, 1982, 1984)
\square Aim for individual based model inference and result interpretation.
- Assumption: correlation among multiple responses arise from natural heterogeneity across people
\square Heterogeneity - subject-specific regression coefficients, e.g. α_{i}, and $\alpha_{i} \sim N\left(\mathbf{a}, \sigma^{2}\right)$
- Marginal Model (Heagerty and Zeger, 1996)
\square Aim for population average based model inference and result interpretation.
\square Outcome logistic regression (for each item) $\sim \mathrm{X} \beta$,
\square Joint model: log[odds ratio matrix] ~ Z a
\square For ordinal items: Proportional odds model and log[Global odds ratio matrix]

SAA - Latent Variable

- an unobservable variable.
- Realist - existing variable, measure indirectly from manifest variables Y.
- Instrumentalist - a summary construct (η) which can explain all the association among item responses.

$$
\begin{equation*}
\operatorname{Pr}\left(\mathbf{Y}_{i}=\mathbf{y}_{i} \mid \eta_{i}=j\right)=\Pi_{k=1}^{K} \operatorname{Pr}\left(Y_{i k}=y_{i k} \mid \eta_{i}=j\right) \tag{1}
\end{equation*}
$$

- η_{i} : latent class-membership
- Index: i - individual;
j - class membership;
k - item reponses.

Latent Class Model (LCA)

Pros of LCA vs.
Latent Trait Model (LTM)

1. Y are all binary, latent classes are interpretable as summary of outcome patterns
2. No requirement of the known distribution of the latent variable.

Applications

LTM: determine univariate scales of ability
LCA: cluster analysis tool to find homogeneous groups

Continue - LCA

- Key idea - realist
- target population $=$ comprised of finite sub-populations
- responses $=$ imperfect indicator of the subpopulation to which a subject belongs.

LCA could be considered as a tool to help cluster people into depression groups according to their item response patterns.

- Key idea - Instrumentalist
- Describing associations among the 6 binary responses.
- Describing the patterns in which multiple positive responses co-occur.

LCA: Assumptions

1. Internal homogenous

$$
\operatorname{Pr}\left(Y_{i k}=y \mid \eta_{i}=j\right)=P_{k j}(y)
$$

2. Item responses' conditional independency | pressure class:

$$
\operatorname{Pr}\left(\mathbf{Y}_{i}=\mathbf{y}_{i} \mid \eta_{i}=j\right)=\Pi_{k=1}^{K} \operatorname{Pr}\left(Y_{i k}=y_{i k} \mid \eta_{i}=j\right)
$$

LCA: Model \& Parameters

- K-latent-class LCA with binary responses:

$$
\begin{aligned}
\operatorname{Pr}\left(\mathbf{Y}_{i}=\mathbf{y}_{i}\right)= & \sum_{j=1}^{J} \pi_{j} \prod_{k=1}^{K} P_{k j}^{y_{i k}}\left(1-P_{k j}\right)^{1-y_{i k}}, \\
\quad \text { with, } & \sum_{j=1}^{J} \pi_{j}=1
\end{aligned}
$$

Parameters: $\quad P_{k j}, k=1, \ldots, K ; j=1, \ldots, J$.

$$
\pi_{j}=\operatorname{Pr}\left(\eta_{i}=j\right), j=1, \ldots, J-1 .
$$

Latent Class Regression (LCR -1)

Measurement Piece
\longrightarrow

Regression Piece

LCR-1: Assumptions

1. Item responses are conditionally independent given class membership.
2. Internal homogeneity
3. Non-differential measurement condition (often, for LCR)

- the effect of covariates on responses is totally mediated by latent class membership.

$$
\begin{aligned}
& \operatorname{Pr}\left(Y_{i k}=y \mid \eta_{i}=j, \mathbf{X}_{i}\right)=\operatorname{Pr}\left(Y_{i k} \mid \eta_{i}=j\right) \\
& \quad i=1, \ldots, n ; k=1, \ldots, K ; j=1, \ldots, J
\end{aligned}
$$

LCR-1: Model \& Parameters

- J-latent-class regression model (LCR) with binary responses:

$$
\begin{array}{cl}
\operatorname{Pr}\left(\mathbf{Y}_{i}=\mathbf{y}_{i} \mid \mathbf{X}_{i}\right) & =\sum_{j=1}^{J} \pi_{j}\left(\beta_{j}^{T} x_{i}\right) \prod_{k=1}^{K} P_{k j}^{y_{i k}}\left(1-P_{k j}\right)^{1-y_{i k}}, \\
\pi_{j}\left(\beta_{j}^{T} x_{i}\right) & =\operatorname{Pr}\left[\eta_{i}=j \mid \mathbf{X}\right], \text { and } \sum_{j=1}^{J} \pi_{j}\left(\beta_{j}^{T} x_{i}\right)=1 \\
\text { Parameters: } & P_{k j}=\operatorname{Pr}\left(Y_{i k}=1 \mid \eta_{i}=j\right), k=1, \ldots, K . \\
& \beta_{j p}, \quad j=1, \ldots, J-1 ; p=0, \ldots, P
\end{array}
$$

- Ignoring the effect of $\mathbf{X s}$ - J-latent-class analysis. $\left(\pi_{j}, P_{k j}\right)$

Huang \& Bandeen Roche: LCR -2

LCR-2: Model Assumptions

- Relax: internal homogeneity \& nondifferential measurement, to Conditioning on class membership, responses are only associated with \mathbf{z}_{i}

$$
\begin{gathered}
\operatorname{Pr}\left(Y_{i 1}=y_{i 1}, \ldots, Y_{i K}=y_{i K} \mid \eta_{i}=j, X_{i}, Z_{i}\right)= \\
\operatorname{Pr}\left(Y_{i 1}=y_{i 1}, \ldots, Y_{i K}=y_{i K} \mid \eta_{i}=j, Z_{i}\right)
\end{gathered}
$$

■ Class membership probabilities are associated with \mathbf{x}_{i} only:

$$
\operatorname{Pr}\left(\eta_{i}=j \mid X_{i}, Z_{i}\right)=\operatorname{Pr}\left(\eta_{i}=j \mid X_{i}\right)
$$

- Conditional independency

$$
\begin{array}{r}
\operatorname{Pr}\left(Y_{i 1}=y_{i 1}, \ldots, Y_{i K}=y_{i K} \mid \eta_{i}=j, Z_{i}\right)= \\
\Pi_{k=1}^{K} \operatorname{Pr}\left(Y_{i k}=y_{i k} \mid \eta_{i}=j, Z_{i k}\right)
\end{array}
$$

LCR-2: Model \& Parameters

- J - latent classes:

$$
\begin{aligned}
\operatorname{Pr}\left(\mathbf{Y}_{i}=\mathbf{y}_{i} \mid \mathbf{X}_{i}, Z_{i}\right) & =\sum_{j=1}^{J} \pi_{j}\left(X_{i} \beta_{j}\right) \prod_{k=1}^{K} P_{i k j}^{y_{i k}}\left(1-P_{i k j}\right)^{1-y_{i k}}, \\
\pi_{j}\left(X_{i} \beta_{j}\right) & =\operatorname{Pr}\left[\eta_{i}=j \mid \mathbf{X}\right], \text { and } \sum_{j=1}^{J} \pi_{j}\left(X_{i} \beta_{j}\right)=1 \\
P_{i k j} & =\operatorname{Pr}\left(Y_{i k}=1 \mid \eta_{i}=j, Z_{i k}\right)=\text { logit }^{-1}\left(\gamma_{k j}+Z_{i k}{ }_{k k}\right)
\end{aligned}
$$

- Parameters:

$$
\begin{array}{ll}
\gamma_{k j}, & j=1, \ldots, J-1 ; k=1, \ldots, K \\
\beta_{j p}, & j=1, \ldots, J-1 ; p=0, \ldots, P \\
\alpha_{l k}, & l=1, \ldots, L ; k=1, \ldots, K .
\end{array}
$$

LCR-2: Identifiability

- Globally identifiable \hookrightarrow
$\forall \theta, \theta^{\prime} \in \Theta: f(y \mid \theta)=f\left(y \mid \theta^{\prime}\right), \forall y \in Y \Longleftrightarrow \theta=\theta^{\prime}$
Y : the distribution support.
- Locally identifiable at $\theta_{0} \hookrightarrow$
$\exists \aleph$, such that $\forall \theta^{\prime} \in \mathcal{N}: f\left(y \mid \theta_{0}\right)=f\left(y \mid \theta^{\prime}\right), \forall y \in Y \Longleftrightarrow \theta_{0}=\theta^{\prime}$.
\aleph is a open neighborhood of θ_{0}.
- Methods to demonstrate local identifiability - developed by Goodman, and Bandeen-Roche et al.

LCR-2: Estimation

- Maximum Likelihood Approach - Often use EM algorithm
- Standard error
estimation:(Matrix of observed Fisher Information) ${ }^{-1}$.
- No assumption on prior.
- Bayesian Approach - use MCMC algorithm.
- Display the posterior distribution for parameters.
- CI: posterior interval.
- Cons for both: computationally intensive; local maximum problem; depend on the fully specified likelihood function.

LCR -2 : Diagnosis

- Failure of Person- x^{2} test \& likelihood ratio goodness-offit test.
$\square \mathrm{P}_{\mathrm{ikj}}=\operatorname{Pr}\left(Y_{i k}=1 \mid \eta_{i}=j, Z_{i k}\right) \quad$ Not homogenuous in $\mathrm{j}^{\text {th }}$ class, so could not use Poisson approximation.
\square Parameter space(a smaller model) - as a special case where a subset of parameters of a larger model is set to the boundary of their parameter space.
- Deviance residual is developed to evaluate fit.
- Similar to Bandeen-Roche (1997), propose a pseudoclass membership procedure to check model assumptions specifically.

Selection: number of classes

- AIC: popular, but favor bigger models, (theoretically) not consistent, need refit models.
- BIC: popular, sometime favor smaller models, (theoretically) consistent, need refit models.
- Connection - factor analysis \& LCA
\square Number of factors and number of latent classes - the number of dimensions needed to characterize the systematic part of the response distribution.
- Thm 5.1 - construct sample pseudo-residual correlation matrix, then follow principle component analysis to choose the number of latent classes to began with.

Thanks !

Your comments and questions
are welcome after Brian's follow-up discussion.

