Package 'EstACEwErrorinX'

November 24, 2014
Type PackageTitle Average Causal Effect (ACE) Estimation with Covariate Measurement Error
Version 1.1
Date 2014-11-15
Author Andrew M. Raim, Xiaoyu Dong, Yi Huang
Corresponding Author Yi Huang <yihuang @umbc.edu>Maintainer Andrew M. Raim araim1@umbc.edu
Description
License TBD
Depends MASS, MatchIt
R topics documented:
EstACEwErrorinX-package 2
breastpump 3
cov.louis 4
d.group 5
d.mixture 6
d.mixture.x 6
EM 7
FormHessian.Q3 9
FormScore.Q3 9
naive.ace 10
new.ace 10
NewtonRaphson.Q3 11
NewtonRaphson.Q3.OneStep 12
Pi.matrix 12
Q3 13
r.mixture 13
Index 15

EstACEwErrorinX-package
Average Causal Effect (ACE) Estimation with Covariate Measurement Error

Description

Average causal effect (ACE) estimation allowing covariate measurement error using newly developed latent propensity scoring approach in a finite mixture modeling framework.

Details

Although an analysis based on a carefully conducted, randomized and controlled clinical trial is still the gold standard in obtaining valid causal effects of medical products, such designs can be either impractical or too burdensome to conduct in pre-market and post-market studies. For example, very frequently a prospective, controlled cohort design is used for the Post-approval Study (PAS) of medical devices at the post-market phase. Average causal effect (ACE) estimation methods for these non-randomized studies have typically relied on standard propensity scoring techniques, which assumes all covariates are measured accurately, no measurement and no unobserved factors influence the treatment and outcome (Rosenbaum and Rubin, 1983,1984; Dehejia and Wahba, 1999). However, covariates are often measured with unobservable error. Ignoring measurement error in covariates (a fairly common issue in medical and public health research) may lead to misleading inferences on average treatment or exposure effects evaluation in non-randomized studies. So, this R package is developed resulting from our causal methodology research on extending the standard causal inference framework to allow covariate measurement error and developing EM algorithm for ACE estimation in a likelihood based approach, to enhance the evaluation of the safety and efficacy of medical products (including devices, drugs, and biologics) in both the pre-market and post-market phases. Notice that the current outcome setting for this package is continuous with Gaussian distribution. For non-Gaussian continuous outcomes, they can be converted to Gaussian before running it. This package will be extended to include categorical outcomes soon in 2013. More methodology details are discussed in the technical report listed below.

Acknowledgement: This research is sponsored by FDA Critical Path Grants.
Note: This R package (software) is only for internal review for noq, not for public circulation or use, since the manuscript supporting this newly developed method is still under revision which is to be submitted to Journal of the Royal Statistical Society, series B (Statistical Methodology) in spring 2013. Once this manuscript is accepted and published in a suitable journal after peer review, we will make this R-package available in public for circulation and use as FDA regulation allowed.

References

Yi Huang, Karen Bandeen-Roche, Xiaoyu Dong, Andrew Raim, Constantine Frangakis, Cunlin Wang. Average Causal Effect Estimation Allowing Covariate Measurement Error Using Latent Propensity Score. Technical Report, 2012.

Examples

```
    data(breastpump)
    y \(<-\) breastpump\$ty1all
    \(\mathrm{z}<-\) breastpump\$bpregbin
    w <- breastpump\$pirlevel
    sigma.e \(<-\) pi/sqrt(3)
    ratio \(<-1.5\)
    sigma.w \(<\) - sigma.e \({ }^{*} \operatorname{sqrt}\left(1+\right.\) ratio^\(\left.^{\wedge} 2\right) /\) ratio
    sw. \(\log <-(\log (\mathrm{w})-\operatorname{mean}(\log (\mathrm{w}))) /\) sigma.w
    xa \(<-\) model.matrix \((\sim\) p9 + bwt + bfeddur + maritalc + white + parity + retwk + smokem \(3+\) bmi + boy + gage +
    as.factor(educr) + as.factor(typedeliv), data \(=\) breastpump)
    X \(<-\) cbind (xa[,-1], sw.log)
    \(\mathrm{p}<-\operatorname{ncol}(\mathrm{X})\)
    \# Try J = 5 classes
    J <- 5
    \# EM initialization
    \# alpha0.0 should be ordered from smallest to largest. Length of alpha0.0 should be J-1
    beta1.0<- c(0.2,0.1,0.1,0.2,0.1)
    beta2.0<- c(0,0,0,0,0)
    sigma. \(0<-\) sqrt \((\operatorname{var}(\mathrm{y}))\)
    lambda. \(0<-\mathrm{c}(0.1,0.1,0.2,0.4,0.1)\)
    alpha0.0 <- c \((0,0.05,0.10,0.15)\)
    alpha. \(0<-\mathrm{c}(0.01,0.05,0.05,-0.1,0.01,0.05,-0.15,0.1,0.02,0.01,-0.01,0.02,0.03,0.04,-0.03,0.02,0.01)\)
    em.result \(<-\operatorname{EM}(\mathrm{y}=\mathrm{y}, \mathrm{z}=\mathrm{z}\), beta1 \(=\) beta1.0, beta \(2=\) beta2.0, lambda \(=\) lambda. 0,
    alpha0 \(=\) alpha0.0, alpha \(=\) alpha. 0, sigma \(=\) sigma. \(0, \mathrm{X}=\mathrm{X}, \mathrm{J}=\mathrm{J}\),
    debug \(=\) FALSE, maxiter \(=3000\), debug. \(\mathrm{nr}=\) FALSE, maxiter \(. \mathrm{nr}=1\),
    tol \(=1 \mathrm{e}-6\) )
    \(\mathrm{V}<-\) cov.louis(y, z, em.result\$beta1, em.result\$beta2, em.result\$lambda,
    em.result\$alpha0, em.result\$alpha, em.result\$sigma, X, J)
    ace.res <- new.ace(V, y, z, em.result\$beta1, em.result\$beta2, em.result\$lambda,
    em.result\$alpha0, em.result\$alpha, em.result\$sigma, X, J)
    print(ace.res)
```

 breastpump Study on Breast Pump usage

Description

A subsample of 1000 observations taken from a study on Breast Pump usage

Format

A data frame with 1000 rows and 17 variables
p9 Maternal age
bwt Birth weight
pirlevel Poverty level, measured with error
ty1all A comorbidity score, on the log scale
bpregbin Indicator for regular breast pump usage
bfeddur Breast feeding duration, in weeks
maritale Marital status
educr Eduction
white Indicator for race
parity Indicator for having one or more children
retwk Indicator for returning to work within the first year
smokem3 Smoking status at third month postpartum
bmi BMI before pregnancy
bmiclass Categorical BMI before pregnancy
boy Gender of infant
gage Gestational age
typedeliv Type of delivery

Source

TBD

Description

Estimate covariate for EM estimate by Louis (1982) method.

Usage

cov.louis(y, z, beta1, beta2, lambda, alpha0, alpha, sigma, X, J)

Arguments

$y \quad$ Continuous outcome (n dimension vector)
z Treatment vector (n dimension vector)
beta1 Outcome effects for treated (J dimension vector)
beta2 Outcome effects for untreated (J dimension vector)
lambda Treatment effects (J dimension vector)
alpha0 Srdered intercepts for latent regression model (J-1 dimension)
alpha Slopes for latent regression model (p dimension)
sigma Standard deviation for normal outcome
$\mathrm{X} \quad n \times p$ covariate for latent regression model
J Number of latent groups

Value

Covariance matrix for EM estimate

References

Louis, T. A. Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society. Series B, (44)2:226-233, 1982.

```
d.group Complete Data Density
```


Description

Complete Data Density for the ACE mixture model, when groups $\left(\eta_{1}, \ldots, \eta_{n}\right)$ are observed.

Usage

d.group(y, z, eta, beta1, beta2, lambda, sigma, log = FALSE)

Arguments

y	Continuous outcome (n dimension vector)
z	Treatment vector (n dimension vector)
eta	Vector of group labels (n dimension vector)
beta1	Outcome effects for treated (J dimension vector)
beta2	Outcome effects for untreated (J dimension vector)
lambda	Treatment effects (J dimension vector)
sigma	Standard deviation for normal outcome
log	TRUE if log-density is to be returned, FALSE otherwise

Value

Density value
d.mixture Density for ACE mixture model

Description

Density for the ACE mixture model where Pi matrix has already been computed.

Usage

d.mixture(y, z, Pi, beta1, beta2, lambda, sigma, log = FALSE)

Arguments

y	Continuous outcome (n dimension vector)
z	Treatment vector (n dimension vector)
Pi	$n \times J$ matrix giving prior probabilties that i th observation is in j th group
beta1	Outcome effects for treated (J dimension vector)
beta 2	Outcome effects for untreated (J dimension vector)
lambda	Treatment effects (J dimension vector)
sigma	Standard deviation for normal outcome
log	TRUE if log-density is to be returned, FALSE otherwise

Value

Density value
d.mixture.x Density for ACE mixture model

Description

Density for the ACE mixture model

Usage

d.mixture. $\mathrm{x}(\mathrm{y}, \mathrm{z}$, alpha0, alpha, X , beta1, beta2, lambda, sigma, $\log =$ FALSE $)$

Arguments

y	Continuous outcome (n dimension vector)
z	Treatment vector (n dimension vector)
alpha0	Ordered intercepts for latent regression model (J-1 dimension)
alpha	Slopes for latent regression model (p dimension)
X	$n \times p$ covariate for latent regression model
beta1	Outcome effects for treated (J dimension vector)
beta2	Outcome effects for untreated (J dimension vector)
lambda	Treatment effects (J dimension vector)
sigma	Standard deviation for normal outcome
log	TRUE if log-density is to be returned, FALSE otherwise

Value

Density value

EM

EM Algorithm for ACE finite mixture model

Description

This function carries out the EM algorithm to compute the MLE for the ACE finite mixture likelihood with continuous outcome and binary treatment indicator. This likelihood assumes a latent regression model which clusters observations into one of J groups.

Usage

$\operatorname{EM}(\mathrm{y}, \mathrm{z}$, beta1, beta2, lambda, alpha0, alpha, sigma, X, J, debug = FALSE, maxiter $=\operatorname{Inf}$, tol $=1 \mathrm{e}-08$, method $=$ "NR", debug.nr $=$ FALSE, tol. $\mathrm{nr}=$ tol, maxiter. $\mathrm{nr}=1$)

Arguments

y
Continuous outcome (n dimension vector)
z Treatment vector (n dimension vector)
beta1 Initial guess of outcome effects for treated (J dimension vector)
beta2 Initial guess of outcome effects for untreated (J dimension vector)
lambda Initial guess of treatment effects (J dimension vector)
alpha0 Initial guess of ordered intercepts for latent regression model (J-1 dimension)
alpha Initial guess of slopes for latent regression model (p dimension)
sigma Initial guess of standard deviation for normal outcome
X
$n \times p$ covariate for latent regression model

J	Number of latent groups
debug	If TRUE, print extra debug information
maxiter	Maximum number of EM iterations
tol	Convergence tolerance for EM
method	Use "NR" for Newton-Raphson iterations to compute next (alpha0, alpha). Or use "optim" to compute them with R's optimizer directly.
debug.nr	If TRUE, print extra debug information within Newton-Raphson iterations
tol.nr	Convergence tolerance for internal Newton-Raphson iterations
maxiter.nr	Maximum iterations for internal Newton-Raphson

Details

The EM iterations for beta1, beta2, lambda, and sigma all have a closed form, but the iterations for (alpha0, alpha) must be computed numerically. The default method is to use One-step Newton Raphson (method = "NR"), but the user may instead choose iterative Newton-Raphson by setting tol.nr and maxiter.nr, or use optim by setting method $=$ "optim".

Convergence statuses are:

- 0 if Converged
- 1 if "negative" progress was made after 75 iterations
- 2 if log-likelihood value of NA or NaN was obtained
- 3 if failured to converge within maxiter iterations

Value	
beta1	Estimate for $\boldsymbol{\beta}_{1}$
beta2	Estimate for $\boldsymbol{\beta}_{2}$
lambda	Estimate for $\boldsymbol{\lambda}$
alpha0	Estimate for $\boldsymbol{\alpha}_{0}$
alpha	Estimate for $\boldsymbol{\alpha}$
sigma	Estimate for σ
loglik	log-likelihood corresponding to MLE
status	An integer indicating the convergence status
message	A message with the convergence status
tol	Convergence tolerance reached (difference between current and last log-likelihood)
elapsed.sec	Elapsed time in seconds to run EM
method	The method used to fit $\left(\boldsymbol{\alpha}_{0}, \boldsymbol{\alpha}\right)$
itr	Number of EM iterations

FormHessian.Q3 Hessian of the Q3 function

Description

Form the Hessian of the Q3 function, which is the EM log-likelihood with respect to (alpha0, alpha)

Usage

FormHessian.Q3(alpha0, alpha, Post, X, J)

Arguments

alpha0 Initial guess of ordered intercepts for latent regression model (J-1 dimension)
alpha Initial guess of slopes for latent regression model (p dimension)
Post $\quad n \times J$ matrix of posterior probabilities that i th subject is in j th group
$\mathrm{X} \quad n \times p$ covariate for latent regression model
$J \quad$ Number of latent groups

Value

H Hessian matrix

FormScore.Q3 Score Vector for (alpha0, alpha)

Description

Form the Score Vector for (alpha0, alpha)

Usage

FormScore.Q3(alpha0, alpha, Post, X, J)

Arguments

alpha0	Initial guess of ordered intercepts for latent regression model (J-1 dimension)
alpha	Initial guess of slopes for latent regression model (p dimension)
Post	$n \times J$ matrix of posterior probabilities that i th subject is in j th group
X	$n \times p$ covariate for latent regression model
J	Number of latent groups

Value

S
Score vector
naive.ace Naive ACE estimator

Description

Compute Naive ACE estimator by propensity score matching

Usage

naive.ace($\mathrm{y}, \mathrm{z}, \mathrm{xa}, \mathrm{w}, \mathrm{J})$

Arguments

$y \quad$ Continuous outcome (n dimension vector)
$\mathrm{z} \quad$ Treatment vector (n dimension vector)
xa Covariates which have measured accurately
w Covariates which have measured with error
J Number of groups to use for propensity score matching

Value

ace.est ACE estimate
ace.se Standard error for ACE estimate
new.ace New ACE estimator and its standard error

Description

Compute New ACE estimator and its standard error

Usage

new.ace(cov.mle, y, z, beta1, beta2, lambda, alpha0, alpha, sigma, X, J)

Arguments

cov.mle	An estimate for the covariance matrix of the MLE of $\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\lambda}, \boldsymbol{\alpha}_{0}, \boldsymbol{\alpha}, \sigma\right)$
y	Continuous outcome (n dimension vector)
z	Treatment vector (n dimension vector)
beta1	Outcome effects for treated (J dimension vector)
beta2	Outcome effects for untreated (J dimension vector)
lambda	Treatment effects (J dimension vector)

alpha0	Ordered intercepts for latent regression model (J-1 dimension)
alpha	Slopes for latent regression model (p dimension)
sigma	Standard deviation for normal outcome
X	$n \times p$ covariate for latent regression model
J	Number of latent groups

Value

ace.est
ACE estimate
ace.se Standard error for ACE estimate

NewtonRaphson.Q3 Iterative Newton-Raphson procedure for (alpha0, alpha)

Description

Carries out iterative Newton-Raphson procedure for (alpha0, alpha),

Usage

NewtonRaphson.Q3(alpha0, alpha, Post, X, J, tol $=1 \mathrm{e}-05$, debug $=$ FALSE, maxiter $=\operatorname{Inf}$)

Arguments

alpha0	Initial guess of ordered intercepts for latent regression model (J-1 dimension)
alpha	Initial guess of slopes for latent regression model (p dimension)
Post	$n \times J$ matrix of posterior probabilities that i th subject is in j th group
X	$n \times p$ covariate for latent regression model
J	Number of latent groups
tol	Convergence tolerance for EM
debug	If TRUE, print extra debug information
maxiter	Maximum number of EM iterations

Value

alpha0	Estimate for $\boldsymbol{\alpha}_{0}$
alpha	Estimate for $\boldsymbol{\alpha}$
tol	Convergence tolerance reached (difference between current and last log-likelihood)
iter	Number of EM iterations
H	Hessian matrix from the last iteration

NewtonRaphson.Q3.OneStep
One Step Newton-Raphson procedure for (alpha0, alpha)

Description

Carries out one step Newton-Raphson procedure for (alpha0, alpha). No need to check any convergence criteria here. This is a special case of NewtonRaphson.Q3 below

Usage

NewtonRaphson.Q3.OneStep(alpha0, alpha, Post, X, J, debug = FALSE)

Arguments

alpha0	Initial guess of ordered intercepts for latent regression model (J-1 dimension)
alpha	Initial guess of slopes for latent regression model (p dimension)
Post	$n \times J$ matrix of posterior probabilities that i th subject is in j th group
X	$n \times p$ covariate for latent regression model
J	Number of latent groups
debug	If TRUE, print extra debug information

Value

alpha0 \quad Estimate for $\boldsymbol{\alpha}_{0}$
alpha \quad Estimate for $\boldsymbol{\alpha}$
H
Hessian matrix from the last iteration

Pi.matrix Density for ACE mixture model

Description

Density for the ACE mixture model

Usage

Pi.matrix(alpha0, alpha, X)

Arguments

alpha0 Ordered intercepts for latent regression model (J-1 dimension)
alpha Slopes for latent regression model (p dimension)
$\mathrm{X} \quad n \times p$ covariate for latent regression model

Value

$n \times J$ matrix giving probabilties that i th observation is in j th group

Q3 EM log-likelihood with respect to (alpha0, alpha)

Description

The EM log-likelihood with respect to (alpha0, alpha)

Usage

Q3(theta, Post, X)

Arguments

theta Vector of (alpha0, alpha)
Post $\quad n \times J$ matrix of posterior probabilities that i th subject is in j th group
X
$n \times p$ covariate for latent regression model

Value

Q3 function value evaluated at theta

$$
\text { r.mixture } \quad \text { Generate observations from the ACE mixture model }
$$

Description

Generate observations directly from the ACE mixture model.

Usage

r.mixture(n, Pi, beta1, beta2, lambda, sigma)

Arguments

n
Pi
betal
beta2
lambda
sigma Standard deviation for normal outcome

Value
$y \quad$ Vector of outcomes

Vector of treatments

Index

*Topic ACE
d.group, 5
d.mixture, 6
d.mixture.x, 6
naive.ace, 10
new.ace, 10
r.mixture, 13
*Topic EM
cov.louis, 4
EM, 7
Q3, 13
*Topic Expectation-Maximization
EM, 7
*Topic Hessian
FormHessian.Q3, 9
$*$ Topic Louis
cov.louis, 4
*Topic Newton-Raphson
FormHessian.Q3, 9
NewtonRaphson.Q3, 11
NewtonRaphson.Q3.OneStep, 12
*Topic Q3
FormScore.Q3, 9
*Topic Score
FormScore.Q3, 9
$*$ Topic covariance
cov.louis, 4
$*$ Topic datasets
breastpump, 3
$*$ Topic iterative
NewtonRaphson.Q3, 11
*Topic mixture
d.group, 5
d.mixture, 6
d.mixture.x, 6
r.mixture, 13
*Topic one-step
NewtonRaphson.Q3.OneStep, 12
*Topic probabilties

Pi.matrix, 12

breastpump, 3
cov.louis, 4
d.group, 5
d.mixture, 6
d.mixture.x, 6

EM, 7
EstACEwErrorinX-package, 2
FormHessian.Q3, 9
FormScore.Q3, 9
naive.ace, 10
new.ace, 10
NewtonRaphson.Q3, 11
NewtonRaphson.Q3.OneStep, 12
Pi.matrix, 12
Q3, 13
r.mixture, 13

