Different Measures of Average Treatment Effect for Binary Outcome, Estimating by Propensity Scoring

Yi Huang
 Ph.D Candidate

Karen Bandeen-Roche
Professor, JHSPH

Constantine Frangakis Associate Professor, JHSPH

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health

Questions ??

- How to determine whether a treatment/risk factor is on average effective in reducing/increasing disease risk, in a large observational study with a lot of observed confounders?
- Z: binary treatment indicator.
- Y: binary outcome.
- X: covariate.
- $\mathbf{Y}_{\mathbf{i}}^{(\mathbf{0}, \mathbf{1})}$: potential outcome
- Population average risk:

$$
\begin{aligned}
& P^{(1)}=\frac{1}{N} \sum_{i=1}^{N} \operatorname{Pr}\left(Y_{i}^{(1)}=1\right) \\
& P^{(0)}=\frac{1}{N} \sum_{i=1}^{N} \operatorname{Pr}\left(Y_{i}^{(0)}=1\right)
\end{aligned}
$$

Example

- Smoking status
- Lung Cancer
- Age
- Potential cancer status if I ... or not ..
- Population average cancer risk

Propensity Scoring (P.S.)

- Define: $\mathbf{e}_{\mathbf{T}} \mathbf{(X) = \mathbf { P } _ { \mathbf { r } } (\mathbf { Z } = \mathbf { 1 } | \mathbf { X }) , ~ (1)}$
(e.g. the risk of being smoking at giving age.)
- $\mathrm{e}_{\mathrm{T}}(\mathrm{x})$ is a balancing score $\rightarrow \mathbf{X} Џ \mathbf{Z} \mid \mathbf{e}_{\mathbf{T}}(\mathbf{x})$.
(e.g. for people with same $\mathrm{e}_{\mathrm{T}}(\mathrm{X})$, the distribuion of age is same across smoking groups.)
- Typical tool for studying causal inference.
\square The marginal inference of Z to Y (average over X).
- Two conditions for valid causal inference:
1). Treatment assignment is strongly ignorable
2). Close to correctly specified: Z relationship to X.

P.S. Procedure

1. Estimate $\mathrm{e}(\mathrm{x})$.
2. Take subjects with overlapped $\widehat{e}(x)$ after ordering.
3. Subclassification of $\widehat{e}(x)$ into bins.
4. If $\mathbf{f}_{\mathbf{X} \mid \mathrm{Z}=1, \mathrm{jth} \text { bin }} \approx \mathbf{f}_{\mathbf{X} \mid \mathrm{Z}=0, \mathrm{j} \text { th bin, }}$, hold for all Xs within all subclasses, then move on; o.w, back to step-1.

$$
\begin{array}{lll}
\text { 5. } \widehat{P_{j}^{(1)}}=\operatorname{average}\left(Y \mid Z=1, j^{\text {th }} \mathrm{bin}\right) & \widehat{P^{(1)}}=\sum_{j=1}^{J} \omega_{j} \widehat{P_{j}^{(1)}} \\
\widehat{P_{j}^{(0)}}=\operatorname{average}\left(Y \mid Z=0, j^{\text {th }} \mathrm{bin}\right) & \widehat{P^{(0)}}=\sum_{j=1}^{J} \omega_{j} \widehat{P_{j}^{(0)}}
\end{array}
$$

6. Choose measure of average treatment effect, and estimate it.

Collapsibility

■ Collapsible:

$$
\begin{aligned}
& \sum_{j=1}^{J} w_{j} f\left(P_{k}^{(1)}, P_{k}^{(0)}\right)= \\
& f\left(\sum_{j=1}^{J} w_{j} P_{k}^{(1)}, \sum_{j=1}^{J} w_{j} P_{k}^{(0)}\right)
\end{aligned}
$$

- A characteristic of the chosen measure.
- Not depends on model.

■ Three Types

Hypothetical example: Perfect Randomized Trial

	$\mathrm{Z}=1$	$\mathbf{Z}=\mathbf{0}$	Size
Age<65	$P_{1}\left(Y^{(1)}=1\right)=0.4$	$P_{1}\left(Y^{(0)}=1\right)=0.2$	1000
Age $\geqslant 65$	$P_{2}\left(Y^{(1)}=1\right)=0.8$	$P_{2}\left(Y^{(0)}=1\right)=0.6$	1000
	$P\left(Y^{(1)}=1\right)=0.6$	$P\left(Y^{(0)}=1\right)=0.4$	2000

Young: $\quad O R_{1}=\frac{0.4 /(1-0.4)}{0.2 /(1-0.2)}=2.67$
Old:
$O R_{2}=\frac{0.8 /(1-0.8)}{0.6 /(1-0.6)}=2.67$
Marginal: $O R=\frac{0.6 /(1-0.6)}{0.4 /(1-0.4)}=2.25$

1. Collapsible

$$
\neq \frac{1}{2} 2.67+\frac{1}{2} 2.67
$$

2. Collapsible under assumptions
3. Not Collapsible.

$\mathbf{P}^{\mathbf{(1)}} \mathbf{P}^{\mathbf{(0)}}$ - Average Risk Difference

$$
\begin{aligned}
& P_{j}^{(1)}=\operatorname{Pr}\left(Y^{(1)}=1 \mid j^{t h} \mathrm{bin}\right)=\frac{1}{N_{j}} \sum_{i=1}^{N_{j}} \operatorname{Pr}\left(Y_{i}^{(1)}=1\right) \\
& P_{j}^{(0)}=\operatorname{Pr}\left(Y^{(0)}=1 \mid j^{t h} \mathrm{bin}\right)=\frac{1}{N_{j}} \sum_{i=1}^{N_{j}} \operatorname{Pr}\left(Y_{i}^{(0)}=1\right) \\
& P^{(1)}-P^{(0)}=\sum_{j=1}^{J} \omega_{j} P_{j}^{(1)}-\sum_{j=1}^{J} \omega_{j} P_{j}^{(0)}=\sum_{j=1}^{J} \omega_{j}\left(P_{j}^{(1)}-P_{j}^{(0)}\right) \\
&=\frac{1}{N} \sum_{i=1}^{N}\left[\operatorname{Pr}\left(Y_{i}^{(1)}=1\right)-\operatorname{Pr}\left(Y_{i}^{(0)}=1\right)\right] \quad, \quad \omega_{j}=\frac{N_{j}}{N}
\end{aligned}
$$

Collapsible: overall \leftarrow bin-specific \leftarrow individual level
\square The difference of average risk
\square A weighted average of bin-specific treatment effect.
\square The average of individual risk difference.

$\mathbf{P}^{\mathbf{1})} / \mathbf{P}^{(\mathbf{0})}$ - Marginal Relative Risk

- Not Collapsible, in general.

$$
\frac{P^{(1)}}{P^{(0)}}=\frac{\sum_{j=1}^{J} \omega_{j} P_{j}^{(1)}}{\sum_{j=1}^{J} \omega_{j} P_{j}^{(0)}} \neq \sum_{j=1}^{J} \omega_{j} \frac{P_{j}^{(1)}}{P_{j}^{(0)}}
$$

- Collapsible, w/ constant treatment effect assumption.

$$
\begin{aligned}
\text { If } \frac{\operatorname{Pr}\left(Y_{i}^{(1)}=1\right)}{\operatorname{Pr}\left(Y_{i}^{(0)}=1\right)}=r \quad \text { for } & i=1,2, \ldots N, \text { then } \\
\frac{P^{(1)}}{P^{(0)}} & =\sum_{j=1}^{J} \omega_{j} \frac{P_{j}^{(1)}}{P_{j}^{(0)}}=r
\end{aligned}
$$

P.S.: $\frac{P^{(1)} /\left(1-P^{(1)}\right)}{P^{(0)} /\left(1-P^{(0)}\right)}-$ Marginal Odds Ratio (OR)

- Not collapsible:
- individual level \rightarrow bin-specific level
- bin-specific level \rightarrow overall effect level
$\mathbf{w} /$ or \mathbf{w} / \mathbf{o} constant treatment effect assumption

$$
\begin{aligned}
\frac{P^{(1)} /\left(1-P^{(1)}\right)}{P^{(0)} /\left(1-P^{(0)}\right)} & =\frac{\sum_{j=1}^{J} \omega_{j} P_{j}^{(1)} /\left(1-\sum_{j=1}^{J} \omega_{j} P_{j}^{(1)}\right)}{\sum_{j=1}^{J} \omega_{j} P_{j}^{(0)} /\left(1-\sum_{j=1}^{J} \omega_{j} P_{j}^{(0)}\right)} \\
& \neq \sum_{j=1}^{J} \omega_{j} \frac{P_{j}^{(1)} /\left(1-P_{j}^{(1)}\right)}{P_{j}^{(0)} /\left(1-P_{j}^{(0)}\right)} \neq \frac{\sum_{j=1}^{J} \omega_{j} P_{j}^{(1)} /\left(1-P_{j}^{(1)}\right)}{\sum_{j=1}^{J} \omega_{j} P_{j}^{(0)} /\left(1-P_{j}^{(0)}\right)}
\end{aligned}
$$

Log(Marginal $\mathrm{OR}_{\mathrm{Z}-\mathrm{Y}}$), + constant treatment effect

Methods lable
"logit": logistic reg "ps0.Prob":
P.S.using marginal probability w/o check balance
"ps2.Prob": same P.S, w/ check balance up to 2 moments "Log(MH)": M-H estimator
Other: $\sum_{j=1}^{J} \omega_{j} \hat{\beta}_{j}$
"inv": inverse variance weights "equal": equal weights

Log(Marginal $\mathbf{O R}_{\mathbf{Z}-\mathrm{Y}}$), No constant treatment effect

Average Risk Difference \& Marginal R.R.

$$
\mathbf{P}^{(1)}-\mathbf{P}^{(0)}, \log \left(\mathrm{OR}_{\mathrm{Z}-\mathrm{Y} \mid \mathrm{X}}\right)=1.5
$$

$\log \left(\mathbf{P}^{(\mathbf{1})} / \mathbf{P}^{(0)}\right), \log \left(\mathrm{OR}_{\mathrm{Z}-\mathrm{Y} \mid \mathrm{X}}\right)=\mathbf{1 . 5}$

■ Under rare disease, ARD is highly influenced by $\mathbf{P}(\mathbf{Y}=1)$.

- Marginal RR estimated by P.S. performs nice.

$\mathrm{OR}_{\mathrm{Z}-\mathrm{Y} \mid \mathrm{X}} \neq \mathrm{OR}_{\mathrm{Z}-\mathrm{Y}}$, even when disease is rare

Comparing $\mathrm{OR}_{\mathrm{Z}-\mathrm{Y} \mid \mathrm{X}} \& \mathrm{OR}_{\mathrm{Z}-\mathrm{Y}}$

Setting:

$X \sim N(0,1)$
$\operatorname{logit}[E(Y \mid, X)]=$
$\beta_{0}+\log (4.5) Z+\beta_{x} X$
$\operatorname{Pr}(Y=1)=0.02$, by adjusting β_{0}
$\mathrm{N}=8000$

Summary

- With constant treatment effect + the increasing of disease prevalence, the performance on estimators of weighted average of bin-specific effect type become better. Without constant treatment effect, their performance is bad.
- With the increasing of disease prevalence, model performance for different treatment measures become better.
- P.S: It is not always correct to say - "average treament effect is a weighted average of bin-specific treatment effect". It really depends on your choice of treatment effect measure.
- In general, it is better to critically examine which treatment effect measure is best for your problem before applying technique to estimate it.

Thanks!

Questions?

