# Ozone Effect on Mortality

A multi-site time series studie

Yi Huang

Dr. Francesca Dominici Dr. McDermott

Affiliation:

Dept. of Biostatistics Johns Hopkins School of Public Health

#### **Outline of Presentation**

- Introduction
- Aims
- Method and analysis
- Summary
- Future work

## Ozone & Morbidity / Mortality

- Pulmonary function declines with repeated daily ozone exposure (<0.25 ppm).</li>
- Positive association has been found between respiratory admission & summer ozone exposure.
- Significant association has been found between daily mortality & ozone in Los Angeles, New York.
- Ozone exposure might be related to daily fluctuations in admissions for congestive heart failure in the elderly.
  - Audrey, Galizia, 1999; Delvin RB, 1991; Folinbee LJ, 1988; Kinney PL, 1996
  - Richard Burnett, and etc, 1996, 1997.
  - P.L. Kinney and H. Ozkaynak, 1991, Association bw/ ozone & daily mortality

### NMMAPS Data

(The national mortality morbidity Air pollution study)

- Mortality (1987 1994)
  - -- National Center for Health Statistics
  - Total, CVD, RESP, Oth for three age groups (<65, 65-75, >75)
- Air pollution (1987 1994)
  - -- Environmental Protection Agency
  - •PM<sub>10</sub>, O<sub>3</sub>, CO, SO<sub>2</sub>, and NO<sub>2</sub>
- Meteorology (1987 1994)
  - National Climatic Data Center
    - Temperature and dew point
- Summer months only (6,7,8,9)

## **Location of Cities**



#### Outcome

CVDRESP death = CVD + RESP

#### Reasons:

- People with existing respiratory diseases might be more sensitive to ozone exposure.
- Ozone exposure might be related to congestive heart failure in the elderly.
- O3 exposure is likely not to be associated with other-cause related death.
- Audrey, Galizia, 1999; Delvin RB, 1991; Folinbee LJ, 1988; Kinney PL, 1996
- Richard Burnett, and etc, 1996, 1997.
- P.L. Kinney and H. Ozkaynak, 1991, Association bw/ ozone & daily mortality

#### Aims

- to estimate city-specific and overall relative rates of CVD & RESP mortality from summer exposure to ozone combining information across the largest 20 US cities.
- 2. to explore the exposure-response time lag.
- to investigate the confounding effects of other pollutants
- 4. to explore the sensitivity of the results to the adjustment for trends.

## Confounding

- Meteorology confounders:
  - Temperature
  - Dew point temperature
- Biologic confounders:
  - Age
  - Time
  - Day of week.
- Confounding from other pollutants:
  - PM<sub>10</sub>, CO, SO<sub>2</sub>, and NO<sub>2</sub>

## Stage I - city-specific effect

- Poisson time series regression by Generalized Additive Model
- Model:

```
log (E[y]) \sim [O3] + age + dow
+ s(Time,8) + s(temperature,8)
log (E[y]) \sim [O3] + [mix pollutant] + age + dow
+ s(Time,8) + s(temperature,8)
```

- [O3]: different lag --- lag 0/1/2
- [mix pollutant]: PM<sub>10</sub>, CO, SO<sub>2</sub>, and NO<sub>2</sub>

## Stage II – Bayesian Hierarchical model

- $\beta_i^c \sim N(\theta_i^c, \sigma_i^2)$
- $\theta_i^c$ , ~  $N(\mu, \tau^2)$
- μ: the overall log odds ratio of CVD & RESP mortality from summer ozone exposure combining information across the largest 20 US cities.
- Using BUGS for the analysis under noninformative prior.

#### **Univariate Ozone Effect**

95% Confidence Interval for O3-lag2 coeffient, for summer



Ozone estimates with 95% confidence interval

#### Ozone Effect Adjusted by PM10, lag 2

O3 coefficients, before and after adjusting PM10, lag 2



## Estimates on Overall ozone effect

Table 5, O3 - 20 cities total effect on CVD & RESP

| slope | O3 + PM <sub>10</sub> | O3 +NO2         | O3 + SO2        | O3 + CO          |
|-------|-----------------------|-----------------|-----------------|------------------|
| О3    | 0.088                 | 0.303           | 0.267           | 0. 314           |
| lag 0 | (- 1.169, 1.36)       | (- 0.186,0.764) | (- 0.233,0.756) | (- 0.151, 0.751) |
|       | 0.359                 | 0.359           | 0.359           | 0.359            |
|       | (- 0.117, 0.836)      | (- 0.117,0.836) | (- 0.117,0.836) | (- 0.117, 0.836) |
| О3    | - 0.397               | 0.534           | 0.456           | 0. 50            |
| lag1  | (- 1.348, 0.512)      | (- 0.014, 1.02) | (- 0.003,0.888) | (0.074, 0.89)    |
|       | 0.504                 | 0.504           | 0.504           | 0.504            |
|       | (0.083, 0.900)        | (0.083, 0.900)  | (0.083, 0.900)  | (0.083, 0.900)   |
| O3    | 1.247                 | 0.663           | 0.665           | 0.649            |
| lag2  | (0.435, 2.123)        | (0.127, 1.146)  | (0.179, 1.11)   | (0.191, 1.06)    |
|       | 0.660                 | 0.660           | 0.660           | 0.660            |
|       | (0.206, 1.065)        | (0.206, 1.065)  | (0.206, 1.065)  | (0.206, 1.065)   |

#### Sensitivity for 95% C.I. of O3-lag2 coefficient



Sensitivity for 95% C.I. of O3-lag2 coeffient, adjusting PM10



Ozone estimates with 95% confidence interval CIO3PM10sen15.l2.ps

#### Results

- Overall, there is statistically significant positive association between ambient summer O3 and CVD & RESP mortality at lag 1 and lag 2.
- The association between mortality and summer ozone is confounded by PM<sub>10</sub>, but not confounded by CO, SO<sub>2</sub>, and NO<sub>2</sub>.
- The city-specific and overall ozone effects results under univariate and multi-pollutants models are not sensitive to the selection of the number of d.f. in the smooth function of time.

#### Discussion

- Measurement error
- Multi-pollutants model
- Comparison of Case-crossover design and Time-series design
- Clustering on synoptic whether to control temperature effect
- Is the association between ambient O3 and mortality confounded by ultra-fine particle?

## Acknowledgments

 Thanks a lot for Dr. Dominici and Dr. McDermott help and guidance.

Thank Dr. Bandeen-Roche for the great information on confounding.

# Any Questions?

