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Abstract. In this paper, under mild conditions on the arrival, service and patience

time distributions, we establish the well-posedness of the fluid model of a multiclass

many-server queueing model with differentiated service and patience times operated

under the global FCFS service discipline. In particular, the well-posedness of the fluid

model is established through the study of the existence and uniqueness of fixed points

of certain functional map of Volterra type. In addition, by showing a local Lipschitz

property of this functional map as a functional of the initial data to the fluid model,

we also perform a sensitivity analysis on the fluid model.

Key words: multiclass many-server queues, 𝐺/𝐺𝐼/𝑁 +𝐺𝐼 queue, global FCFS
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1. Introduction In the past twenty years, there has been tremendous attention to the study

of many-server queueing systems with customer abandonment due to its applications to telephone

contact centers and (more generally) customer contact centers; see, e.g., [B(2005)], [GKM(2003)],

[GMR(2002)], [G(2006)], and references therein. In this paper, we consider a multiclass many-

server queueing system, also known as multiclass 𝐺 𝑡/𝐺𝐼/𝑁 +𝐺𝐼 model. In the system, there are

𝑁 parallel identical servers, and 𝐾 classes of customers arrive with (possibly) time-dependent

differentiated arrival rates and customers from each class require i.i.d. service times, and have

i.i.d. patience times. The service times and the patience times of all customer classes are assumed

to be mutually independent with possibly differentiated distributions and are also independent of

the arrival process of each customer class. Customers are assumed to abandon from the system if

the time spent waiting in queue reaches their patience time. The service discipline here is global
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first-come-first-serve (global FCFS), that is, a server will serve the oldest customer waiting in queue

irrespective of its customer class at the moment when it becomes available, and non-idling, that is,

no server will idle whenever there is a customer of any class in queue. Such many-server systems

are typically studied under the so-called, many-server heavy-traffic regime, where the arrival rates

and the number of servers get large, while service and patience time distributions are fixed. When

the mean arrival rates and the number of servers grow proportionally (a law-of-large-numbers

scaling), the scaling limit of the system state descriptor, which represents the state of the system,

is described in terms of a set of so-called fluid model equations. To justify the solution to the fluid

model equations as the scaling limit of the system state descriptor, it is important to establish the

well-posedness of fluid model equations first, that is, to show that the fluid model equations admit

a unique solution.

In the single customer class setting, the system is simply the 𝐺 𝑡/𝐺𝐼/𝑁 + 𝐺𝐼 model that was

proposed in Whitt [WW(2006)] and later studied in Kang and Ramanan [KR(2010)] and then in

Wash-Zuñiga [Z(2014)]. In those papers, the existence of solutions to the fluid model equations was

established indirectly by first showing a sequence of fluid scaled measure-valued state descriptors

for the 𝐺 𝑡/𝐺𝐼/𝑁 +𝐺𝐼 system is tight and then verifying any weak limit of the sequence satisfies

the fluid model equations. In Kang [Kang(2014)], under mild conditions on the arrival rate and the

service and patience time distributions, a direct proof of the existence and uniqueness of solutions

to the fluid model equations is established using two non-linear functional integral equations, one

of which is of the Volterra type. In the multiclass setting, the system operated under a fixed non-

preemptive priority policy instead of the global FCFS policy was considered in Atar, Kaspi and

Shimkin [AKS(2014)]. In that paper, the uniqueness of solutions to the fluid model equations was

proved using a certain Skorokhod map and the existence of solutions was also established in a

similar manner as in Kang and Ramanan [KR(2010)].

Motivated by Kang [Kang(2014)], in this paper, we focus on the (measure-valued) fluid model

equations (see Definition 1) as the fluid analog of the multiclass 𝐺 𝑡/𝐺𝐼/𝑁 +𝐺𝐼 model under the

global FCFS policy. Any solution (𝑋, 𝜈, 𝜂) to the fluid model equations comprises three components,

where 𝑋 = (𝑋 𝑘 , 𝑘 ∈ K), 𝜈 = (𝜈𝑘 , 𝑘 ∈ K), and 𝜂 = (𝜂𝑘 , 𝑘 ∈ K) (here K � {1,2, · · · , 𝐾} represents

the set of customer class indexes and 𝐾 is the total number of different customer classes). For each

𝑡 ≥ 0 and 𝑘 ∈ K, 𝑋 𝑘 (𝑡) represents the fluid analog of the total number of customers of class 𝑘 in

the system at time 𝑡, 𝜈𝑘𝑡 is the fluid analog of a measure-valued process at time 𝑡 that keeps track

of the age (the amount of time elapsed since the customer entered service) of customers of class
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𝑘 in service, 𝜂𝑘𝑡 is the fluid analog of a measure-valued process at time 𝑡 that keeps track of the

times elapsed since entry into the system of all customers of class 𝑘 (whether or not they have

entered service), and not only of customers of class 𝑘 currently in the queue. This fluid model

equations is a natural extension of the fluid model equations for a single class 𝐺 𝑡/𝐺𝐼/𝑁 + 𝐺𝐼
queue in Kang and Ramanan [KR(2010)], but the analysis of its well-posedness is more involved

than the analysis in Kang [Kang(2014)] for the single customer class setting not only due to the

coupling between the service dynamics and queue dynamics of each customer class, but also due

to the coupling across all customer classes. So the non-idling condition (see (2.10)) holds not at

each customer class level, but at the global level due to the global FCFS policy. Our first main

result is the well-posedness of the fluid model equations (see Theorem 3.1 and Theorem 3.2). We

explore the connection between
∑
𝑘∈K 𝑋 𝑘 , the fluid analog of the total number of customers of all

classes in the system, and a functional map Λ of the Volterra type (see (3.31)) and establish that the

functional map Λ admits a unique fixed point. This enables us to derive the uniqueness of solutions

to the fluid model equations. On the other hand, one would expect that the unique fixed point of Λ

will naturally lead to a solution to the fluid model equations, hence gives us the existence result.

Unfortunately, such an argument is not straightforward. The main issue is that certain processes

defined from the unique fixed point of Λ do not readily have the monotonicity property needed

(see the discussion above Proposition 3). We overcome this issue and hence establish the existence

of solutions to the fluid model equations under an additional assumption on the initial data (see

Theorem 3.2). By using the well-posedness result established here, one can justify rigorously using

a similar argument as in Kang and Ramanan [KR(2010)] that the fluid model equations stated in

this paper is indeed the fluid limit of the multiclass 𝐺 𝑡/𝐺𝐼/𝑁 +𝐺𝐼 model under the global FCFS

policy. Also when 𝐾 = 1, that is, only one customer class present in the system, the proof of the

well-posedness result here provides an alternative approach to the results in Kang [Kang(2014)].

The second main result in this paper is the sensitivity analysis on the fluid model equations (see

Theorem 4.3). We would like to know how the unique solution to the fluid model equations reacts

to small perturbations on the input data to the fluid model equations, which includes the arrival

rates of customers of all classes and the initial state of the system. For this, we establish a local

Lipschitz property on the functional map Λ (see Proposition 5). This property gives us insight on

the impact of small perturbations on the input data to
∑
𝑘∈K 𝑋 𝑘 , the fluid analog of the total number

of customers of all classes in the system, which, in turn, on the unique solution to the fluid model

equations.



Weining Kang: Multiclass Many-Server Queues with Global FCFS Discipline
4 Article submitted to Mathematics of Operations Research

The two main results established in this paper can potentially be used to establish well-posedness

of fluid model equations for many-server networks with multiclass 𝐺 𝑡/𝐺𝐼/𝑁 + 𝐺𝐼 queues as

building blocks. For example, in Kang and Pang [KP(2024)], a fluid model for a non-Markovian

many-server queueing network with customer abandonment and Markov routing is considered. In

that network model, there are a fixed number of service stations, each of which has either finitely or

infinitely many parallel servers, a single queue and its own designated customer class. Customers

enter the system at a service station, and receive service immediately if there is a free server at

the station, and join the queue at the station otherwise. Upon service completion, a customer is

immediately routed to one of the service stations or leaves the system following a Markovian routing

mechanism, independent of other customers. Customers can be out of patience and leave the system

(without reentry) when they are waiting in the queue before receiving service. Externally arrived

and internally routed customers at each service station are served in the non-idling, First-Come-

First-Serve (FCFS) discipline. Thus, each service station behaves like a 𝐺 𝑡/𝐺𝐼/𝑁 +𝐺𝐼 queue with

two customer classes under the global FCFS policy. We believe that our results here can be used to

give an alternative proof of the well-posedness of fluid model in Kang and Pang [KP(2024)] under

a different set of assumptions on the arrival processes and service and patience time distributions.

1.1. Notation and Terminology The following notation will be used throughout the paper.

N is the set of strictly positive integers, R is set of real numbers, R+ is the set of non-negative real

numbers. For 𝑎, 𝑏 ∈ R, 𝑎 ∨ 𝑏 denotes the maximum of 𝑎 and 𝑏, 𝑎 ∧ 𝑏 the minimum of 𝑎 and 𝑏

and the short-hand 𝑎+ is used for 𝑎 ∨ 0. Given a set 𝐵, 11𝐵 denotes the indicator function of the set

𝐵 (that is, 11𝐵 (𝑥) = 1 if 𝑥 ∈ 𝐵 and 11𝐵 (𝑥) = 0 otherwise). The constant functions 𝑓 ≡ 1 and 𝑓 ≡ 0

will be represented by the symbols 1 and 0, respectively. Given a non-decreasing, right continuous

function 𝑓 having left limits on R+, 𝑓 −1 denotes the inverse function of 𝑓 in the sense that

𝑓 −1(𝑦) = inf{𝑥 ≥ 0 : 𝑓 (𝑥) ≥ 𝑦}, (1.1)

with the convention that infimum over an empty set is ∞. The space of Radon measures on a Polish

space 𝐸 , endowed with the Borel 𝜎-algebra, is denoted by M(𝐸), while M𝐹 (𝐸) is the subspace of

finite non-negative measures in M(𝐸). The symbol 𝛿𝑥 will be used to denote the measure with unit

mass at the point 𝑥 and, with some abuse of notation, we will also use 0 to denote the identically

zero Radon measure on 𝐸 . When 𝐸 is an interval, say [0, 𝐻), for notational conciseness, we will

often write M𝐹 [0, 𝐻) instead of M𝐹 ( [0, 𝐻)). We say a measure 𝜇 is continuous at 𝑥 if and only if
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𝜇({𝑥}) = 0 and 𝜇 is continuous on R+ if 𝜇 is continuous at each 𝑥 ∈ R+. For any Borel measurable

function 𝑓 : [0, 𝐻) →R that is integrable with respect to 𝜉 ∈M[0, 𝐻), we often use the short-hand

notation

⟨ 𝑓 , 𝜉⟩ �
∫
[0,𝐻)

𝑓 (𝑥) 𝜉 (𝑑𝑥).

Let I0(R+) be the set of non-decreasing, right continuous functions 𝑓 having left limits on R+ with

𝑓 (0) = 0. Let C(R+) be the set of continuous functions on R+, C𝑏 (R+) be the subset of C(R+) of

functions that are bounded, C[𝑎, 𝑏] be the set of continuous functions on [𝑎, 𝑏].

2. Fluid Model Equations In this section we state fluid model equations as a fluid analog of

the multiclass 𝐺 𝑡/𝐺𝐼/𝑁 +𝐺𝐼 queues and prove some properties of three key auxiliary processes

stated in the definition of the fluid model equations.

For a probability cumulative distribution function 𝐺 on R+ with density 𝑔, the right end of the

support 𝐻 of 𝑔 is defined as 𝐻 � sup{𝑥 ∈ R+ : 𝑔(𝑥) > 0}, then the hazard rate function ℎ on R+
is defined as ℎ(𝑥) � 𝑔(𝑥)/𝐺̄ (𝑥) with the convention that 0/0 is interpreted as 0 when 𝑥 ≥ 𝐻 if

𝐻 <∞, where 𝐺̄ (𝑥) � 1 −𝐺 (𝑥). For each 𝑘 ∈ K, let 𝐺𝑟
𝑘

with density 𝑔𝑟
𝑘

and 𝐺𝑠
𝑘

with density 𝑔𝑠
𝑘

denote the probability cumulative distribution of the patience times and the probability cumulative

distribution of the service times of customers of class 𝑘 , respectively, and 𝐻𝑟
𝑘

and 𝐻𝑠
𝑘

denote the

right ends of the supports of 𝑔𝑟
𝑘

and 𝑔𝑠
𝑘
, respectively.

Define the following space of feasible input data for the fluid model equations

S0 �


(𝑒, 𝑥, 𝜈, 𝜂) ∈ I0(R+)𝐾 ×R𝐾+ ×Π𝑘∈KM𝐹 [0, 𝐻𝑠

𝑘
) ×Π𝑘∈KM𝐹 [0, 𝐻𝑟𝑘 ) :

1−∑
𝑘∈K ⟨1, 𝜈𝑘⟩ = [1−∑

𝑘∈K 𝑥𝑘 ]+, [
∑
𝑘∈K 𝑥𝑘 − 1]+ ≤ ∑

𝑘∈K ⟨1, 𝜂𝑘0⟩

 . (2.1)

Definition 1. (Fluid Model Equations) The càdlàg function (𝑋, 𝜈, 𝜂) defined on R+ such that

for each 𝑡 ∈ R+, 𝑋 (𝑡) = (𝑋 𝑘 (𝑡), 𝑘 ∈ K) ∈ R𝐾+ , 𝜈𝑡 = (𝜈𝑘𝑡 , 𝑘 ∈ K) ∈ Π𝑘∈KM𝐹 [0, 𝐻𝑠
𝑘
), and 𝜂𝑡 = (𝜂𝑘𝑡 , 𝑘 ∈

K) ∈ Π𝑘∈KM𝐹 [0, 𝐻𝑟𝑘 ) is said to solve the fluid model equations associated with (𝐸, 𝑋 (0), 𝜈0, 𝜂0) ∈
S0 and the hazard rate functions ℎ𝑟

𝑘
� 𝑔𝑟

𝑘
/𝐺̄𝑟

𝑘
and ℎ𝑠

𝑘
� 𝑔𝑠

𝑘
/𝐺̄𝑠

𝑘
, 𝑘 ∈ K, if and only if for every 𝑡 ∈ R+

and 𝑘 ∈ K, ∫ 𝑡

0
⟨ℎ𝑟𝑘 , 𝜂

𝑘
𝑠 ⟩ 𝑑𝑠 <∞,

∫ 𝑡

0
⟨ℎ𝑠𝑘 , 𝜈

𝑘
𝑢⟩ 𝑑𝑢 <∞, (2.2)

and the following relations are satisfied: for every 𝑓 ∈ C𝑏 (R+),

∫
[0,𝐻𝑠

𝑘
)
𝑓 (𝑥) 𝜈𝑘𝑡 (𝑑𝑥) =

∫
[0,𝐻𝑠

𝑘
)
𝑓 (𝑥 + 𝑡)

𝐺̄𝑠
𝑘
(𝑥 + 𝑡)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥) +
∫ 𝑡

0
𝑓 (𝑡 − 𝑠)𝐺̄𝑠

𝑘 (𝑡 − 𝑠) 𝑑𝐿𝑘 (𝑠), (2.3)
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where

𝐿𝑘 (𝑡) = ⟨1, 𝜈𝑘𝑡 ⟩ − ⟨1, 𝜈𝑘0⟩ +
∫ 𝑡

0
⟨ℎ𝑠𝑘 , 𝜈

𝑘
𝑢⟩ 𝑑𝑢; (2.4)

∫
[0,𝐻𝑟

𝑘
)
𝑓 (𝑥) 𝜂𝑘𝑡 (𝑑𝑥) =

∫
[0,𝐻𝑟

𝑘
)
𝑓 (𝑥 + 𝑡)

𝐺̄𝑟
𝑘
(𝑥 + 𝑡)

𝐺̄𝑟
𝑘
(𝑥)

𝜂𝑘0 (𝑑𝑥) +
∫ 𝑡

0
𝑓 (𝑡 − 𝑠)𝐺̄𝑟𝑘 (𝑡 − 𝑠) 𝑑𝐸 𝑘 (𝑠); (2.5)

𝑄𝑘 (𝑡) = 𝑋 𝑘 (𝑡) − ⟨1, 𝜈𝑘𝑡 ⟩; (2.6)

𝑅𝑘 (𝑡) =
∫ 𝑡

0

(∫ ∑
𝑘∈K 𝑄𝑘 (𝑤)

0
ℎ𝑟𝑘 ((𝐹𝑤)

−1(𝑢))𝑑𝐹𝑘𝑤 ((𝐹𝑤)−1(𝑢))
)
𝑑𝑤, (2.7)

where 𝐹𝑘𝑤 (𝑥) � 𝜂𝑘𝑤 [0, 𝑥], 𝐹𝑤 (𝑥) �
∑
𝑘∈K 𝐹

𝑘

𝑤 (𝑥);

𝑄𝑘 (𝑡) = 𝐹
𝑘

𝑡

(
(𝐹 𝑡)−1

(∑︁
𝑘∈K

𝑄𝑘 (𝑡)
))

; (2.8)

𝑋 𝑘 (𝑡) = 𝑋 𝑘 (0) + 𝐸 𝑘 (𝑡) −
∫ 𝑡

0
⟨ℎ𝑠𝑘 , 𝜈

𝑘
𝑢⟩ 𝑑𝑢 − 𝑅𝑘 (𝑡); (2.9)

and the global non-idling condition

1−
∑︁
𝑘∈K

⟨1, 𝜈𝑘𝑡 ⟩ =
[
1−

∑︁
𝑘∈K

𝑋 𝑘 (𝑡)
]+
. (2.10)

From the definition of the fluid model equations, we obtain the following two additional balance

equations: from (2.6) and (2.10), ∑︁
𝑘∈K

𝑄𝑘 (𝑡) =
[∑︁
𝑘∈K

𝑋 𝑘 (𝑡) − 1

]+
, (2.11)

and from (2.4), (2.6) and (2.9), for each 𝑘 ∈ K,

𝑄𝑘 (0) + 𝐸 𝑘 (𝑡) =𝑄𝑘 (𝑡) + 𝐿𝑘 (𝑡) + 𝑅𝑘 (𝑡). (2.12)

Remark 1. Note that (2.3) and (2.5) are required to be satisfied only for bounded continuous

functions in Definition 1. But by using a standard approximation argument, namely representing

indicators of finite open intervals in R+ as monotone limits of continuous functions with compact
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support and appealing to the monotone class theorem, it follows that both equations in fact hold

for any bounded measurable or nonnegative measurable 𝑓 . In particular, these equations hold with

𝑓 = ℎ𝑠
𝑘

in (2.3) and 𝑓 = ℎ𝑟
𝑘

in (2.5). The latter fact is used several times in this paper.

We first state a simple result on the action of time-shifts on solutions to the fluid equations. For

this, we need the following notation: for any 𝑡 ∈ R+,

𝐸
[𝑡]
� 𝐸 (𝑡 + ·) − 𝐸 (𝑡), 𝐿

[𝑡]
� 𝐿 (𝑡 + ·) − 𝐿 (𝑡), 𝑋

[𝑡]
� 𝑋 (𝑡 + ·), 𝜈 [𝑡] � 𝜈𝑡+·,

𝑅
[𝑡]
� 𝑅(𝑡 + ·) − 𝑅(𝑡), 𝜂[𝑡] � 𝜂𝑡+·, 𝑄

[𝑡]
�𝑄(𝑡 + ·).

Lemma 1. Suppose the càdlàg function (𝑋, 𝜈, 𝜂) defined on R+ and taking values in R𝐾+ ×

Π𝑘∈KM𝐹 [0, 𝐻𝑠
𝑘
) ×Π𝑘∈KM𝐹 [0, 𝐻𝑟𝑘 ) solves the fluid equations associated with (𝐸, 𝑋 (0), 𝜈0, 𝜂0) ∈

S0, then (𝑋 [𝑡]
, 𝜈 [𝑡] , 𝜂[𝑡]) solves the fluid equations associated with (𝐸 [𝑡]

, 𝑋 (𝑡), 𝜈𝑡 , 𝜂𝑡) ∈ S0, where

𝐿
[𝑡]
, 𝑅

[𝑡]
,𝑄

[𝑡]
are the corresponding processes that satisfy (2.4), (2.6), (2.7), (2.8) with 𝜈 [𝑡] , 𝜂[𝑡]

and 𝑋 [𝑡] in place of 𝜈, 𝜂 and 𝑋 .

Proof Fix 𝑡 ∈ R+. It is easy to see that (𝑋 [𝑡]
, 𝜈 [𝑡] , 𝜂[𝑡]) satisfies (2.2), (2.4), (2.6), (2.7), (2.8),

(2.9) and (2.10) by a rewriting of those fluid equations and an application of change of variables.

For the rest of the fluid equations, fix 𝑠 ∈ R+ and 𝑘 ∈ K. For each 𝑓 ∈ C𝑏 (R+),

∫
[0,𝐻𝑠

𝑘
)
𝑓 (𝑥) 𝜈 [𝑡],𝑘𝑠 (𝑑𝑥) =

∫
[0,𝐻𝑠

𝑘
)
𝑓 (𝑥) 𝜈𝑘𝑡+𝑠 (𝑑𝑥)

=

∫
[0,𝐻𝑠

𝑘
)
𝑓 (𝑥 + 𝑡 + 𝑠)

𝐺̄𝑠
𝑘
(𝑥 + 𝑡 + 𝑠)
𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥)

+
∫ 𝑡+𝑠

0
𝑓 (𝑡 + 𝑠 − 𝑢)𝐺̄𝑠

𝑘 (𝑡 + 𝑠 − 𝑢) 𝑑𝐿𝑘 (𝑢). (2.13)

On the other hand,

∫
[0,𝐻𝑠

𝑘
)
𝑓 (𝑥 + 𝑠)

𝐺̄𝑠
𝑘
(𝑥 + 𝑠)
𝐺̄𝑠
𝑘
(𝑥)

𝜈
[𝑡],𝑘
0 (𝑑𝑥) +

∫ 𝑠

0
𝑓 (𝑠 − 𝑢)𝐺̄𝑠

𝑘 (𝑠 − 𝑢) 𝑑𝐿
[𝑡]
𝑘 (𝑢) (2.14)

=

∫
[0,𝐻𝑠

𝑘
)
𝑓 (𝑥 + 𝑠)

𝐺̄𝑠
𝑘
(𝑥 + 𝑠)
𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘𝑡 (𝑑𝑥) +
∫ 𝑠

0
𝑓 (𝑠 − 𝑢)𝐺̄𝑠

𝑘 (𝑠 − 𝑢) 𝑑𝐿𝑘 (𝑡 + 𝑢).
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Since the function 𝑓 (𝑠 + ·)
𝐺̄𝑠
𝑘
(𝑠 + ·)
𝐺̄𝑠
𝑘
(·)

∈ C𝑏 (R+), it follows from (2.3) for 𝜈𝑘𝑡 with 𝑓 (𝑠 + ·)
𝐺̄𝑠
𝑘
(𝑠 + ·)
𝐺̄𝑠
𝑘
(·)

in place of 𝑓 (·) that the first term on the right-hand side of (2.14) satisfies

∫
[0,𝐻𝑠

𝑘
)
𝑓 (𝑥 + 𝑠)

𝐺̄𝑠
𝑘
(𝑥 + 𝑠)
𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘𝑡 (𝑑𝑥)

=

∫
[0,𝐻𝑠

𝑘
)
𝑓 (𝑥 + 𝑡 + 𝑠)

𝐺̄𝑠
𝑘
(𝑥 + 𝑡 + 𝑠)
𝐺̄𝑠
𝑘
(𝑥 + 𝑡)

𝐺̄𝑠
𝑘
(𝑥 + 𝑡)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥)

+
∫ 𝑡

0
𝑓 (𝑡 − 𝑢 + 𝑠)

𝐺̄𝑠
𝑘
(𝑡 − 𝑢 + 𝑠)
𝐺̄𝑠
𝑘
(𝑡 − 𝑢)

𝐺̄𝑠
𝑘 (𝑡 − 𝑢) 𝑑𝐿𝑘 (𝑢)

=

∫
[0,𝐻𝑠

𝑘
)
𝑓 (𝑥 + 𝑡 + 𝑠)

𝐺̄𝑠
𝑘
(𝑥 + 𝑡 + 𝑠)
𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥) +
∫ 𝑡

0
𝑓 (𝑡 − 𝑢 + 𝑠)𝐺̄𝑠

𝑘 (𝑡 − 𝑢 + 𝑠) 𝑑𝐿𝑘 (𝑢).

Applying a change of variables on the second term on the right-hand side of (2.14), we have that

∫ 𝑠

0
𝑓 (𝑠 − 𝑢)𝐺̄𝑠

𝑘 (𝑠 − 𝑢) 𝑑𝐿𝑘 (𝑡 + 𝑢) =
∫ 𝑡+𝑠

𝑡

𝑓 (𝑠 + 𝑡 − 𝑢)𝐺̄𝑠
𝑘 (𝑠 + 𝑡 − 𝑢) 𝑑𝐿𝑘 (𝑢).

Adding the above two displays together and comparing the sum with (2.13) and (2.14), we see that

(𝑋 [𝑡]
, 𝜈 [𝑡] , 𝜂[𝑡]) satisfies (2.3). A similar argument shows that (𝑋 [𝑡]

, 𝜈 [𝑡] , 𝜂[𝑡]) satisfies (2.5). □

We now define a function 𝜒(·) on R+ as

𝜒(𝑡) � (𝐹 𝑡)−1

(∑︁
𝑘∈K

𝑄𝑘 (𝑡)
)
, 𝑡 ∈ R+. (2.15)

For each time 𝑡 ∈ R+, the quantity 𝜒(𝑡) can be interpreted as the fluid analog of the waiting time of

the oldest customer among all classes of customers in queue at time 𝑡. We establish a basic property

of 𝜒(·).

Lemma 2. Suppose that 𝐸 (·) is absolutely continuous with a.e. derivative 𝜆(·) =

(𝜆1(·), . . . , 𝜆𝐾 (·)), then for each 0 ≤ 𝑠 < 𝑡, 𝜒(𝑡) ≤ 𝜒(𝑠) + (𝑡 − 𝑠).

Proof By using Lemma 1, without loss of generality, we may assume 𝑠 = 0, that is, we show

that 𝜒(𝑡) ≤ 𝜒(0) + 𝑡 for each 𝑡 > 0. For this, by (2.15), it is sufficient to show that∑︁
𝑘∈K

𝑄𝑘 (𝑡) ≤ 𝐹 𝑡 (𝜒(0) + 𝑡) for each 𝑡 > 0.
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Consider the function

𝑓 (𝑡) � 𝐹𝑡 (𝜒(0) + 𝑡) −
∑︁
𝑘∈K

𝑄𝑘 (𝑡), 𝑡 ∈ R+. (2.16)

Note that 𝑓 (0) = 𝐹0(𝜒(0)) −
∑
𝑘∈K 𝑄𝑘 (0) ≥ 0 by (2.15) and the definition of (𝐹0)−1 in (1.1) with

𝐹0 defined in (2.7) in place of 𝑓 . Since 𝐸 (·) is assumed to be absolutely continuous, then 𝑋 (·) and

hence
∑
𝑘∈K 𝑄𝑘 (·) and

∑
𝑘∈K 𝐿𝑘 (·) are also absolutely continuous by (2.9), (2.7), (2.11) and (2.12).

In particular, by using the same argument as in the proof of Theorem 3.5 of [KaR(2011)] (cf. the

proof of (3.12) of [KaR(2011)]) using the global non-idling condition (2.10), the a.e derivative(∑
𝑘∈K 𝐿

)′
(·) of

(∑
𝑘∈K 𝐿

)
(·) satisfies for a.e. 𝑡 ∈ R+,

(∑︁
𝑘∈K

𝐿𝑘

)′
(𝑡) =


∑
𝑘∈K 𝜆𝑘 (𝑡) if

∑
𝑘∈K 𝑋 𝑘 (𝑡) < 1,∑

𝑘∈K 𝜆𝑘 (𝑡) ∧
∑
𝑘∈K ⟨ℎ𝑠

𝑘
, 𝜈𝑘𝑡 ⟩ if

∑
𝑘∈K 𝑋 𝑘 (𝑡) = 1,∑

𝑘∈K ⟨ℎ𝑠
𝑘
, 𝜈𝑘𝑡 ⟩ if

∑
𝑘∈K 𝑋 𝑘 (𝑡) > 1.

(2.17)

On the other hand, by the definition of 𝐹 𝑡 in (2.7), (2.5) and Remark 1,

𝐹 𝑡 (𝜒(0) + 𝑡) =
∑︁
𝑘∈K

𝜂𝑘𝑡 [0, 𝜒(0) + 𝑡] =
∑︁
𝑘∈K

∫
[0,𝐻𝑟

𝑘
)
1[0,𝜒(0)] (𝑥)

𝐺̄𝑟
𝑘
(𝑥 + 𝑡)

𝐺̄𝑟
𝑘
(𝑥)

𝜂𝑘0 (𝑑𝑥)

+
∑︁
𝑘∈K

∫ 𝑡

0
𝐺̄𝑟𝑘 (𝑡 − 𝑠)𝜆𝑘 (𝑠) 𝑑𝑠.

Thus 𝐹 𝑡 (𝜒(0) + 𝑡), as a function of 𝑡, is absolutely continuous with a.e derivative

(
𝐹 𝑡 (𝜒(0) + 𝑡)

)′
= −

∑︁
𝑘∈K

∫
[0,𝜒(0)]

𝑔𝑟
𝑘
(𝑥 + 𝑡)
𝐺̄𝑟
𝑘
(𝑥)

𝜂𝑘0 (𝑑𝑥) +
∑︁
𝑘∈K

𝜆𝑘 (𝑡) −
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑟𝑘 (𝑡 − 𝑠)𝜆𝑘 (𝑠) 𝑑𝑠 (2.18)

=
∑︁
𝑘∈K

𝜆𝑘 (𝑡) −
∑︁
𝑘∈K

∫
[0,𝜒(0)+𝑡]

ℎ𝑟𝑘 (𝑥)𝑑𝐹
𝑘

𝑡 (𝑥),

where the last equality follows from (2.5) with 𝑓 = 1[0,𝜒(0)+𝑡]ℎ
𝑟
𝑘

for each 𝑘 ∈ K. Then 𝑓 in (2.16) is

also absolutely continuous by its definition.

We now show that 𝑓 has the following property: for each 𝑡 > 0,

𝑓 (𝑡) ≤ 0 implies 𝑓 ′(𝑡) ≥ 0. (2.19)
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To prove this property, fix 𝑡 > 0 such that 𝑓 (𝑡) ≤ 0, then

∑︁
𝑘∈K

𝑄𝑘 (𝑡) ≥ 𝐹 𝑡 (𝜒(0) + 𝑡) > 0. (2.20)

Thus, by (2.11),
∑
𝑘∈K 𝑋 𝑘 (𝑡) =

∑
𝑘∈K 𝑄𝑘 (𝑡) + 1 > 1. Thus,

(∑
𝑘∈K 𝑋 𝑘

)′
(𝑡) =

(∑
𝑘∈K 𝑄𝑘

)′
(𝑡) and(∑

𝑘∈K 𝐿𝑘
)′
(𝑡) =∑

𝑘∈K ⟨ℎ𝑠
𝑘
, 𝜈𝑘𝑢⟩ by (2.17). Using (2.9), (2.20), an application of change of variables

and (2.18), we have that

(∑︁
𝑘∈K

𝑋 𝑘

)′
(𝑡) =

∑︁
𝑘∈K

(
𝜆𝑘 (𝑡) − ⟨ℎ𝑠𝑘 , 𝜈

𝑘
𝑢⟩ −

∫ ∑
𝑘∈K 𝑄𝑘 (𝑡)

0
ℎ𝑟𝑘 ((𝐹 𝑡)

−1(𝑢))𝑑𝐹𝑘𝑡 ((𝐹 𝑡)−1(𝑢))
)

≤
∑︁
𝑘∈K

(
𝜆𝑘 (𝑡) − ⟨ℎ𝑠𝑘 , 𝜈

𝑘
𝑢⟩ −

∫ 𝐹𝑡 (𝜒(0)+𝑡)

0
ℎ𝑟𝑘 ((𝐹 𝑡)

−1(𝑢))𝑑𝐹𝑘𝑡 ((𝐹 𝑡)−1(𝑢))
)

=
∑︁
𝑘∈K

(
𝜆𝑘 (𝑡) −

∑︁
𝑘∈K

⟨ℎ𝑠𝑘 , 𝜈
𝑘
𝑢⟩ −

∫
[0,𝜒(0)+𝑡]

ℎ𝑟𝑘 (𝑥)𝑑𝐹
𝑘

𝑡 (𝑥)
)

= −
∑︁
𝑘∈K

⟨ℎ𝑠𝑘 , 𝜈
𝑘
𝑢⟩ +

(
𝐹 𝑡 (𝜒(0) + 𝑡)

)′
,

and then (
𝐹 𝑡 (𝜒(0) + 𝑡)

)′
−

(∑︁
𝑘∈K

𝑄𝑘

)′
(𝑡) =

(
𝐹 𝑡 (𝜒(0) + 𝑡)

)′
−

(∑︁
𝑘∈K

𝑋 𝑘

)′
(𝑡) ≥

∑︁
𝑘∈K

⟨ℎ𝑠𝑘 , 𝜈
𝑘
𝑢⟩.

It follows that 𝑓 ′(𝑡) ≥ ∑
𝑘∈K ⟨ℎ𝑠

𝑘
, 𝜈𝑘𝑢⟩ ≥ 0. Thus, we proved the property (2.19). For each 𝑡 > 0, if

𝑓 (𝑡) < 0, then since 𝑓 (0) ≥ 0, let 𝜏 � sup{𝑢 ≤ 𝑡 : 𝑓 (𝑢) ≥ 0}, then 0 ≤ 𝜏 < 𝑡 by the continuity of 𝑓 .

Then 𝑓 (𝜏) = 0 and 𝑓 (𝑢) < 0 for all 𝑢 ∈ (𝜏, 𝑡]. It follows that 𝑓 (𝑡) = 𝑓 (𝜏) +
∫ 𝑡

𝜏
𝑓 ′(𝑠)𝑑𝑠 ≥ 𝑓 (𝜏) = 0,

which is a contradiction. Thus, for all 𝑡 > 0, 𝑓 (𝑡) ≥ 0, that is,
∑
𝑘∈K 𝑄𝑘 (𝑡) ≤ 𝐹 𝑡 (𝜒(0) + 𝑡). □

We close this section by showing that for each 𝑘 ∈ K, 𝐿𝑘 (·) in Definition 1 is non-decreasing.

Lemma 3. Suppose that 𝐸 (·) is absolutely continuous with a.e. derivative 𝜆(·) =

(𝜆1(·), . . . , 𝜆𝐾 (·)), then for each 𝑘 ∈ K, 𝐿𝑘 (·) in Definition 1 is non-decreasing and hence is

absolutely continuous on R+.

Proof Fix 𝑘 ∈ K and 0 ≤ 𝑠 < 𝑡 < ∞. Let ℎ � 𝑡 − 𝑠. It follows from Lemma 2 that 𝜒(𝑠 + 𝑢) ≤
𝜒(𝑠) +𝑢 for each 𝑢 ∈ [0, ℎ]. Since 𝜒(𝑠+ℎ) ≤ 𝜒(𝑠) +ℎ, then 𝜂𝑘𝑠+ℎ (𝜒(𝑠+ℎ), 𝜒(𝑠) +ℎ] ≥ 0. On the other
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hand, by Lemma 1, (𝑋 [𝑠]
, 𝜈 [𝑠] , 𝜂[𝑠]) solves the fluid equations associated with (𝐸 [𝑠]

, 𝑋 (𝑠), 𝜈𝑠, 𝜂𝑠) ∈

S0. Then, by Remark 1, 𝜂𝑘𝑠+ℎ = 𝜂
[𝑠],𝑘
ℎ

satisfies (2.5) with ℎ, 1[0,𝜒(𝑠)+ℎ] (·), 𝜂𝑘𝑠 and 𝐸 [𝑠]
𝑘 in place of 𝑡,

𝑓 , 𝜂𝑘0 and 𝐸 𝑘 , respectively. Combining this with (2.8), we have that

𝜂𝑘𝑠+ℎ (𝜒(𝑠 + ℎ), 𝜒(𝑠) + ℎ] (2.21)

= 𝜂𝑘𝑠+ℎ [0, 𝜒(𝑠) + ℎ] − 𝜂
𝑘
𝑠+ℎ [0, 𝜒(𝑠 + ℎ)]

=

∫
[0,𝐻𝑟

𝑘
)
1[0,𝜒(𝑠)+ℎ] (𝑥 + ℎ)

𝐺̄𝑟
𝑘
(𝑥 + ℎ)
𝐺̄𝑟
𝑘
(𝑥)

𝜂𝑘𝑠 (𝑑𝑥)

+
∫ ℎ

0
1[0,𝜒(𝑠)+ℎ] (ℎ− 𝑢)𝐺̄𝑟𝑘 (ℎ− 𝑢)𝜆𝑘 (𝑠 + 𝑢) 𝑑𝑢 −𝑄𝑘 (𝑠 + ℎ)

=

∫
[0,𝐻𝑟

𝑘
)
1[0,𝜒(𝑠)] (𝑥)

𝐺̄𝑟
𝑘
(𝑥 + ℎ)
𝐺̄𝑟
𝑘
(𝑥)

𝜂𝑘𝑠 (𝑑𝑥) +
∫ ℎ

0
𝐺̄𝑟𝑘 (ℎ− 𝑢)𝜆𝑘 (𝑠 + 𝑢) 𝑑𝑢 −𝑄𝑘 (𝑠 + ℎ)

=𝑄𝑘 (𝑠) −
∫
[0,𝐻𝑟

𝑘
)
1[0,𝜒(𝑠)] (𝑥)

𝐺𝑟
𝑘
(𝑥 + ℎ) −𝐺𝑟

𝑘
(𝑥)

𝐺̄𝑟
𝑘
(𝑥)

𝜂𝑘𝑠 (𝑑𝑥)

+ (𝐸 𝑘 (𝑠 + ℎ) − 𝐸 𝑘 (𝑠)) −
∫ ℎ

0
𝐺𝑟𝑘 (ℎ− 𝑢)𝜆𝑘 (𝑠 + 𝑢) 𝑑𝑢 −𝑄𝑘 (𝑠 + ℎ).

For each 𝑢 ∈ [0, ℎ], since 𝜂𝑘𝑠+𝑢 = 𝜂
[𝑠],𝑘
𝑢 also satisfies (2.5) with 𝑢, 1[0,𝜒(𝑠)+𝑢] (·)ℎ𝑟𝑘 (·), 𝜂

𝑘
𝑠 and 𝐸 [𝑠]

𝑘 in

place of 𝑡, 𝑓 , 𝜂𝑘0 and 𝐸 𝑘 , respectively, we have that

∫
[0,𝐻𝑟

𝑘
)
1[0,𝜒(𝑠)+𝑢] (𝑥)ℎ𝑟𝑘 (𝑥)𝜂

𝑘
𝑠+𝑢 (𝑑𝑥)

=

∫
[0,𝐻𝑟

𝑘
)
1[0,𝜒(𝑠)+𝑢] (𝑥 + 𝑢)

𝑔𝑟
𝑘
(𝑥 + 𝑢)
𝐺̄𝑟
𝑘
(𝑥)

𝜂𝑘𝑠 (𝑑𝑥) +
∫ 𝑢

0
𝑔𝑟𝑘 (𝑢 −𝑤)𝜆𝑘 (𝑠 +𝑤) 𝑑𝑤

=

∫
[0,𝐻𝑟

𝑘
)
1[0,𝜒(𝑠)] (𝑥)

𝑔𝑟
𝑘
(𝑥 + 𝑢)
𝐺̄𝑟
𝑘
(𝑥)

𝜂𝑘𝑠 (𝑑𝑥) +
∫ 𝑢

0
𝑔𝑟𝑘 (𝑢 −𝑤)𝜆𝑘 (𝑠 +𝑤) 𝑑𝑤.
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From this, (2.7) and an application of a change of variables, we can see that

𝑅𝑘 (𝑠 + ℎ) − 𝑅𝑘 (𝑠) (2.22)

=

∫ ℎ

0

∫
[0,𝐻𝑟

𝑘
)
1[0,𝜒(𝑠+𝑢)] (𝑥)ℎ𝑟𝑘 (𝑥)𝜂

𝑘
𝑠+𝑢 (𝑑𝑥)𝑑𝑢

≤
∫ ℎ

0

∫
[0,𝐻𝑟

𝑘
)
1[0,𝜒(𝑠)+𝑢] (𝑥)ℎ𝑟𝑘 (𝑥)𝜂

𝑘
𝑠+𝑢 (𝑑𝑥)𝑑𝑢

=

∫ ℎ

0

(∫
[0,𝐻𝑟

𝑘
)
1[0,𝜒(𝑠)] (𝑥)

𝑔𝑟
𝑘
(𝑥 + 𝑢)
𝐺̄𝑟
𝑘
(𝑥)

𝜂𝑘𝑠 (𝑑𝑥)
)
𝑑𝑢 +

∫ ℎ

0

(∫ 𝑢

0
𝑔𝑟𝑘 (𝑢 −𝑤)𝜆𝑘 (𝑠 +𝑤) 𝑑𝑤

)
𝑑𝑢

=

∫
[0,𝐻𝑟

𝑘
)
1[0,𝜒(𝑠)] (𝑥)

𝐺𝑟
𝑘
(𝑥 + ℎ) −𝐺𝑟

𝑘
(𝑥)

𝐺̄𝑟
𝑘
(𝑥)

𝜂𝑘𝑠 (𝑑𝑥) +
∫ ℎ

0
𝐺𝑟𝑘 (ℎ− 𝑢)𝜆𝑘 (𝑠 + 𝑢) 𝑑𝑢,

where the last equality follows from the change of order of integration. Using (2.12), we have that

𝐸 𝑘 (𝑠 + ℎ) − 𝐸 𝑘 (𝑠) = (𝑄𝑘 (𝑠 + ℎ) −𝑄𝑘 (𝑠)) + (𝐿𝑘 (𝑠 + ℎ) − 𝐿𝑘 (𝑠)) + (𝑅𝑘 (𝑠 + ℎ) − 𝑅𝑘 (𝑠)).

Combining this with (2.21) and (2.22) yield that

0 ≤ 𝜂𝑘𝑠+ℎ (𝜒(𝑠 + ℎ), 𝜒(𝑠) + ℎ] ≤ 𝐿𝑘 (𝑠 + ℎ) − 𝐿𝑘 (𝑠).

Thus, 𝐿𝑘 (·) is non-decreasing on R+. Since
∑
𝑘∈K 𝐿𝑘 (·) is absolutely continuous and is non-

decreasing on R+, then 𝐿𝑘 is also absolutely continuous on R+. □

3. Well-posedness of Solutions to the Fluid Model Equations In this section we estab-
lish the existence and uniqueness of solutions to the fluid model equations associated with
(𝐸, 𝑋 (0), 𝜈0, 𝜂0) ∈ S0 in Definition 1 under the following assumption.

Assumption 1. The arrival process 𝐸 = (𝐸1, . . . , 𝐸𝐾) is absolutely continuous with a.e. deriva-

tive 𝜆(·) = (𝜆1(·), . . . , 𝜆𝐾 (·)), for each 𝑘 ∈ K, 𝜂𝑘0 ({𝑥}) = 0 for all 𝑥 ∈ R+, the hazard rate functions

{ℎ𝑟
𝑘
, 𝑘 ∈ K} of the patience time distributions {𝐺𝑟

𝑘
, 𝑘 ∈ K} are a.e. locally bounded and the

densities {𝑔𝑠
𝑘
, 𝑘 ∈ K} of the service time distributions {𝐺𝑠

𝑘
, 𝑘 ∈ K} satisfy that for each 𝑘 ∈ K,

there is an integer 𝑞𝑘 ≥ 1 such that for each 𝑆 > 0,∫ 𝑆

0
|𝑔𝑠𝑘 (𝑠 + ℎ) − 𝑔

𝑠
𝑘 (𝑠) |

𝑞𝑘𝑑𝑠→ 0 as ℎ ↓ 0. (3.23)
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Moreover, if ℎ𝑟
𝑘

is unbounded on [0, 𝐻𝑟
𝑘
) for some 𝑘 ∈ K, it is assumed that

𝜒(0) =
(
𝐹0

)−1
([∑︁
𝑘∈K

𝑋 𝑘 (0) − 1

]+)
<∞. (3.24)

Remark 2. Since the hazard rate function of any distribution is only locally integrable and

never integrable over its support, then when we assume that the hazard rate functions {ℎ𝑟
𝑘
, 𝑘 ∈ K}

are a.e. locally bounded in Assumption 1, we implicitly assume that 𝐻𝑟
𝑘
=∞ for all 𝑘 ∈ K. The

condition (3.23) on the service time densities {𝑔𝑠
𝑘
, 𝑘 ∈ K} is not too restrictive. For example, if

{𝑔𝑠
𝑘
, 𝑘 ∈ K} are right continuous, then they satisfies (3.23) with 𝑞𝑘 = 1, by a simple application of

dominated convergence theorem. The condition (3.24) is assumed so that the hazard rate functions

{ℎ𝑟
𝑘
, 𝑘 ∈ K} are bounded on 𝜒(0) + 𝑡 for each 𝑡 ∈ R+.

Fix (𝐸, 𝑋 (0), 𝜈0, 𝜂0) ∈ S0 that satisfies Assumption 1. Suppose that (𝑋, 𝜈, 𝜂) is a solution to the

fluid model equations associated with (𝐸, 𝑋 (0), 𝜈0, 𝜂0).
It follows from (2.11) and Lemma 2 that, for each 𝑡 ∈ R+,(

𝐹 𝑡

)−1
([∑︁
𝑘∈K

𝑋 𝑘 (𝑡) − 1

]+)
≤ 𝜒(0) + 𝑡. (3.25)

Note that by (2.9), for each 𝑡 ∈ R+,∑︁
𝑘∈K

𝑋 𝑘 (𝑡) =
∑︁
𝑘∈K

𝑋 𝑘 (0) +
∑︁
𝑘∈K

𝐸 𝑘 (𝑡) −
∑︁
𝑘∈K

∫ 𝑡

0
⟨ℎ𝑠𝑘 , 𝜈

𝑘
𝑢⟩ 𝑑𝑢 −

∑︁
𝑘∈K

𝑅𝑘 (𝑡).

For each 𝑘 ∈ K and 𝑡 ∈ R+, by (2.3), Remark 1, an application of changing the order of integration

and an application of integration by parts, and (2.12),

∫ 𝑡

0
⟨ℎ𝑠𝑘 , 𝜈

𝑘
𝑢⟩ 𝑑𝑢 =

∫ 𝑡

0

(∫
[0,𝐻𝑠

𝑘
)

𝑔𝑠
𝑘
(𝑥 + 𝑢)
𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥)
)
𝑑𝑢 +

∫ 𝑡

0

∫ 𝑢

0
𝑔𝑠𝑘 (𝑢 −𝑤) 𝑑𝐿𝑘 (𝑤)𝑑𝑢

=

∫
[0,𝐻𝑠

𝑘
)

𝐺𝑠
𝑘
(𝑥 + 𝑡) −𝐺𝑠

𝑘
(𝑥)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥) +
∫ 𝑡

0
𝐿𝑘 (𝑢)𝑔𝑠𝑘 (𝑡 − 𝑢)𝑑𝑢

=

∫
[0,𝐻𝑠

𝑘
)

𝐺𝑠
𝑘
(𝑥 + 𝑡) −𝐺𝑠

𝑘
(𝑥)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥)

+
∫ 𝑡

0
(𝑄𝑘 (0) + 𝐸 𝑘 (𝑢) −𝑄𝑘 (𝑢) − 𝑅𝑘 (𝑢))𝑔𝑠𝑘 (𝑡 − 𝑢)𝑑𝑢.
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From the above two displays, we can see that for each 𝑡 ∈ R+,

∑︁
𝑘∈K

𝑋 𝑘 (𝑡) =
∑︁
𝑘∈K

𝑋 𝑘 (0) +
∑︁
𝑘∈K

𝐸 𝑘 (𝑡) −
∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)

𝐺𝑠
𝑘
(𝑥 + 𝑡) −𝐺𝑠

𝑘
(𝑥)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥)

−
∑︁
𝑘∈K

∫ 𝑡

0
(𝑄𝑘 (0) + 𝐸 𝑘 (𝑢))𝑔𝑠𝑘 (𝑡 − 𝑢)𝑑𝑢 (3.26)

+
∑︁
𝑘∈K

∫ 𝑡

0
(𝑄𝑘 (𝑢) + 𝑅𝑘 (𝑢))𝑔𝑠𝑘 (𝑡 − 𝑢)𝑑𝑢 −

∑︁
𝑘∈K

𝑅𝑘 (𝑡).

Let 𝜉 (·) be the function on R+ defined by the input data (𝐸, 𝑋 (0), 𝜈0, 𝜂0) as

𝜉 (𝑡) �
∑︁
𝑘∈K

𝑋 𝑘 (0) +
∑︁
𝑘∈K

𝐸 𝑘 (𝑡) −
∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)

𝐺𝑠
𝑘
(𝑥 + 𝑡) −𝐺𝑠

𝑘
(𝑥)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥)

−
∑︁
𝑘∈K

∫ 𝑡

0
(𝑄𝑘 (0) + 𝐸 𝑘 (𝑢))𝑔𝑠𝑘 (𝑡 − 𝑢)𝑑𝑢 (3.27)

=
∑︁
𝑘∈K

𝑋 𝑘 (0) −
∑︁
𝑘∈K

(𝑋 𝑘 (0) − ⟨1, 𝜈𝑘0⟩)𝐺
𝑠
𝑘 (𝑡) +

∑︁
𝑘∈K

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢)𝑑𝐸 𝑘 (𝑢)

−
∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)

𝐺𝑠
𝑘
(𝑥 + 𝑡) −𝐺𝑠

𝑘
(𝑥)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥).

Then 𝜉 (·) ∈ C(R+), where recall that C(R+) denotes the space of real-valued continuous functions

on R+. By (2.7) and an application of integration by parts on the left-hand side of the display below,

for each 𝑘 ∈ K and 𝑡 ∈ R+,

𝑅𝑘 (𝑡) −
∫ 𝑡

0
𝑅𝑘 (𝑢)𝑔𝑠𝑘 (𝑡 − 𝑢)𝑑𝑢 (3.28)

=

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢)

(∫ ∑
𝑘∈K 𝑄𝑘 (𝑢)

0
ℎ𝑟𝑘 ((𝐹𝑢)

−1(𝑤))𝑑𝐹𝑘𝑢 ((𝐹𝑢)−1(𝑤))
)
𝑑𝑢.

Now, for each 𝑘 ∈ K and 𝑡, 𝑥 ∈ R+, define
𝐴𝑘 (𝑡, 𝑥) � 𝐹𝑘𝑡

(
(𝐹 𝑡)−1

(
[𝑥 − 1]+ ∧ 𝐹 𝑡 (𝜒(0) + 𝑡)

))
,

𝐵𝑘 (𝑡, 𝑥) �
∫ [𝑥−1]+∧𝐹𝑡 (𝜒(0)+𝑡)

0 ℎ𝑟
𝑘
((𝐹 𝑡)−1(𝑢))𝑑𝐹𝑘𝑡 ((𝐹 𝑡)−1(𝑢)).

(3.29)



Weining Kang: Multiclass Many-Server Queues with Global FCFS Discipline
Article submitted to Mathematics of Operations Research 15

Then (3.26), (3.27), (3.28), (2.8), (2.11), (3.29) and (3.25) and Lemma 2 with 𝑠 = 0 together imply

that for 𝑡 ∈ R+,

∑︁
𝑘∈K

𝑋 𝑘 (𝑡) = 𝜉 (𝑡) +
∑︁
𝑘∈K

∫ 𝑡

0
𝑄𝑘 (𝑢)𝑔𝑠𝑘 (𝑡 − 𝑢)𝑑𝑢

−
∑︁
𝑘∈K

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢)

(∫ ∑
𝑘∈K 𝑄𝑘 (𝑢)

0
ℎ𝑟𝑘 ((𝐹𝑢)

−1(𝑤))𝑑𝐹𝑘𝑢 ((𝐹𝑢)−1(𝑤))
)
𝑑𝑢

= 𝜉 (𝑡) +
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘

(
𝑢,

∑︁
𝑘∈K

𝑋 𝑘 (𝑢)
)
𝑑𝑢

−
∑︁
𝑘∈K

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢)𝐵

𝑘

(
𝑢,

∑︁
𝑘∈K

𝑋 𝑘 (𝑢)
)
𝑑𝑢.

We can see that
∑
𝑘∈K 𝑋 𝑘 (·) is a solution to the following integral equation:

𝑓 (𝑡) = 𝜉 (𝑡) −
∑︁
𝑘∈K

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢)𝐵

𝑘 (𝑢, 𝑓 (𝑢))𝑑𝑢 +
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘 (𝑢, 𝑓 (𝑢))𝑑𝑢. (3.30)

Let Λ be the following functional map defined on C(R+) by

Λ(𝑥) (𝑡) � 𝜉 (𝑡) −
∑︁
𝑘∈K

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢)𝐵

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 +
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢, (3.31)

where 𝜉 (·) is given by (3.27). Then
∑
𝑘∈K 𝑋 𝑘 (·) is a fixed point of the functional map Λ, that is,∑︁
𝑘∈K

𝑋 𝑘 =Λ

(∑︁
𝑘∈K

𝑋 𝑘

)
.

Thus, the existence and uniqueness of solutions to the fluid model equations is linked to the well-

posedness of the integral equation (3.30), i.e., the existence and uniqueness of the integral equation

(3.30), or equivalently, to the existence and uniqueness of fixed points of the functional map Λ.

3.1. Well-posedness of the integral equation (3.30). In this subsection, we establish that

the integral equation (3.30) admits a unique continuous solution 𝑥(·) on R+. To do this, we first

establish some properties of 𝐴𝑘 and 𝐵𝑘 , 𝑘 ∈ K, defined in (3.29).
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Lemma 4. Suppose that Assumption 1 holds. For each 𝑘 ∈ K, the functions 𝐴𝑘 and 𝐵𝑘 satisfy

the following properties:

1. for each 𝑡 ∈ R+, 𝐴𝑘 (𝑡, 𝑥) and 𝐵𝑘 (𝑡, 𝑥) are continuous in 𝑥 ∈ R+,

2. for each 𝑡 ∈ R+ and 𝑥, 𝑦 ∈ R+, |𝐴𝑘 (𝑡, 𝑥) − 𝐴𝑘 (𝑡, 𝑦) | ≤ |𝑥 − 𝑦 |,

3. for each 𝑡 ∈ R+ and each 𝑥, 𝑦 ∈ R+, |𝐵𝑘 (𝑡, 𝑥) − 𝐵𝑘 (𝑡, 𝑦) | ≤ 𝐶
𝑟,𝑘
𝑡 |𝑥 − 𝑦 |, where 𝐶

𝑟,𝑘
𝑡 �

sup0≤𝑢≤𝜒(0)+𝑡 ℎ
𝑟
𝑘
(𝑢) <∞.

Proof For each 𝑘 ∈ K and 𝑡 ∈ R+, since, by Assumption 1, 𝐸 is absolutely continuous and

𝜂0({𝑥}) = 0 for all 𝑥 ∈ R+, then functions 𝐹𝑘𝑡 (·) and hence 𝐹 𝑡 (·) are continuous, and then for each

𝑥 ∈ R+,

𝐹 𝑡

(
(𝐹 𝑡)−1(𝑥 ∧ 𝐹 𝑡 (𝜒(0) + 𝑡))

)
= 𝑥 ∧ 𝐹 𝑡 (𝜒(0) + 𝑡). (3.32)

Note that 𝐴𝑘 (𝑡, 𝑥) is increasing as a function of 𝑥 ∈ R+ by its definition. Then, for each 𝑥, 𝑦 ∈ R+

(without loss of generality, assume that 𝑥 > 𝑦),

|𝐴𝑘 (𝑡, 𝑥) − 𝐴𝑘 (𝑡, 𝑦) |

= 𝐴𝑘 (𝑡, 𝑥) − 𝐴𝑘 (𝑡, 𝑦)

≤
∑︁
𝑘∈K

(
𝐹
𝑘

𝑡

(
(𝐹 𝑡)−1

(
[𝑥 − 1]+ ∧ 𝐹 𝑡 (𝜒(0) + 𝑡)

))
− 𝐹𝑘𝑡

(
(𝐹 𝑡)−1

(
[𝑦 − 1]+ ∧ 𝐹 𝑡 (𝜒(0) + 𝑡)

)))
= 𝐹 𝑡

(
(𝐹 𝑡)−1

(
[𝑥 − 1]+ ∧ 𝐹 𝑡 (𝜒(0) + 𝑡)

))
− 𝐹 𝑡

(
(𝐹 𝑡)−1

(
[𝑦 − 1]+ ∧ 𝐹 𝑡 (𝜒(0) + 𝑡)

))
= [𝑥 − 1]+ ∧ 𝐹 𝑡 (𝜒(0) + 𝑡) − [𝑦 − 1]+ ∧ 𝐹 𝑡 (𝜒(0) + 𝑡)

≤ [𝑥 − 1]+ − [𝑦 − 1]+ ≤ 𝑥 − 𝑦.

This establishes property (2) and also shows that 𝐴𝑘 (𝑡, 𝑥) is continuous in 𝑥.
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Next, note that 𝐵𝑘 (𝑡, 𝑥) is increasing as a function of 𝑥 ∈ R+ by its definition. For each 𝑘 ∈ K,

each 𝑡 ∈ R+ and each 𝑥, 𝑦 ∈ R+ (without loss of generality, assume that 𝑥 > 𝑦),

|𝐵𝑘 (𝑡, 𝑥) − 𝐵𝑘 (𝑡, 𝑦) | = 𝐵𝑘 (𝑡, 𝑥) − 𝐵𝑘 (𝑡, 𝑦)

=

∫ [𝑥−1]+∧𝐹𝑡 (𝜒(0)+𝑡)

[𝑦−1]+∧𝐹𝑡 (𝜒(0)+𝑡)
ℎ𝑟𝑘 ((𝐹 𝑡)

−1(𝑢))𝑑𝐹𝑘𝑡 ((𝐹 𝑡)−1(𝑢))

≤ 𝐶𝑟,𝑘𝑡
(
𝐹
𝑘

𝑡

(
(𝐹 𝑡)−1

(
[𝑥 − 1]+ ∧ 𝐹 𝑡 (𝜒(0) + 𝑡)

))
−𝐹𝑘𝑡

(
(𝐹 𝑡)−1

(
[𝑦 − 1]+ ∧ 𝐹 𝑡 (𝜒(0) + 𝑡)

)))
=𝐶

𝑟,𝑘
𝑡 (𝐴𝑘 (𝑡, 𝑥) − 𝐴𝑘 (𝑡, 𝑦))

≤ 𝐶𝑟,𝑘𝑡 (𝑥 − 𝑦).

This establishes property (3) and also shows that 𝐵𝑘 (𝑡, 𝑥) is continuous in 𝑥. Since both 𝐴𝑘 (𝑡, 𝑥)

and 𝐵𝑘 (𝑡, 𝑥) are continuous in 𝑥, this establishes property (1). □

Lemma 5. Suppose that Assumption 1 holds. The functional map Λ in (3.31) is a mapping from

C(R+) into C(R+).

Proof Fix 𝑥(·) ∈ C(R+). We show that Λ(𝑥) (·) ∈ C(R+). Note that 𝜉 (·) ∈ C(R+) and it is also

clear that for each 𝑘 ∈ K,
∫ 𝑡

0 𝐺̄
𝑠
𝑘
(𝑡 − 𝑢)𝐵𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 as a function of 𝑡 is in C(R+). Thus, we just

need to show that for each 𝑘 ∈ K,
∫ 𝑡

0 𝑔
𝑠
𝑘
(𝑡 − 𝑢)𝐴𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 as a function of 𝑡 is in C(R+). Fix

𝑡 ∈ R+ and 𝑘 ∈ K. We first show that
∫ 𝑡

0 𝑔
𝑠
𝑘
(𝑡−𝑢)𝐴𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 as a function of 𝑡 is right continuous

at 𝑡. To show this, for each 0 < ℎ < 1,

����∫ 𝑡+ℎ

0
𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 −
∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢
���� (3.33)

≤
����∫ 𝑡+ℎ

0
𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 −
∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢
����

+
����∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 −
∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢
����

≤
∫ 𝑡+ℎ

𝑡

𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢)𝐴
𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 +

∫ 𝑡

0

��𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢) − 𝑔𝑠𝑘 (𝑡 − 𝑢)�� 𝐴𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢.
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By property (2) of Lemma 4 with 𝑦 = 0, we have that 𝐴𝑘 (𝑢, 𝑥(𝑢)) ≤ |𝑥(𝑢) | for each 𝑢 ∈ R+ since

𝐴𝑘 (𝑢,0) = 0, then for each 0 < ℎ < 1,

∫ 𝑡+ℎ

𝑡

𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢)𝐴
𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 ≤ sup

0≤𝑢≤𝑡+ℎ
|𝑥(𝑢) |

∫ 𝑡+ℎ

𝑡

𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢)𝑑𝑢

≤ sup
0≤𝑢≤𝑡+ℎ

|𝑥(𝑢) |𝐺𝑠
𝑘 (ℎ).

For the second term at the right-hand side of (3.33), by using Hölder’s inequality,

∫ 𝑡

0

��𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢) − 𝑔𝑠𝑘 (𝑡 − 𝑢)�� 𝐴𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 (3.34)

≤
(∫ 𝑡

0

��𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢) − 𝑔𝑠𝑘 (𝑡 − 𝑢)��𝑞𝑘 𝑑𝑢)1/𝑞𝑘 (∫ 𝑡

0
𝐴𝑘 (𝑢, 𝑥(𝑢))𝑝𝑘𝑑𝑢

)1/𝑝𝑘

≤
(∫ 𝑡

0

��𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢) − 𝑔𝑠𝑘 (𝑡 − 𝑢)��𝑞𝑘 𝑑𝑢)1/𝑞𝑘
sup

0≤𝑢≤𝑡
|𝑥(𝑢) |𝑡1/𝑝𝑘

≤
(∫ 𝑡

0

��𝑔𝑠𝑘 (𝑢 + ℎ) − 𝑔𝑠𝑘 (𝑢)��𝑞𝑘 𝑑𝑢)1/𝑞𝑘
sup

0≤𝑢≤𝑡
|𝑥(𝑢) |𝑡1/𝑝𝑘 ,

where 1/𝑝𝑘 + 1/𝑞𝑘 = 1 (when 𝑞𝑘 = 1, then 𝑝𝑘 is understood as ∞ and 1/𝑝𝑘 = 0). It follows that, for

each 0 < ℎ < 1,

����∫ 𝑡+ℎ

0
𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 −
∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢
���� (3.35)

≤ sup
0≤𝑢≤𝑡+ℎ

|𝑥(𝑢) |
[
𝐺𝑠
𝑘 (ℎ) +

(∫ 𝑡

0

��𝑔𝑠𝑘 (𝑢 + ℎ) − 𝑔𝑠𝑘 (𝑢)��𝑞𝑘 𝑑𝑢)1/𝑞𝑘
𝑡1/𝑝𝑘

]
.

Then by using (3.23) and taking the limits on both sides of (3.35) as ℎ ↓ 0, we have that����∫ 𝑡+ℎ

0
𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 −
∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢
����→ 0 as ℎ ↓ 0,
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which shows that
∫ 𝑡

0 𝑔
𝑠
𝑘
(𝑡−𝑢)𝐴𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 as a function of 𝑡 is right continuous at 𝑡. We next show

that
∫ 𝑡

0 𝑔
𝑠
𝑘
(𝑡 − 𝑢)𝐴𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 as a function of 𝑡 is left continuous at 𝑡 if 𝑡 > 0. For this, suppose

that 𝑡 > 0. For each 0 < ℎ < 𝑡,����∫ 𝑡−ℎ

0
𝑔𝑠𝑘 (𝑡 − ℎ− 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 −
∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢
����

≤
����∫ 𝑡−ℎ

0
𝑔𝑠𝑘 (𝑡 − ℎ− 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 −
∫ 𝑡−ℎ

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢
����

+
����∫ 𝑡−ℎ

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 −
∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢
����

≤
∫ 𝑡

𝑡−ℎ
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 +
∫ 𝑡−ℎ

0

��𝑔𝑠𝑘 (𝑡 − ℎ− 𝑢) − 𝑔𝑠𝑘 (𝑡 − 𝑢)�� 𝐴𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢,
where ∫ 𝑡

𝑡−ℎ
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 ≤ sup
0≤𝑢≤𝑡

|𝑥(𝑢) |
∫ 𝑡

𝑡−ℎ
𝑔𝑠𝑘 (𝑡 − 𝑢)𝑑𝑢 ≤ sup

0≤𝑢≤𝑡
|𝑥(𝑢) |𝐺𝑠

𝑘 (ℎ),

and ∫ 𝑡−ℎ

0

��𝑔𝑠𝑘 (𝑡 − ℎ− 𝑢) − 𝑔𝑠𝑘 (𝑡 − 𝑢)�� 𝐴𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢
≤

(∫ 𝑡−ℎ

0

��𝑔𝑠𝑘 (𝑡 − ℎ− 𝑢) − 𝑔𝑠𝑘 (𝑡 − 𝑢)��𝑞𝑘 𝑑𝑢)1/𝑞𝑘 (∫ 𝑡−ℎ

0
𝐴𝑘 (𝑢, 𝑥(𝑢))𝑝𝑘𝑑𝑢

)1/𝑝𝑘

≤
(∫ 𝑡−ℎ

0

��𝑔𝑠𝑘 (𝑡 − ℎ− 𝑢) − 𝑔𝑠𝑘 (𝑡 − 𝑢)��𝑞𝑘 𝑑𝑢)1/𝑞𝑘
sup

0≤𝑢≤𝑡
|𝑥(𝑢) |𝑡1/𝑝𝑘

≤
(∫ 𝑡

0

��𝑔𝑠𝑘 (𝑢 + ℎ) − 𝑔𝑠𝑘 (𝑢)��𝑞𝑘 𝑑𝑢)1/𝑞𝑘
sup

0≤𝑢≤𝑡
|𝑥(𝑢) |𝑡1/𝑝𝑘 .

It follows that, for each 0 < ℎ < 𝑡,����∫ 𝑡−ℎ

0
𝑔𝑠𝑘 (𝑡 − ℎ− 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 −
∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢
���� (3.36)

≤ sup
0≤𝑢≤𝑡

|𝑥(𝑢) |
[
𝐺𝑠
𝑘 (ℎ) +

(∫ 𝑡

0

��𝑔𝑠𝑘 (𝑢 + ℎ) − 𝑔𝑠𝑘 (𝑢)��𝑞𝑘 𝑑𝑢)1/𝑞𝑘
𝑡1/𝑝𝑘

]
.
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Then by using (3.23) and taking the limits on both sides of (3.36) as ℎ ↓ 0, we have that����∫ 𝑡−ℎ

0
𝑔𝑠𝑘 (𝑡 − ℎ− 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 −
∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢
����→ 0 as ℎ ↓ 0,

which shows that
∫ 𝑡

0 𝑔
𝑠
𝑘
(𝑡 − 𝑢)𝐴𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 as a function of 𝑡 is also left continuous at 𝑡 if 𝑡 > 0.

Thus, for each 𝑘 ∈ K,
∫ 𝑡

0 𝑔
𝑠
𝑘
(𝑡 − 𝑢)𝐴𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 as a function of 𝑡 is continuous on R+ and then Λ

is a mapping from C(R+) into C(R+). □

Proposition 1. Suppose that Assumption 1 holds. Then there exists an interval [0, 𝜎′], 𝜎′ > 0

such that the equation (3.30) admits a unique continuous solution 𝑥(·) on [0, 𝜎′].

Proof Motivated by Miller and Sell [MS(1968)], we first establish the existence of a solution

to (3.30) on [0, 𝛽) for some 𝛽 > 0 by applying Schauder-Tychonoff Fixed Point Theorem. Recall

that by Lemma 5, Λ is a mapping from C(R+) into C(R+).
Fix 𝛽 > 0 and let 𝑎 > 0, define a subset H[0, 𝛽] of C[0, 𝛽] as

H[0, 𝛽] �
{
𝑥(·) ∈ C[0, 𝛽] : sup

0≤𝑡≤𝛽
|𝑥(𝑡) − 𝜉 (𝑡) | ≤ 𝑎

}
.

It is clear that the continuous function 𝜉 restricted on [0, 𝛽] is in H[0, 𝛽], so H[0, 𝛽] ≠ ∅. For each

𝑥(·) ∈ H [0, 𝛽] and each 𝑡 ∈ [0, 𝛽], |𝑥(𝑡) | ≤ |𝜉 (𝑡) | + 𝑎. Let

𝑀𝜉 � sup
0≤𝑡≤𝛽

|𝜉 (𝑡) | + 𝑎.

Then sup0≤𝑡≤𝛽 |𝑥(𝑡) | ≤ 𝑀𝜉 for each 𝑥(·) ∈ H [0, 𝛽]. Property (2) of Lemma 4 with 𝑦 = 0 implies

that 𝐴𝑘 (𝑡, 𝑥(𝑡)) ≤ |𝑥(𝑡) | ≤ 𝑀𝜉 for all 𝑡 ∈ [0, 𝛽]. Also property (3) of Lemma 4 with 𝑦 = 0

implies that 𝐵𝑘 (𝑡, 𝑥(𝑡)) ≤ 𝐶𝑟,𝑘𝑡 |𝑥(𝑡) | ≤ 𝐶𝑟,𝑘
𝛽

|𝑥(𝑡) |, where recall𝐶𝑟,𝑘𝑡 = sup0≤𝑢≤𝜒(0)+𝑡 ℎ
𝑟
𝑘
(𝑢) and𝐶𝑟,𝑘

𝛽
=

sup0≤𝑢≤𝜒(0)+𝛽 ℎ
𝑟
𝑘
(𝑢). Note that by the definition of Λ in (3.31), for each 𝑥(·) ∈ H [0, 𝛽] and each

𝑡 ∈ [0, 𝛽],

|Λ(𝑥) (𝑡) − 𝜉 (𝑡) | ≤
∑︁
𝑘∈K

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢)𝐵

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 +
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢

≤
∑︁
𝑘∈K

𝐶
𝑟,𝑘

𝛽
𝑀𝜉

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢)𝑑𝑢 +

∑︁
𝑘∈K

𝑀𝜉

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝑑𝑢

=
∑︁
𝑘∈K

𝐶
𝑟,𝑘

𝛽
𝑀𝜉

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑢)𝑑𝑢 +

∑︁
𝑘∈K

𝑀𝜉𝐺
𝑠
𝑘 (𝑡).
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Now choose 𝛼 ∈ (0, 𝛽) such that

∑︁
𝑘∈K

𝐶
𝑟,𝑘

𝛽
𝑀𝜉

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑢)𝑑𝑢 +

∑︁
𝑘∈K

𝑀𝜉𝐺
𝑠
𝑘 (𝑡) ≤ 𝑎 for all 𝑡 ∈ [0, 𝛼].

Consider H[0, 𝛼], the restriction of H[0, 𝛽] on [0, 𝛼]. Note that H[0, 𝛼] is a nonempty bounded

convex subset of the Banach space C[0, 𝛼] and Λ maps H[0, 𝛼] to itself.

We now show that the operator Λ on H[0, 𝛼] is compact. Since Λ maps H[0, 𝛼] to itself, the set

of images Λ(H [0, 𝛼]) � {Λ(𝑥) : 𝑥(·) ∈ H [0, 𝛼]} is bounded. Thus, by the Arzelà–Ascoli Theorem,

it suffices to show that Λ(H [0, 𝛼]) is equi-continuous. For each 𝑡 ∈ [0, 𝛼], 𝑥(·) ∈ H [0, 𝛼] and any

𝜀 > 0, ℎ ∈ R such that 𝑡 + ℎ ∈ [0, 𝛼],
ATTENTION: The following displayed equation, in its current form, exceeds the column width that will be used

in the published edition of your article. Please break or rewrite this equation to fit, including the equation

number, within a column width of 470 pt / 165.81 mm / 6.53 in (the width of this red box).

|Λ(𝑥) (𝑡 + ℎ) −Λ(𝑥) (𝑡) | ≤ |𝜉 (𝑡 + ℎ) − 𝜉 (𝑡) | (3.37)

+
∑︁
𝑘∈K

����∫ 𝑡+ℎ

0
𝐺̄𝑠
𝑘 (𝑡 + ℎ− 𝑢)𝐵

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 −
∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢)𝐵

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢
����

+
∑︁
𝑘∈K

����∫ 𝑡+ℎ

0
𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 −
∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢
���� .

Note that by using (3.35) when ℎ > 0 and (3.36) when ℎ < 0 and using the fact that 𝑡, 𝑡 + ℎ ∈ [0, 𝛼],

∑︁
𝑘∈K

����∫ 𝑡+ℎ

0
𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 −
∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢
���� (3.38)

≤ sup
0≤𝑢≤𝛼

|𝑥(𝑢) |
[∑︁
𝑘∈K

𝐺𝑠
𝑘 ( |ℎ |) +

∑︁
𝑘∈K

(∫ 𝑡

0

��𝑔𝑠𝑘 (𝑢 + |ℎ |) − 𝑔𝑠𝑘 (𝑢)
��𝑞𝑘 𝑑𝑢)1/𝑞𝑘

𝛼1/𝑝𝑘

]
≤ 𝑀𝜉

[∑︁
𝑘∈K

𝐺𝑠
𝑘 ( |ℎ |) +

∑︁
𝑘∈K

𝛼1/𝑝𝑘
(∫ 𝑡

0

��𝑔𝑠𝑘 (𝑢 + |ℎ |) − 𝑔𝑠𝑘 (𝑢)
��𝑞𝑘 𝑑𝑢)1/𝑞𝑘

]
.



Weining Kang: Multiclass Many-Server Queues with Global FCFS Discipline
22 Article submitted to Mathematics of Operations Research

Similarly, for each 𝑘 ∈ K, since 𝐵𝑘 (𝑢, 𝑥(𝑢)) ≤ 𝐶𝑟,𝑘
𝛽
𝑀𝜉 for each 𝑡 ∈ [0, 𝛼] and 𝑥(·) ∈ H [0, 𝛼], we

have that, when ℎ > 0,

����∫ 𝑡+ℎ

0
𝐺̄𝑠
𝑘 (𝑡 + ℎ− 𝑢)𝐵

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 −
∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢)𝐵

𝑘 (𝑢, 𝑥(𝑢)𝑑𝑢
����

≤
∫ 𝑡+ℎ

𝑡

𝐺̄𝑠
𝑘 (𝑡 + ℎ− 𝑢)𝐵

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 +
∫ 𝑡

0
(𝐺𝑠

𝑘 (𝑡 + ℎ− 𝑢) −𝐺
𝑠
𝑘 (𝑡 − 𝑢))𝐵

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢

≤ 𝐶𝑟,𝑘
𝛽
𝑀𝜉

(∫ 𝑡+ℎ

𝑡

𝐺̄𝑠
𝑘 (𝑡 + ℎ− 𝑢)𝑑𝑢 +

∫ 𝑡

0
(𝐺𝑠

𝑘 (𝑡 + ℎ− 𝑢) −𝐺
𝑠
𝑘 (𝑡 − 𝑢))𝑑𝑢

)
≤ 𝐶𝑟,𝑘

𝛽
𝑀𝜉

(
ℎ +

∫ 𝑡

0

∫ ℎ

0
𝑔𝑠𝑘 (𝑡 − 𝑢 + 𝑣)𝑑𝑣𝑑𝑢

)
≤ 𝐶𝑟,𝑘

𝛽
𝑀𝜉

(
ℎ +

∫ ℎ

0
(𝐺𝑠

𝑘 (𝑡 + 𝑣) −𝐺
𝑠
𝑘 (𝑣))𝑑𝑣

)
≤ 2𝐶𝑟,𝑘

𝛽
𝑀𝜉ℎ;

and when ℎ < 0,

����∫ 𝑡+ℎ

0
𝐺̄𝑠
𝑘 (𝑡 + ℎ− 𝑢)𝐵

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 −
∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢))𝐵

𝑘 (𝑢, 𝑥(𝑢)𝑑𝑢
����

≤
∫ 𝑡

𝑡+ℎ
𝐺̄𝑠
𝑘 (𝑡 − 𝑢)𝐵

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 +
∫ 𝑡+ℎ

0
(𝐺𝑠

𝑘 (𝑡 − 𝑢) −𝐺
𝑠
𝑘 (𝑡 + ℎ− 𝑢))𝐵

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢

≤ 𝐶𝑟,𝑘
𝛽
𝑀𝜉

(∫ 𝑡

𝑡+ℎ
𝐺̄𝑠
𝑘 (𝑡 − 𝑢)𝑑𝑢 +

∫ 𝑡+ℎ

0
(𝐺𝑠

𝑘 (𝑡 − 𝑢) −𝐺
𝑠
𝑘 (𝑡 + ℎ− 𝑢))𝑑𝑢

)
≤ 𝐶𝑟,𝑘

𝛽
𝑀𝜉

(
−ℎ +

∫ 𝑡+ℎ

0

∫ −ℎ

0
𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢 + 𝑣)𝑑𝑣𝑑𝑢

)
≤ 𝐶𝑟,𝑘

𝛽
𝑀𝜉

(
−ℎ +

∫ −ℎ

0
(𝐺𝑠

𝑘 (𝑡 + ℎ + 𝑣) −𝐺
𝑠
𝑘 (𝑣))𝑑𝑣

)
≤ 2𝐶𝑟,𝑘

𝛽
𝑀𝜉 (−ℎ).

Then it follows that

����∫ 𝑡+ℎ

0
𝐺̄𝑠
𝑘 (𝑡 + ℎ− 𝑢)𝐵

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 −
∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢))𝐵

𝑘 (𝑢, 𝑥(𝑢)𝑑𝑢
���� ≤ 2𝐶𝑟,𝑘

𝛽
𝑀𝜉 |ℎ |.
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Combining this with (3.37) and (3.38), we have that for each 𝑡 ∈ [0, 𝛼] and ℎ ∈ R such that

𝑡 + ℎ ∈ [0, 𝛼],

|Λ(𝑥) (𝑡 + ℎ) −Λ(𝑥) (𝑡) | ≤ |𝜉 (𝑡 + ℎ) − 𝜉 (𝑡) | + 2𝐶𝑟,𝑘
𝛽
𝑀𝜉 |ℎ | +𝑀𝜉

∑︁
𝑘∈K

𝐺𝑠
𝑘 ( |ℎ |)

+𝑀𝜉

∑︁
𝑘∈K

𝛼1/𝑝𝑘
(∫ 𝑡

0

��𝑔𝑠𝑘 (𝑢 + |ℎ |) − 𝑔𝑠𝑘 (𝑢)
��𝑞𝑘 𝑑𝑢)1/𝑞𝑘

.

By the uniform continuity of 𝜉 on [0, 𝛼] and (3.23), for the given 𝜀 > 0, there is a 𝛿 > 0 (independent

of 𝑥(·) ∈ H [0, 𝛼]) such that |Λ(𝑥) (𝑡 + ℎ) −Λ(𝑥) (𝑡) | < 𝜀 for any 𝑡, 𝑡 + ℎ ∈ [0, 𝛼] whenever |ℎ | < 𝛿.

This establishes the equi-continuity we need and hence Λ on H[0, 𝛼] is compact.

We next show that the operator Λ on H[0, 𝛼] is continuous. Let {𝑥𝑛 (·), 𝑛 ≥ 1} be a sequence in

H[0, 𝛼] that converges uniformly to 𝑥(·) ∈ H [0, 𝛼] as 𝑛→∞. We need to show that Λ(𝑥𝑛) →Λ(𝑥)

uniformly on [0, 𝛼] as 𝑛→∞. Since we have proved that the set {Λ(𝑥𝑛), 𝑛 ≥ 1} is equi-continuous, It

suffices to show that for each 𝑡 ∈ [0, 𝛼], Λ(𝑥𝑛) (𝑡) →Λ(𝑥) (𝑡) as 𝑛→∞. For this, notice that for each

𝑘 ∈ K and 𝑢 ∈ [0, 𝑡], 𝐴𝑘 (𝑢, 𝑥𝑛 (𝑢)) → 𝐴𝑘 (𝑢, 𝑥(𝑢)) and 𝐵𝑘 (𝑢, 𝑥𝑛 (𝑢)) → 𝐵𝑘 (𝑢, 𝑥(𝑢)) as 𝑛→∞ due to

property (1) of Lemma 4. Since 𝑔𝑠
𝑘
(𝑡 −𝑢)𝐴𝑘 (𝑢, 𝑥𝑛 (𝑢)) ≤ 𝑔𝑠𝑘 (𝑡 −𝑢)𝑀𝜉 and 𝐺̄𝑠

𝑘
(𝑡 −𝑢)𝐵𝑘 (𝑢, 𝑥𝑛 (𝑢)) ≤

𝐺̄𝑠
𝑘
(𝑡 − 𝑢)𝐶𝑟,𝑘

𝛽
𝑀𝜉 for each 𝑢 ∈ [0, 𝑡] and all 𝑛 ≥ 1, then by the dominate convergence theorem, we

have that Λ(𝑥𝑛) (𝑡) →Λ(𝑥) (𝑡) as 𝑛→∞. This establishes the continuity of Λ.

Since we have established that the operator Λ on H[0, 𝛼] is compact, continuous and maps

H[0, 𝛼] to itself, thus by Schauder-Tychonoff Fixed Point Theorem [SMN(1975)], Λ has a fixed

point in H[0, 𝛼], that is, there exists a function 𝑥(·) ∈ H [0, 𝛼] such that Λ(𝑥) (·) = 𝑥(·) on [0, 𝛼]

and then 𝑥(·) is a solution to (3.30) on [0, 𝛼].

At last, we show that there is 𝛼′ ∈ (0, 𝛼) such that 𝑥(·) is the only solution to (3.30) on [0, 𝛼′].

Consider two solutions 𝑥1(·) and 𝑥2(·) to (3.30) on [0, 𝛼]. Property (2) of Lemma 4 implies

that |𝐴𝑘 (𝑢, 𝑥1(𝑢)) − 𝐴𝑘 (𝑢, 𝑥2(𝑢)) | ≤ |𝑥1(𝑢) − 𝑥2(𝑢) | for each 𝑢 ∈ [0, 𝛼]. Moreover, property (3) of

Lemma 4 implies that for each 𝑢 ∈ [0, 𝛼],

|𝐵𝑘 (𝑢, 𝑥1(𝑢)) − 𝐵𝑘 (𝑢, 𝑥2(𝑢)) | ≤ 𝐶𝑟,𝑘𝛽 |𝑥1(𝑢) − 𝑥2(𝑢) |.

So for each 𝑡 ∈ [0, 𝛼],
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|𝑥1(𝑡) − 𝑥2(𝑡) | ≤
∑︁
𝑘∈K

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢) |𝐵

𝑘 (𝑢, 𝑥1(𝑢)) − 𝐵𝑘 (𝑢, 𝑥2(𝑢)) |𝑑𝑢

+
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢) |𝐴

𝑘 (𝑢, 𝑥1(𝑢)) − 𝐴𝑘 (𝑢, 𝑥2(𝑢)) |𝑑𝑢

≤
∑︁
𝑘∈K

𝐶
𝑟,𝑘

𝛽

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢) |𝑥1(𝑢) − 𝑥2(𝑢) |𝑑𝑢 +

∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢) |𝑥1(𝑢) − 𝑥2(𝑢) |𝑑𝑢.

Choose 𝛼′ ∈ (0, 𝛼) to be such that
∑
𝑘∈K 𝐶

𝑟,𝑘

𝛽

∫ 𝛼′

0 𝐺̄𝑠
𝑘
(𝑢)𝑑𝑢 + ∑

𝑘∈K 𝐺
𝑠
𝑘
(𝛼′) < 1. Then for each

𝑡 ∈ [0, 𝛼′],

|𝑥1(𝑡) − 𝑥2(𝑡) | ≤ sup
0≤𝑢≤𝛼′

|𝑥1(𝑢) − 𝑥2(𝑢) |
(∑︁
𝑘∈K

𝐶
𝑟,𝑘

𝛽

∫ 𝛼′

0
𝐺̄𝑠
𝑘 (𝑢)𝑑𝑢 +

∑︁
𝑘∈K

𝐺𝑠
𝑘 (𝛼

′)
)
.

Thus, the above display implies that sup0≤𝑢≤𝛼′ |𝑥1(𝑢) − 𝑥2(𝑢) | = 0, that is, 𝑥1(·) = 𝑥2(·) on [0, 𝛼′].

This shows that the solution to (3.30) is unique on [0, 𝛼′]. □

We now extend the unique solution to (3.30) from [0, 𝛼′] to R+.

Proposition 2. Suppose that Assumption 1 holds. Then the equation (3.30) admits a unique

continuous solution 𝑥(·) on R+.

Proof From Proposition 1, the equation (3.30) admits a unique continuous solution 𝑥(·) on

[0, 𝛼′]. Consider the following integral equation as the time-shifted version of (3.30):

𝑓 (𝑡) = 𝜉 (𝑡) −
∑︁
𝑘∈K

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢)𝐵

𝑘 (𝑢 +𝛼′, 𝑓 (𝑢))𝑑𝑢 +
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘 (𝑢 +𝛼′, 𝑓 (𝑢))𝑑𝑢,

(3.39)

where
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𝜉 (𝑡) = 𝜉 (𝛼′ + 𝑡) −
∑︁
𝑘∈K

∫ 𝛼′

0
𝐺̄𝑠
𝑘 (𝛼

′ + 𝑡 − 𝑢)𝐵𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 +
∑︁
𝑘∈K

∫ 𝛼′

0
𝑔𝑠𝑘 (𝛼

′ + 𝑡 − 𝑢)𝐴𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢.

It is clear that 𝜉 (𝛼′ + 𝑡) −∑
𝑘∈K

∫ 𝛼′

0 𝐺̄𝑠
𝑘
(𝛼′ + 𝑡 − 𝑢)𝐵𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 as a function of 𝑡 is continuous

in 𝑡 ∈ R+. To show that 𝜉 (𝑡) is continuous in 𝑡 ∈ R+, it suffices to show that for each 𝑘 ∈ K,∫ 𝛼′

0 𝑔𝑠
𝑘
(𝛼′ + 𝑡 − 𝑢)𝐴𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 as a function of 𝑡 is continuous in 𝑡 ∈ R+. For this, fix 𝑘 ∈ K and

𝑡 ∈ R+. Let ℎ ∈ R be such that 𝑡 + ℎ > 0. We then have that if ℎ > 0,

�����∫ 𝛼′

0
𝑔𝑠𝑘 (𝛼

′ + 𝑡 + ℎ− 𝑢)𝐴𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 −
∫ 𝛼′

0
𝑔𝑠𝑘 (𝛼

′ + 𝑡 − 𝑢)𝐴𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢
�����

≤
(∫ 𝛼′

0
|𝑔𝑠𝑘 (𝛼

′ + 𝑡 + ℎ− 𝑢) − 𝑔𝑠𝑘 (𝛼
′ + 𝑡 − 𝑢) |𝑞𝑘𝑑𝑢

)1/𝑞𝑘
sup

0≤𝑢≤𝛼′
|𝑥(𝑢) | (𝛼′)1/𝑝𝑘

=

(∫ 𝛼′+𝑡

𝑡

|𝑔𝑠𝑘 (𝑢 + ℎ) − 𝑔
𝑠
𝑘 (𝑢) |

𝑞𝑘𝑑𝑢

)1/𝑞𝑘
sup

0≤𝑢≤𝛼′
|𝑥(𝑢) | (𝛼′)1/𝑝𝑘

≤
(∫ 𝛼′+𝑡

0
|𝑔𝑠𝑘 (𝑢 + ℎ) − 𝑔

𝑠
𝑘 (𝑢) |

𝑞𝑘𝑑𝑢

)1/𝑞𝑘
sup

0≤𝑢≤𝛼′
|𝑥(𝑢) | (𝛼′)1/𝑝𝑘 ;

and if ℎ < 0 (when 𝑡 > 0),

�����∫ 𝛼′

0
𝑔𝑠𝑘 (𝛼

′ + 𝑡 + ℎ− 𝑢)𝐴𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 −
∫ 𝛼′

0
𝑔𝑠𝑘 (𝛼

′ + 𝑡 − 𝑢)𝐴𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢
�����

≤
(∫ 𝛼′

0
|𝑔𝑠𝑘 (𝛼

′ + 𝑡 + ℎ− 𝑢) − 𝑔𝑠𝑘 (𝛼
′ + 𝑡 − 𝑢) |𝑞𝑘𝑑𝑢

)1/𝑞𝑘
sup

0≤𝑢≤𝛼′
|𝑥(𝑢) | (𝛼′)1/𝑝𝑘

=

(∫ 𝛼′+𝑡+ℎ

𝑡+ℎ
|𝑔𝑠𝑘 (𝑢 − ℎ) − 𝑔

𝑠
𝑘 (𝑢) |

𝑞𝑘𝑑𝑢

)1/𝑞𝑘
sup

0≤𝑢≤𝛼′
|𝑥(𝑢) | (𝛼′)1/𝑝𝑘

≤
(∫ 𝛼′+𝑡

0
|𝑔𝑠𝑘 (𝑢 − ℎ) − 𝑔

𝑠
𝑘 (𝑢) |

𝑞𝑘𝑑𝑢

)1/𝑞𝑘
sup

0≤𝑢≤𝛼′
|𝑥(𝑢) | (𝛼′)1/𝑝𝑘 .
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Taking the limits on both sides of the above two displays and applying (3.23), we have that as ℎ→ 0,�����∫ 𝛼′

0
𝑔𝑠𝑘 (𝛼

′ + 𝑡 + ℎ− 𝑢)𝐴𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 −
∫ 𝛼′

0
𝑔𝑠𝑘 (𝛼

′ + 𝑡 − 𝑢)𝐴𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢
�����→ 0.

It follows that, for each 𝑘 ∈ K,
∫ 𝛼′

0 𝑔𝑠
𝑘
(𝛼′ + 𝑡 − 𝑢)𝐴𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 as a function of 𝑡 is continuous in

𝑡 ∈ R+ and then the function 𝜉 (·) ∈ C(R+). For each 𝑘 ∈ K, note that the functions 𝐴𝑘 (𝛼′ + ·, ·) and

𝐵𝑘 (𝛼′ + ·, ·) also satisfy the properties stated in Lemma 4. Then by following the same argument

as in the proof of Proposition 1 with 𝜉 (·) replaced by 𝜉 (·) and 𝐴𝑘 (·, ·) and 𝐵𝑘 (·, ·) replaced by

𝐴𝑘 (𝛼′ + ·, ·) and 𝐵𝑘 (𝛼′ + ·, ·) respectively, there exists an interval [0, 𝜎̂′], 𝜎̂′ > 0 such that the

equation (3.39) admits a unique continuous solution 𝑥(·) on [0, 𝜎̂′]. Then we can extend the solution

𝑥(·) from [0, 𝜎′] to [0, 𝜎′ + 𝜎̂′] as follows:

𝑥(𝑡) �


𝑥(𝑡) if 0 ≤ 𝑡 ≤ 𝛼′,

𝑥(𝑡 −𝛼′) if 𝛼′ ≤ 𝑡 ≤ 𝛼′ + 𝛼̂′.

Note that

𝑥(0) = 𝜉 (0) = 𝜉 (𝛼′) −
∑︁
𝑘∈K

∫ 𝛼′

0
𝐺̄𝑠
𝑘 (𝛼

′− 𝑢)𝐵𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢

+
∑︁
𝑘∈K

∫ 𝛼′

0
𝑔𝑠𝑘 (𝛼

′− 𝑢)𝐴𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 = 𝑥(𝛼′).

So the extension of 𝑥(·) defined above is the unique continuous solution to the equation (3.30) on

[0, 𝜎′ + 𝜎̂′]. By applying a simple contradiction argument, it is clear that the maximal interval on

which the equation (3.30) admits a unique continuous solution has to be R+. This completes the

proof of the proposition. □

3.2. Uniqueness of Solutions to the Fluid Model Equations.

Theorem 3.1. Suppose that Assumption 1 holds. Then, given (𝐸, 𝑋 (0), 𝜈0, 𝜂0) ∈ S0, There is

at most one continuous solution (𝑋, 𝜈, 𝜂) to the fluid model equations as in Definition 1 associated

with (𝐸, 𝑋 (0), 𝜈0, 𝜂0).

Proof Suppose that (𝑋1
, 𝜈1, 𝜂1) and (𝑋2

, 𝜈2, 𝜂2) are two solutions to the fluid model equations

as in Definition 1 associated with (𝐸, 𝑋 (0), 𝜈0, 𝜂0) ∈ S0. By (2.5), it is obvious that 𝜂1 = 𝜂2 and then
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𝐹
1
𝑡 = 𝐹

2
𝑡 for each 𝑡 ∈ R+ and 𝜒1(0) = 𝜒2(0). We simply denote them as 𝐹 𝑡 for each 𝑡 ∈ R+ and 𝜒(0).

By the discussion right after Remark 2, we see that
∑
𝑘∈K 𝑋

1
𝑘 (·) and

∑
𝑘∈K 𝑋

2
𝑘 (·) are two solutions

to (3.30). It follows from Proposition 2 that
∑
𝑘∈K 𝑋

1
𝑘 (·) =

∑
𝑘∈K 𝑋

2
𝑘 (·), which in turn implies that

𝑄
1(·) =𝑄2(·) by (2.8) and then 𝑅1(·) = 𝑅2(·) by (2.7). It follows that 𝐿1(·) = 𝐿2(·) by (2.12) and

then 𝜈1 = 𝜈2 by (2.3) and 𝑋1(·) = 𝑋2(·) by (2.9). Thus, (𝑋1
, 𝜈1, 𝜂1) = (𝑋2

, 𝜈2, 𝜂2). □

3.3. Existence of Solutions to the Fluid Model Equations. In this section, we establish

the existence of solutions to the fluid model equation from the unique continuous solution 𝑥(·)

to the equation (3.30) ensured by Proposition 2 under an additional assumption on the input data

(𝐸, 𝑋 (0), 𝜈0, 𝜂0) ∈ S0 and the service time densities {𝑔𝑠
𝑘
, 𝑘 ∈ K} of the service time distributions

{𝐺𝑠
𝑘
, 𝑘 ∈ K}.

Assumption 2. The service time densities {𝑔𝑠
𝑘
, 𝑘 ∈ K} are right continuous on their supports

and are absolutely continuous on [0, 𝛿] for some 𝛿 > 0, and one of the following two conditions

holds:

(A) There exists 𝑘 ∈ K such that
∫
[0,𝐻𝑠

𝑘
)
𝑔𝑠
𝑘
(𝑥 + 𝑡)
𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥) > 0 for all 𝑡 ∈ R+.

(B) For each 𝑘 ∈ K, ℎ𝑠
𝑘
(𝑥) > 0 for each 𝑥 ∈ [0, 𝐻𝑠

𝑘
).

Now, for each (𝐸, 𝑋 (0), 𝜈0, 𝜂0) ∈ S0 that satisfies Assumptions 1 and 2, let 𝑥(·) be the unique

continuous solution to the equation (3.30) associated with (𝐸, 𝑋 (0), 𝜈0, 𝜂0) ensured by Proposition

2. Now we construct (𝑋, 𝜈, 𝜂) from the unique continuous solution 𝑥(·) to the equation (3.30). For

each 𝑘 ∈ K, define 𝜂𝑘 [0, 𝑥] from the data (𝐸 𝑘 , 𝜂𝑘0) using the right-hand side of (2.5) with 𝑓 = 1[0,𝑥] ,

𝑥 ∈ [0, 𝐻𝑟
𝑘
). For each 𝑡 ∈ R+ and 𝑘 ∈ K, define 𝑄𝑘 (𝑡), 𝑅𝑘 (𝑡), 𝐿𝑘 (𝑡) by

𝑄𝑘 (𝑡) � 𝐴𝑘 (𝑡, 𝑥(𝑡)), (3.40)

𝑅𝑘 (𝑡) �
∫ 𝑡

0
𝐵𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢, (3.41)

𝐿𝑘 (𝑡) �𝑄𝑘 (0) + 𝐸 𝑘 (𝑡) −𝑄𝑘 (𝑡) − 𝑅𝑘 (𝑡). (3.42)
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At last, for each 𝑘 ∈ K, define 𝜈𝑘 from the data (𝐿𝑘 , 𝜈𝑘0) as follows: for each 𝑥 ∈ [0, 𝐻𝑠
𝑘
),

𝜈𝑘 [0, 𝑥] �
∫
[0,𝐻𝑠

𝑘
)
1[0,𝑥] (𝑦 + 𝑡)

𝐺̄𝑠
𝑘
(𝑦 + 𝑡)

𝐺̄𝑠
𝑘
(𝑦)

𝜈𝑘0 (𝑑𝑦) + 𝐿𝑘 (𝑡) (3.43)

− 𝐺̄𝑠
𝑘 (𝑥)𝐿𝑘 (𝑡 − 𝑥 ∧ 𝑡) −

∫ 𝑡

𝑡−𝑥∧𝑡
𝐿𝑘 (𝑠)𝑔𝑠𝑘 (𝑡 − 𝑠)𝑑𝑠.

At last, for each 𝑡 ∈ R+, define

𝑋 𝑘 (𝑡) �𝑄𝑘 (𝑡) + ⟨1, 𝜈𝑘𝑡 ⟩, (3.44)

where ⟨1, 𝜈𝑘𝑡 ⟩ = 𝜈𝑘 [0, 𝐻𝑠
𝑘
) using (3.43). The main result of this section is the following existence of

solutions to the fluid model equations.

Theorem 3.2. Suppose that Assumptions 1 and 2 hold. Given (𝐸, 𝑋 (0), 𝜈0, 𝜂0) ∈ S0, then

(𝑋, 𝜈, 𝜂) constructed from the unique continuous solution 𝑥(·) to the equation (3.30) is a continuous

solution to the fluid model equations associated with (𝐸, 𝑋 (0), 𝜈0, 𝜂0) on R+.

Note that for each 𝑘 ∈ K, 𝐿𝑘 defined by (3.42) may not be non-decreasing automatically and

then 𝜈𝑘 defined by (3.43) may not be a nonnegative measure. If we can show that 𝐿𝑘 , 𝑘 ∈ K, is

non-decreasing and that 𝑥(𝑡) − 1 ≤ 𝐹 𝑡 (𝜒(0) + 𝑡) for each 𝑡 ∈ R+, then the following proposition

shows that (𝑋, 𝜈, 𝜂) constructed from the unique continuous solution 𝑥(·) to the equation (3.30) is

a continuous solution to the fluid model equations.

Proposition 3. Suppose that Assumption 1 holds. Given (𝐸, 𝑋 (0), 𝜈0, 𝜂0) ∈ S0, if for each

𝑘 ∈ K, 𝐿𝑘 defined in (3.42) is non-decreasing on R+ and 𝑥(𝑡) − 1 ≤ 𝐹 𝑡 (𝜒(0) + 𝑡) for each 𝑡 ∈ R+,

then (𝑋, 𝜈, 𝜂) constructed from the unique continuous solution 𝑥(·) to the equation (3.30) is a

continuous solution to the fluid model equations associated with (𝐸, 𝑋 (0), 𝜈0, 𝜂0).

Proof Suppose that for each 𝑘 ∈ K, 𝐿𝑘 defined in (3.42) is non-decreasing on R+ and 𝑥(𝑡) −1 ≤
𝐹 𝑡 (𝜒(0) + 𝑡) for each 𝑡 ∈ R+. Then, for each 𝑘 ∈ K, using a simple integration by parts to the last

term of the right-hand side of (3.43),

𝜈𝑘 [0, 𝑥] =
∫
[0,𝐻𝑠

𝑘
)
1[0,𝑥] (𝑦 + 𝑡)

𝐺̄𝑠
𝑘
(𝑦 + 𝑡)

𝐺̄𝑠
𝑘
(𝑦)

𝜈𝑘0 (𝑑𝑦) +
∫ 𝑡

0
1[0,𝑥] (𝑡 − 𝑠)𝐺̄𝑠

𝑘 (𝑡 − 𝑠)𝑑𝐿𝑘 (𝑠).
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Thus, 𝜈𝑘 defined by (3.43) is a nonnegative measure and then satisfies (2.3) as discussed in Remark

1. We show that (𝑋, 𝜈, 𝜂) constructed from the unique continuous solution 𝑥(·) to the equation

(3.30) with its associated processes 𝑄, 𝑅, 𝐿 given in (3.40)–(3.42) is a continuous solution to the

fluid model equations. It is clear that the constructed processes satisfy (2.3), (2.5), (2.6).

To show that (2.4) holds, note from the construction of 𝜈𝑘 , Remark 1, changing the order of

integration and an application of integration by parts that, for each 𝑡 ∈ R+ and 𝑘 ∈ K,

∫ 𝑡

0
⟨ℎ𝑠𝑘 , 𝜈

𝑘
𝑢⟩𝑑𝑢 =

∫
[0,𝐻𝑠

𝑘
)

𝐺𝑠
𝑘
(𝑥 + 𝑡) −𝐺𝑠

𝑘
(𝑥)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥) +
∫ 𝑡

0

∫ 𝑠

0
𝑔𝑠𝑘 (𝑠 − 𝑢) 𝑑𝐿𝑘 (𝑢)𝑑𝑠

=

∫
[0,𝐻𝑠

𝑘
)

𝐺𝑠
𝑘
(𝑥 + 𝑡) −𝐺𝑠

𝑘
(𝑥)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥) +
∫ 𝑡

0
𝐺𝑠
𝑘 (𝑡 − 𝑢) 𝑑𝐿𝑘 (𝑢)

=

∫
[0,𝐻𝑠

𝑘
)

𝐺𝑠
𝑘
(𝑥 + 𝑡) −𝐺𝑠

𝑘
(𝑥)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥) +
∫ 𝑡

0
𝐿𝑘 (𝑢)𝑔𝑠𝑘 (𝑡 − 𝑢) 𝑑𝑢 <∞ (3.45)

and

⟨1, 𝜈𝑘𝑡 ⟩ =
∫
[0,𝐻𝑠

𝑘
)

𝐺̄𝑠
𝑘
(𝑥 + 𝑡)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥) +
∫ 𝑡

0
(𝐺̄𝑠

𝑘 (𝑡 − 𝑠)) 𝑑𝐿𝑘 (𝑠)

=

∫
[0,𝐻𝑠

𝑘
)

𝐺̄𝑠
𝑘
(𝑥 + 𝑡)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥) + 𝐿𝑘 (𝑡) −
∫ 𝑡

0
𝐿𝑘 (𝑢)𝑔𝑠𝑘 (𝑡 − 𝑢) 𝑑𝑢. (3.46)

Adding the above two displays yields that for each 𝑘 ∈ K,∫ 𝑡

0
⟨ℎ𝑠𝑘 , 𝜈

𝑘
𝑢⟩𝑑𝑢 + ⟨1, 𝜈𝑘𝑡 ⟩ = ⟨1, 𝜈𝑘0⟩ + 𝐿𝑘 (𝑡).

Thus, (2.4) holds by arranging terms in the above display. By the construction of 𝜂𝑘 , we also have

that for each 𝑘 ∈ K,∫ 𝑡

0
⟨ℎ𝑟𝑘 , 𝜂

𝑘
𝑢⟩𝑑𝑢 =

∫
[0,𝐻𝑟

𝑘
)

𝐺𝑟
𝑘
(𝑥 + 𝑡) −𝐺𝑟

𝑘
(𝑥)

𝐺̄𝑟
𝑘
(𝑥)

𝜂𝑘0 (𝑑𝑥) +
∫ 𝑡

0
𝐸 𝑘 (𝑢)𝑔𝑟𝑘 (𝑡 − 𝑢) 𝑑𝑢 <∞.

Then it is clear that (2.2) holds. From (2.4) and the constructions of 𝐿𝑘 and 𝑋 𝑘 , it is easy to see

that (2.9) holds. We next show that (2.10) holds. From the construction of 𝑄𝑘 and the assumption

that 𝑥(𝑡) − 1 ≤ 𝐹 𝑡 (𝜒(0) + 𝑡) for each 𝑡 ∈ R+, we see that for each 𝑡 ∈ R+,∑︁
𝑘∈K

𝑄𝑘 (𝑡) =
∑︁
𝑘∈K

𝐹
𝑘

𝑡

(
(𝐹 𝑡)−1 (

[𝑥(𝑡) − 1]+
) )

= 𝐹 𝑡

(
(𝐹 𝑡)−1 (

[𝑥(𝑡) − 1]+
) )

= [𝑥(𝑡) − 1]+.
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This and the construction of 𝑋 together imply that for each 𝑡 ∈ R+,

∑︁
𝑘∈K

𝑋 𝑘 (𝑡) =
∑︁
𝑘∈K

𝑄𝑘 (𝑡) +
∑︁
𝑘∈K

⟨1, 𝜈𝑘𝑡 ⟩ = [𝑥(𝑡) − 1]+ +
∑︁
𝑘∈K

⟨1, 𝜈𝑘𝑡 ⟩. (3.47)

The construction of 𝐿 and (3.45) together imply that for each 𝑡 ∈ R+,

∑︁
𝑘∈K

∫ 𝑡

0
⟨ℎ𝑠𝑘 , 𝜈

𝑘
𝑢⟩𝑑𝑢 =

∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)

𝐺𝑠
𝑘
(𝑥 + 𝑡) −𝐺𝑠

𝑘
(𝑥)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥) +
∑︁
𝑘∈K

∫ 𝑡

0
𝐿𝑘 (𝑢)𝑔𝑠𝑘 (𝑡 − 𝑢) 𝑑𝑢

=
∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)

𝐺𝑠
𝑘
(𝑥 + 𝑡) −𝐺𝑠

𝑘
(𝑥)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥)

+
∑︁
𝑘∈K

∫ 𝑡

0
(𝑄𝑘 (0) + 𝐸 𝑘 (𝑢) −𝑄𝑘 (𝑢) − 𝑅𝑘 (𝑢))𝑔𝑠𝑘 (𝑡 − 𝑢) 𝑑𝑢.

Since we have shown that (2.9) holds, this and the above display together imply that for each 𝑡 ∈ R+,

∑︁
𝑘∈K

𝑋 𝑘 (𝑡) =
∑︁
𝑘∈K

𝑋 𝑘 (0) +
∑︁
𝑘∈K

𝐸 𝑘 (𝑡) −
∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)

𝐺𝑠
𝑘
(𝑥 + 𝑡) −𝐺𝑠

𝑘
(𝑥)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥)

−
∑︁
𝑘∈K

∫ 𝑡

0
(𝑄𝑘 (0) + 𝐸 𝑘 (𝑢))𝑔𝑠𝑘 (𝑡 − 𝑢)𝑑𝑢

+
∑︁
𝑘∈K

∫ 𝑡

0
(𝑄𝑘 (𝑢) + 𝑅𝑘 (𝑢))𝑔𝑠𝑘 (𝑡 − 𝑢)𝑑𝑢 −

∑︁
𝑘∈K

𝑅𝑘 (𝑡).

Recall the definition of 𝜉 in (3.27), the constructions of 𝑄 and 𝑅, we then have that for each 𝑡 ∈ R+,

∑︁
𝑘∈K

𝑋 𝑘 (𝑡) = 𝜉 (𝑡) +
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘 (𝑡, 𝑥(𝑢)) 𝑑𝑢 −
∑︁
𝑘∈K

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢)𝐵

𝑘 (𝑡, 𝑥(𝑢)) 𝑑𝑢.

Since 𝑥(·) is the unique solution to (3.30), then for each 𝑡 ∈ R+, the above display implies that∑
𝑘∈K 𝑋 𝑘 (𝑡) = 𝑥(𝑡). Then, (3.47) implies that for each 𝑡 ∈ R+,

𝑥(𝑡) = [𝑥(𝑡) − 1]+ +
∑︁
𝑘∈K

⟨1, 𝜈𝑘𝑡 ⟩.
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So for each 𝑡 ∈ R+ such that
∑
𝑘∈K 𝑋 𝑘 (𝑡) = 𝑥(𝑡) > 1, the above display implies that

∑
𝑘∈K ⟨1, 𝜈𝑘𝑡 ⟩ = 1.

Otherwise, when
∑
𝑘∈K 𝑋 𝑘 (𝑡) = 𝑥(𝑡) ≤ 1, the above display implies that

∑
𝑘∈K 𝑋 𝑘 (𝑡) = 𝑥(𝑡) =∑

𝑘∈K ⟨1, 𝜈𝑘𝑡 ⟩. Thus, we have that (2.10) holds. It follows that (2.11) holds as well. Combining

this with the fact that
∑
𝑘∈K 𝑋 𝑘 (𝑡) = 𝑥(𝑡), the constructions of 𝑄 and 𝑅 and the assumption that

𝑥(𝑡) −1 ≤ 𝐹 𝑡 (𝜒(0) + 𝑡) for each 𝑡 ∈ R+, we have that (2.7), (2.8) hold. Then the constructed (𝑋, 𝜈, 𝜂)

with its associated processes is a solution to the fluid model equations. Note that, under Assumption

1, the constructed (𝑋, 𝜈, 𝜂) with its associated processes are all continuous on R+. □

In the rest of this section, we prove that 𝐿𝑘 is non-decreasing for each 𝑘 ∈ K and that 𝑥(𝑡) − 1 ≤

𝐹 𝑡 (𝜒(0) + 𝑡) for each 𝑡 ∈ R+ under Assumption 2. For this, let

𝜒̃(𝑡) = (𝐹 𝑡)−1
(
[𝑥(𝑡) − 1]+ ∧ 𝐹 𝑡 (𝜒(0) + 𝑡)

)
for each 𝑡 ∈ R+. (3.48)

Then 𝜒̃(0) = 𝜒(0) and 𝜒̃(𝑡) ≤ 𝜒(0) + 𝑡 for each 𝑡 ∈ R+. The main idea to show that 𝐿𝑘 , 𝑘 ∈ K, is

non-decreasing on R+ is to show that there exists an interval [0,𝑇] such that 𝜒̃(𝑡 + 𝑢) ≤ 𝜒̃(𝑡) + 𝑢

for all 0 ≤ 𝑡 ≤ 𝑡 + 𝑢 ≤ 𝑇 . From this, a similar argument as in Lemma 3 can be used to show that 𝐿𝑘 ,

𝑘 ∈ K, is non-decreasing on [0,𝑇]. Then a standard extension argument can be used to show that

𝐿𝑘 , 𝑘 ∈ K, is non-decreasing on R+.

We first show that there exists an interval [0,𝑇] such that 𝑥(𝑡) −1 < 𝐹 𝑡 (𝜒(0) + 𝑡) for all 0 < 𝑡 ≤ 𝑇 .

This result also plays very important role in showing the non-decreasing property of 𝐿𝑘 for each

𝑘 ∈ K.

Lemma 6. Suppose that Assumption 1 holds, the service time densities {𝑔𝑠
𝑘
, 𝑘 ∈ K} are

right continuous and
∑
𝑘∈K

∫
[0,𝐻𝑠

𝑘
) ℎ

𝑠
𝑘
(𝑥) 𝜈𝑘0 (𝑑𝑥) > 0. Then there exists 𝑇 > 0 such that 𝑥(𝑡) − 1 <

𝐹 𝑡 (𝜒(0) + 𝑡) for all 0 < 𝑡 ≤ 𝑇 .

Proof Note that 𝑥(·) is the unique continuous fixed point ofΛ, a simple application of integration

by parts yields that
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𝑥(𝑡) = 𝜉 (𝑡) −
∑︁
𝑘∈K

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢)𝐵

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 +
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢

= 𝜉 (𝑡) −
∑︁
𝑘∈K

∫ 𝑡

0
𝐵𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 +

∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)

(
𝐴𝑘 (𝑢, 𝑥(𝑢)) +

∫ 𝑢

0
𝐵𝑘 (𝑤, 𝑥(𝑤))𝑑𝑤

)
𝑑𝑢

= 𝜉 (𝑡) −
∑︁
𝑘∈K

∫ 𝑡

0
𝐵𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 + 𝑔(𝑡),

where

𝑔(𝑡) �
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)

(
𝐴𝑘 (𝑢, 𝑥(𝑢)) +

∫ 𝑢

0
𝐵𝑘 (𝑤, 𝑥(𝑤))𝑑𝑤

)
𝑑𝑢.

Consider the process 𝑥(·) defined as

𝑥(𝑡) � 𝜉 (𝑡) −
∑︁
𝑘∈K

∫ 𝑡

0
𝐵𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 + 𝑔̃(𝑡),

where

𝑔̃(𝑡) �
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)

(
𝐴𝑘 (𝑢,1+ 𝐹𝑢 (𝜒(0) + 𝑢)) (3.49)

+
∫ 𝑢

0
𝐵𝑘 (𝑤,1+ 𝐹𝑤 (𝜒(0) +𝑤))𝑑𝑤

)
𝑑𝑢.

Note that the difference between 𝑔(𝑡) and 𝑔̃(𝑡) is that 𝑥(𝑢) in the definition of 𝑔(𝑡) is replaced by

1+ 𝐹𝑢 (𝜒(0) + 𝑢). By the definition of 𝐴𝑘 and 𝐵𝑘 in (3.29), for each 𝑘 ∈ K and 𝑢 ∈ R+,
𝐴𝑘 (𝑢, 𝑥(𝑢)) ≤ 𝐴𝑘 (𝑢,1+ 𝐹𝑢 (𝜒(0) + 𝑢)),

𝐵𝑘 (𝑢, 𝑥(𝑢)) ≤ 𝐵𝑘 (𝑢,1+ 𝐹𝑢 (𝜒(0) + 𝑢)).
(3.50)

It follows that for each 𝑡 ∈ R+, 𝑔̃(𝑡) ≥ 𝑔(𝑡) and then 𝑥(𝑡) ≥ 𝑥(𝑡) and 𝑥(0) = 𝜉 (0) = 𝑥(0). Now,

consider the continuous function ℎ on R+ defined by

ℎ(𝑡) � 𝐹 𝑡 (𝜒(0) + 𝑡) + 1− 𝑥(𝑡), 𝑡 ∈ R+.
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Note that for each 𝑘 ∈ K and 𝑢 ∈ R+, by the definition of 𝐴𝑘 and 𝐵𝑘 in (3.29), (2.5) and the fact that
𝐻𝑟
𝑘
=∞, 𝑘 ∈ K due to Remark 2,

𝐴𝑘 (𝑢,1+ 𝐹𝑢 (𝜒(0) + 𝑢)) = 𝐹
𝑘

𝑢 (𝜒(0) + 𝑢)

=

∫
R+

1[0,𝜒(0)] (𝑥)
𝐺̄𝑟
𝑘
(𝑥 + 𝑢)
𝐺̄𝑟
𝑘
(𝑥)

𝜂𝑘0 (𝑑𝑥) +
∫ 𝑢

0
𝐺̄𝑟𝑘 (𝑢 − 𝑠)𝜆𝑘 (𝑠)𝑑𝑠

and

𝐵𝑘 (𝑢,1+ 𝐹𝑢 (𝜒(0) + 𝑢)) =
∫
R+

1[0,𝜒(0)+𝑢] (𝑥)ℎ𝑟𝑘 (𝑥)𝜂
𝑘
𝑢 (𝑑𝑥)

=

∫
R+

1[0,𝜒(0)] (𝑥)
𝑔𝑟
𝑘
(𝑥 + 𝑢)
𝐺̄𝑟
𝑘
(𝑥)

𝜂𝑘0 (𝑑𝑥) +
∫ 𝑢

0
𝑔𝑟𝑘 (𝑢 − 𝑠)𝜆𝑘 (𝑠)𝑑𝑠.

Note that 𝐴𝑘 (𝑢,1+ 𝐹𝑢 (𝜒(0) + 𝑢)) as a function of 𝑢 is absolutely continuous with a.e. derivative
ATTENTION: The following displayed equation, in its current form, exceeds the column width that will be used
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𝜕

𝜕𝑢
𝐴𝑘 (𝑢,1+ 𝐹𝑢 (𝜒(0) + 𝑢)) = −

∫
R+

1[0,𝜒(0)] (𝑥)
𝑔𝑟
𝑘
(𝑥 + 𝑢)
𝐺̄𝑟
𝑘
(𝑥)

𝜂𝑘0 (𝑑𝑥) +𝜆𝑘 (𝑢) −
∫ 𝑢

0
𝑔𝑟𝑘 (𝑢 − 𝑠)𝜆𝑘 (𝑠)𝑑𝑠.

It follows that for each 𝑘 ∈ K and 𝑢 ∈ R+,

𝜕

𝜕𝑢
𝐴𝑘 (𝑢,1+ 𝐹𝑢 (𝜒(0) + 𝑢)) + 𝐵𝑘 (𝑢,1+ 𝐹𝑢 (𝜒(0) + 𝑢)) = 𝜆𝑘 (𝑢). (3.51)

By an application of change of variables to the right-hand side of (3.49),
ATTENTION: The following displayed equation, in its current form, exceeds the column width that will be used
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𝑔̃(𝑡) =
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑢)

(
𝐴𝑘 (𝑡 − 𝑢,1+ 𝐹 𝑡−𝑢 (𝜒(0) + 𝑡 − 𝑢)) +

∫ 𝑡−𝑢

0
𝐵𝑘 (𝑤,1+ 𝐹𝑤 (𝜒(0) +𝑤))𝑑𝑤

)
𝑑𝑢.
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By using (3.51), it follows that 𝑔̃ is absolutely continuous with a.e. derivative 𝑔̃′(𝑡) given by
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𝑔̃′(𝑡) =
∑︁
𝑘∈K

𝑔𝑠𝑘 (𝑡)𝐴
𝑘 (0,1+ 𝐹0(𝜒(0) + 0))

+
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑢)

(
𝜕

𝜕𝑢
𝐴𝑘 (𝑡 − 𝑢,1+ 𝐹 𝑡−𝑢 (𝜒(0) + 𝑡 − 𝑢)) + 𝐵𝑘 (𝑡 − 𝑢,1+ 𝐹 𝑡−𝑢 (𝜒(0) + 𝑡 − 𝑢))

)
𝑑𝑢

=
∑︁
𝑘∈K

𝑔𝑠𝑘 (𝑡)𝑄𝑘 (0) +
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑢)𝜆𝑘 (𝑡 − 𝑢)𝑑𝑢

=
∑︁
𝑘∈K

𝑔𝑠𝑘 (𝑡)𝑄𝑘 (0) +
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝜆𝑘 (𝑢)𝑑𝑢.

It follows from the a.e. derivative of 𝐹 𝑡 (𝜒(0) + 𝑡) in (2.18), the expression of 𝜉 in (3.27) and the

a.e. derivative 𝑔̃′ of 𝑔̃ above that ℎ is absolutely continuous and its a.e. derivative ℎ′(𝑡) is given by

ℎ′(𝑡) =
(
−

∑︁
𝑘∈K

∫
[0,𝜒(0)]

𝑔𝑟
𝑘
(𝑥 + 𝑡)
𝐺̄𝑟
𝑘
(𝑥)

𝜂𝑘0 (𝑑𝑥) +
∑︁
𝑘∈K

𝜆𝑘 (𝑡) −
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑟𝑘 (𝑡 − 𝑠)𝜆𝑘 (𝑠) 𝑑𝑠

)
+

(∑︁
𝑘∈K

𝑄𝑘 (0)𝑔𝑠𝑘 (𝑡) −
∑︁
𝑘∈K

𝜆𝑘 (𝑡) +
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝜆𝑘 (𝑢)𝑑𝑢

+
∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)

𝑔𝑠
𝑘
(𝑥 + 𝑡)
𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥)
)
+

∑︁
𝑘∈K

𝐵𝑘 (𝑡, 𝑥(𝑡)) − 𝑔′(𝑡)

=
∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)

𝑔𝑠
𝑘
(𝑥 + 𝑡)
𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥) +
∑︁
𝑘∈K

(
𝐵𝑘 (𝑡, 𝑥(𝑡)) −

∫
[0,𝜒(0)]

𝑔𝑟
𝑘
(𝑥 + 𝑡)
𝐺̄𝑟
𝑘
(𝑥)

𝜂𝑘0 (𝑑𝑥)

−
∫ 𝑡

0
𝑔𝑟𝑘 (𝑡 − 𝑢)𝜆𝑘 (𝑢)𝑑𝑢

)
.
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For each 𝑘 ∈ K and 𝑡 ∈ R+, by the definition of 𝐵𝑘 (𝑡, 𝑥) in (3.29), (2.5), Remark 1 and the definition

of 𝜒̃(𝑡) in (3.48), we have that

𝐵𝑘 (𝑡, 𝑥(𝑡)) =
∫ [𝑥(𝑡)−1]+∧𝐹𝑡 (𝜒(0)+𝑡)

0
ℎ𝑟𝑘 ((𝐹 𝑡)

−1(𝑢))𝑑𝐹𝑘𝑡 ((𝐹 𝑡)−1(𝑢)) (3.52)

=

∫
R+

1[0, 𝜒̃(𝑡)] (𝑥)ℎ𝑟𝑘 (𝑥)𝑑𝐹
𝑘

𝑡 (𝑥)

= 1{ 𝜒̃(𝑡)>𝑡}

(∫
R+

1[0, 𝜒̃(𝑡)−𝑡] (𝑥)
𝑔𝑟
𝑘
(𝑥 + 𝑡)
𝐺̄𝑟
𝑘
(𝑥)

𝜂𝑘0 (𝑑𝑥) +
∫ 𝑡

0
𝑔𝑟𝑘 (𝑡 − 𝑠)𝜆𝑘 (𝑠)𝑑𝑠

)
+ 1{ 𝜒̃(𝑡)≤𝑡}

∫ 𝑡

𝑡−𝜒̃(𝑡)
𝑔𝑟𝑘 (𝑡 − 𝑠)𝜆𝑘 (𝑠)𝑑𝑠.

We now show that there exists𝑇 > 0 such that ℎ′(𝑡) > 0 for all 𝑡 ∈ [0,𝑇] by considering the following

two mutually exclusive cases:

Case 1: 𝜒(0) = 0. Then for each 𝑘 ∈ K,
∫
[0,𝜒(0)]

𝑔𝑟
𝑘
(𝑥 + 𝑡)
𝐺̄𝑟
𝑘
(𝑥)

𝜂𝑘0 (𝑑𝑥) = 0 since 𝜂𝑘0 ({0}) = 0 by

Assumption 1. Also in this case, by the definition of 𝜒̃(𝑡) in (3.48), 𝜒̃(𝑡) ≤ 𝑡 for all 𝑡 ∈ R+. Then, by

(3.52), 𝐵𝑘 (𝑡, 𝑥(𝑡)) =
∫ 𝑡

𝑡−𝜒̃(𝑡) 𝑔
𝑟
𝑘
(𝑡 − 𝑢)𝜆𝑘 (𝑢)𝑑𝑢 for each 𝑘 ∈ K. Thus, it follows that

∑︁
𝑘∈K

(
𝐵𝑘 (𝑡, 𝑥(𝑡)) −

∫
[0,𝜒(0)]

𝑔𝑟
𝑘
(𝑥 + 𝑡)
𝐺̄𝑟
𝑘
(𝑥)

𝜂𝑘0 (𝑑𝑥) −
∫ 𝑡

0
𝑔𝑟𝑘 (𝑡 − 𝑢)𝜆𝑘 (𝑢)𝑑𝑢

)
=

∑︁
𝑘∈K

(∫ 𝑡

𝑡−𝜒̃(𝑡)
𝑔𝑟𝑘 (𝑡 − 𝑢)𝜆𝑘 (𝑢)𝑑𝑢 −

∫ 𝑡

0
𝑔𝑟𝑘 (𝑡 − 𝑢)𝜆𝑘 (𝑢)𝑑𝑢

)
= −

∑︁
𝑘∈K

∫ 𝑡−𝜒̃(𝑡)

0
𝑔𝑟𝑘 (𝑡 − 𝑢)𝜆𝑘 (𝑢)𝑑𝑢

→ 0 as 𝑡 ↓ 0.

By the assumed right continuity of 𝑔𝑠
𝑘
, 𝑘 ∈ K, and an application of Fatou’s Lemma, we have that

0 <
∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)
ℎ𝑠𝑘 (𝑥) 𝜈

𝑘
0 (𝑑𝑥) ≤ lim inf

𝑡↓0

∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)

𝑔𝑠
𝑘
(𝑥 + 𝑡)
𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥). (3.53)

Thus, it follows that there exists 𝑇 > 0 such that ℎ′(𝑡) > 0 for all 𝑡 ∈ [0,𝑇].
Case 2: 𝜒(0) > 0. Since 𝜒̃(𝑡) ≤ 𝜒(0) + 𝑡 for each 𝑡 > 0, then lim sup𝑡→0 𝜒̃(𝑡) ≤ 𝜒(0). We claim

that lim inf𝑡→0 𝜒̃(𝑡) ≥ 𝜒(0). Suppose that the claim is not true, then lim inf𝑡→0 𝜒̃(𝑡) < 𝜒(0). Then



Weining Kang: Multiclass Many-Server Queues with Global FCFS Discipline
36 Article submitted to Mathematics of Operations Research

there exist a 𝛿 ∈ (0, 𝜒(0)) and a sequence {𝑡𝑛, 𝑛 ∈N} such that 𝑡𝑛→ 0 as 𝑛→∞ and 𝜒̃(𝑡𝑛) < 𝜒(0) −𝛿
for each 𝑛 ∈N. Then for each 𝑛 ∈N,

𝐹 𝑡𝑛 (𝜒(0) − 𝛿) > [𝑥(𝑡𝑛) − 1]+ ∧ 𝐹 𝑡𝑛 (𝜒(0) + 𝑡𝑛).

By using the fact that [𝑥(0) − 1]+ = 𝐹0(𝜒(0)) and using the continuity of 𝑥(·), the continuity of

𝐹 𝑡 (𝑥) as a function of 𝑡 for each 𝑥 ∈ R+ and the continuity of 𝐹 𝑡 (𝜒(0) + 𝑡) as a function of 𝑡, we

have that

𝐹0(𝜒(0) − 𝛿) ≥ [𝑥(0) − 1]+ ∧ 𝐹0(𝜒(0)) = [𝑥(0) − 1]+.

It follows that

𝜒(0) − 𝛿 ≥ (𝐹0)−1
(
𝐹0(𝜒(0) − 𝛿)

)
≥ (𝐹0)−1 (

[𝑥(0) − 1]+
)
= 𝜒(0),

which is a contradiction. Thus, we proved that lim inf𝑡→0 𝜒̃(𝑡) ≥ 𝜒(0) and then lim𝑡→0 𝜒̃(𝑡) = 𝜒(0).
By (3.52), 𝜂𝑘0 ({𝜒(0)}) = 0 and the right continuity of ℎ𝑟

𝑘
(since 𝑔𝑟

𝑘
is assumed to be right continuous)

for each 𝑘 ∈ K, the local boundedness of ℎ𝑟
𝑘
, 𝑘 ∈ K in Assumption 1 and an application of the

dominated convergence theorem, we get that for each 𝑘 ∈ K,

lim
𝑡↓0
𝐵𝑘 (𝑡, 𝑥(𝑡)) =

∫
[0,𝜒(0)]

𝑔𝑟
𝑘
(𝑥)

𝐺̄𝑟
𝑘
(𝑥)

𝜂𝑘0 (𝑑𝑥)

and then

∑︁
𝑘∈K

(
𝐵𝑘 (𝑡, 𝑥(𝑡)) −

∫
[0,𝜒(0)]

𝑔𝑟
𝑘
(𝑥 + 𝑡)
𝐺̄𝑟
𝑘
(𝑥)

𝜂𝑘0 (𝑑𝑥) −
∫ 𝑡

0
𝑔𝑟𝑘 (𝑡 − 𝑢)𝜆𝑘 (𝑢)𝑑𝑢

)
→ 0 as 𝑡 ↓ 0.

By using (3.53), it follows that there exists 𝑇 > 0 such that ℎ′(𝑡) > 0 for all 𝑡 ∈ [0,𝑇]. Thus, in both

cases, we yield that there exists 𝑇 > 0 such that ℎ′(𝑡) > 0 for all 𝑡 ∈ [0,𝑇], which in turn implies

that for all 𝑡 ∈ [0,𝑇],

𝐹 𝑡 (𝜒(0) + 𝑡) + 1− 𝑥(𝑡) > 𝐹0(𝜒(0)) + 1− 𝑥(0) = [𝑥(0) − 1]+ + 1− 𝑥(0) ≥ 0,

then 𝐹 𝑡 (𝜒(0) + 𝑡) > 𝑥(𝑡) − 1 ≥ 𝑥(𝑡) − 1 for all 𝑡 ∈ [0,𝑇]. □

It follows from Lemma 6 that 𝐹 𝑡 (𝜒(0) + 𝑡) ≥ [𝑥(𝑡) − 1]+ for all 𝑡 ∈ [0,𝑇]. By (3.48), for each

𝑡 ∈ [0,𝑇],
𝜒̃(𝑡) = (𝐹 𝑡)−1 (

[𝑥(𝑡) − 1]+
)

and then 𝜒̃(𝑡) ≤ 𝜒(0) + 𝑡. (3.54)
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Also it follows from (3.29) and Lemma 6 that for each 𝑘 ∈ K and 𝑡 ∈ [0,𝑇],
𝐴𝑘 (𝑡, 𝑥(𝑡)) = 𝐹𝑘𝑡

(
(𝐹 𝑡)−1 ( [𝑥(𝑡) − 1]+)

)
= 𝐹

𝑘

𝑡 ( 𝜒̃(𝑡)) ,

𝐵𝑘 (𝑡, 𝑥(𝑡)) =
∫ [𝑥(𝑡)−1]+

0 ℎ𝑟
𝑘
((𝐹 𝑡)−1(𝑢))𝑑𝐹𝑘𝑡 ((𝐹 𝑡)−1(𝑢)) =

∫
[0, 𝜒̃(𝑡)] ℎ

𝑟
𝑘
(𝑥)𝑑𝐹𝑘𝑡 (𝑥).

(3.55)

We now define a time shifted version of the functional map of Λ along with the time shifted
auxiliary processes 𝑥, 𝐸, 𝐹, 𝐴𝑘 , 𝐵𝑘 , 𝐹𝑘 , 𝑘 ∈ K. For each 𝑡 ∈ [0,𝑇], let

𝑥 [𝑡] � 𝑥(𝑡 + ·), 𝐸 [𝑡]
� 𝐸 (𝑡 + ·) − 𝐸 (𝑡) and 𝜂[𝑡] � 𝜂𝑡+·.

By Lemma 1, for each 𝑘 ∈ K, 𝜂[𝑡],𝑘 satisfies (2.5) with 𝜂𝑘𝑡 and 𝐸 [𝑡]
𝑘 in place of 𝜂𝑘0 and 𝐸 𝑘 . For each

𝑘 ∈ K and 𝑢, 𝑥 ∈ R+, let

𝐹
[𝑡],𝑘
𝑢 (𝑥) � 𝜂[𝑡],𝑘𝑢 [0, 𝑥] = 𝜂𝑘𝑡+𝑢 [0, 𝑥] and 𝐹 [𝑡]

𝑢 (𝑥) �
∑︁
𝑘∈K

𝐹
[𝑡],𝑘
𝑢 (𝑥),

and then
𝐹
[𝑡],𝑘
𝑢 (𝑥) = 𝐹𝑘𝑡+𝑢 (𝑥) and 𝐹 [𝑡]

𝑢 (𝑥) = 𝐹 𝑡+𝑢 (𝑥).

For each 𝑘 ∈ K, 𝑡 ∈ [0,𝑇] and 𝑢 ∈ R+, let

𝐴[𝑡],𝑘 (𝑢, 𝑥) � 𝐴𝑘 (𝑡 + 𝑢, 𝑥) and 𝐵[𝑡],𝑘 (𝑢, 𝑥) � 𝐵𝑘 (𝑡 + 𝑢, 𝑥). (3.56)

It follows from (3.55) that for each 𝑡 ∈ [0,𝑇] and 𝑢 ∈ R+ such that 𝑡 + 𝑢 ∈ [0,𝑇],

𝐴[𝑡],𝑘 (𝑢, 𝑥 [𝑡] (𝑢)) = 𝐹 [𝑡],𝑘
𝑢

(
(𝐹 [𝑡]

𝑢 )−1
(
[𝑥 [𝑡] (𝑢) − 1]+

))
(3.57)

and

𝐵[𝑡],𝑘 (𝑢, 𝑥 [𝑡] (𝑢)) =
∫ [𝑥 [𝑡 ] (𝑢)−1]+

0
ℎ𝑟𝑘 ((𝐹

[𝑡]
𝑢 )−1(𝑤))𝑑𝐹 [𝑡],𝑘

𝑢 ((𝐹 [𝑡]
𝑢 )−1(𝑤)). (3.58)

For each 𝑡 ∈ [0,𝑇] , let 𝜉 [𝑡] be the function on R+ defined as

𝜉 [𝑡] (𝑢) � 𝑥(𝑡) −
∑︁
𝑘∈K

𝑄𝑘 (𝑡)𝐺𝑠
𝑘 (𝑢) +

∑︁
𝑘∈K

∫ 𝑢

0
𝐺̄𝑠
𝑘 (𝑢 − 𝑠)𝑑𝐸

[𝑡]
𝑘 (𝑠)

−
∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)

𝐺𝑠
𝑘
(𝑥 + 𝑡 + 𝑢) −𝐺𝑠

𝑘
(𝑥 + 𝑡)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥) (3.59)

−
∑︁
𝑘∈K

𝐿𝑘 (𝑡)𝐺𝑠
𝑘 (𝑢) −

∑︁
𝑘∈K

∫ 𝑡

0
(𝑔𝑠𝑘 (𝑡 + 𝑢 − 𝑠) − 𝑔

𝑠
𝑘 (𝑡 − 𝑠))𝐿𝑘 (𝑠)𝑑𝑠,
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and let Λ[𝑡] be the time-shifted functional map of Λ by 𝑡 defined on C(R+) as

Λ[𝑡] (𝑦) (𝑢) � 𝜉 [𝑡] (𝑢) −
∑︁
𝑘∈K

∫ 𝑢

0
𝐺̄𝑠
𝑘 (𝑢 − 𝑣)𝐵

[𝑡],𝑘 (𝑣, 𝑦(𝑣))𝑑𝑣 (3.60)

+
∑︁
𝑘∈K

∫ 𝑢

0
𝑔𝑠𝑘 (𝑢 − 𝑣)𝐴

[𝑡],𝑘 (𝑣, 𝑦(𝑣))𝑑𝑣.

Lemma 7. For each 𝑡 ∈ [0,𝑇], 𝑥 [𝑡] (·) is the unique fixed point of Λ[𝑡] in (3.60).

Proof Fix 𝑡 ∈ [0,𝑇]. Since 𝑥(·) be the unique continuous solution to the equation (3.30)

associated with (𝐸, 𝑋 (0), 𝜈0, 𝜂0), we have from (3.31), (3.56) and an application of change of

variables that for each ℎ ∈ R+,
ATTENTION: The following displayed equation, in its current form, exceeds the column width that will be used

in the published edition of your article. Please break or rewrite this equation to fit, including the equation

number, within a column width of 470 pt / 165.81 mm / 6.53 in (the width of this red box).

𝑥(𝑡 + ℎ) = 𝜉 (𝑡 + ℎ) −
∑︁
𝑘∈K

∫ 𝑡+ℎ

0
𝐺̄𝑠
𝑘 (𝑡 + ℎ− 𝑢)𝐵

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 (3.61)

+
∑︁
𝑘∈K

∫ 𝑡+ℎ

0
𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢

= 𝜁 [𝑡] (ℎ) −
∑︁
𝑘∈K

∫ ℎ

0
𝐺̄𝑠
𝑘 (ℎ− 𝑢)𝐵

[𝑡],𝑘 (𝑢, 𝑥 [𝑡] (𝑢))𝑑𝑢 +
∑︁
𝑘∈K

∫ ℎ

0
𝑔𝑠𝑘 (ℎ− 𝑢)𝐴

[𝑡],𝑘 (𝑢, 𝑥 [𝑡] (𝑢))𝑑𝑢,

where
ATTENTION: The following displayed equation, in its current form, exceeds the column width that will be used

in the published edition of your article. Please break or rewrite this equation to fit, including the equation

number, within a column width of 470 pt / 165.81 mm / 6.53 in (the width of this red box).

𝜁 [𝑡] (ℎ) � 𝜉 (𝑡 + ℎ) −
∑︁
𝑘∈K

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 + ℎ− 𝑢)𝐵

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 +
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢.
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Using the fact that 𝑥(·) is the unique continuous solution to the equation (3.30), we have that for

each ℎ ∈ R+,

𝜉 [𝑡] (ℎ) = 𝜉 (𝑡) −
∑︁
𝑘∈K

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢)𝐵

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢 +
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢

+ (𝜉 (𝑡 + ℎ) − 𝜉 (𝑡)) −
∑︁
𝑘∈K

∫ 𝑡

0
(𝐺̄𝑠

𝑘 (𝑡 + ℎ− 𝑢) − 𝐺̄
𝑠
𝑘 (𝑡 − 𝑢))𝐵

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢

+
∑︁
𝑘∈K

∫ 𝑡

0
(𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢) − 𝑔

𝑠
𝑘 (𝑡 − 𝑢))𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢

= 𝑥(𝑡) + (𝜉 (𝑡 + ℎ) − 𝜉 (𝑡)) +
∑︁
𝑘∈K

∫ 𝑡

0
(𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢) − 𝑔

𝑠
𝑘 (𝑡 − 𝑢))𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢

−
∑︁
𝑘∈K

∫ 𝑡

0
(𝐺̄𝑠

𝑘 (𝑡 + ℎ− 𝑢) − 𝐺̄
𝑠
𝑘 (𝑡 − 𝑢))𝐵

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢.

Using the definition 𝜉 in (3.27) and applications of change of variables and integration by parts, we

can see that

𝜉 (𝑡 + ℎ) − 𝜉 (𝑡) = −
∑︁
𝑘∈K

𝑄𝑘 (0) (𝐺𝑠
𝑘 (𝑡 + ℎ) −𝐺

𝑠
𝑘 (𝑡)) +

∑︁
𝑘∈K

∫ ℎ

0
𝐺̄𝑠
𝑘 (ℎ− 𝑢)𝑑𝐸

[𝑡]
𝑘 (𝑢)

+
∑︁
𝑘∈K

∫ 𝑡

0
(𝐺̄𝑠

𝑘 (𝑡 + ℎ− 𝑢) − 𝐺̄
𝑠
𝑘 (𝑡 − 𝑢))𝑑𝐸 𝑘 (𝑢)

−
∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)

𝐺𝑠
𝑘
(𝑥 + 𝑡 + ℎ) −𝐺𝑠

𝑘
(𝑥 + 𝑡)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥)

= −
∑︁
𝑘∈K

𝑄𝑘 (0) (𝐺𝑠
𝑘 (𝑡 + ℎ) −𝐺

𝑠
𝑘 (𝑡)) +

∑︁
𝑘∈K

∫ ℎ

0
𝐺̄𝑠
𝑘 (ℎ− 𝑢)𝑑𝐸

[𝑡]
𝑘 (𝑢)

−
∑︁
𝑘∈K

𝐸 𝑘 (𝑡)𝐺𝑠
𝑘 (ℎ) −

∑︁
𝑘∈K

∫ 𝑡

0
(𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢) − 𝑔

𝑠
𝑘 (𝑡 − 𝑢))𝐸 𝑘 (𝑢)𝑑𝑢

−
∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)

𝐺𝑠
𝑘
(𝑥 + 𝑡 + ℎ) −𝐺𝑠

𝑘
(𝑥 + 𝑡)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥).
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By another application of integration by parts and (3.41), we have that

∑︁
𝑘∈K

∫ 𝑡

0
(𝐺̄𝑠

𝑘 (𝑡 + ℎ− 𝑢) − 𝐺̄
𝑠
𝑘 (𝑡 − 𝑢))𝐵

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢

= −
∑︁
𝑘∈K

𝑅𝑘 (𝑡)𝐺𝑠
𝑘 (ℎ) −

∑︁
𝑘∈K

∫ 𝑡

0
(𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢) − 𝑔

𝑠
𝑘 (𝑡 − 𝑢))𝑅𝑘 (𝑢)𝑑𝑢.

Combining the above three displays and the definition of 𝐿𝑘 in (3.42), we have that for each ℎ ∈ R+,

𝜁 [𝑡] (ℎ) = 𝑥(𝑡) −
∑︁
𝑘∈K

𝑄𝑘 (0) (𝐺𝑠
𝑘 (𝑡 + ℎ) −𝐺

𝑠
𝑘 (𝑡)) +

∑︁
𝑘∈K

∫ ℎ

0
𝐺̄𝑠
𝑘 (ℎ− 𝑢)𝑑𝐸

[𝑡]
𝑘 (𝑢)

−
∑︁
𝑘∈K

𝐸 𝑘 (𝑡)𝐺𝑠
𝑘 (ℎ) −

∑︁
𝑘∈K

∫ 𝑡

0
(𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢) − 𝑔

𝑠
𝑘 (𝑡 − 𝑢))𝐸 𝑘 (𝑢)𝑑𝑢

−
∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)

𝐺𝑠
𝑘
(𝑥 + 𝑡 + ℎ) −𝐺𝑠

𝑘
(𝑥 + 𝑡)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥)

+
∑︁
𝑘∈K

∫ 𝑡

0
(𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢) − 𝑔

𝑠
𝑘 (𝑡 − 𝑢))𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢

+
∑︁
𝑘∈K

𝑅𝑘 (𝑡)𝐺𝑠
𝑘 (ℎ) +

∑︁
𝑘∈K

∫ 𝑡

0
(𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢) − 𝑔

𝑠
𝑘 (𝑡 − 𝑢))𝑅𝑘 (𝑢)𝑑𝑢

= 𝑥(𝑡) +
∑︁
𝑘∈K

(−𝑄𝑘 (0) − 𝐸 𝑘 (𝑡) + 𝑅𝑘 (𝑡))𝐺𝑠
𝑘 (ℎ) +

∑︁
𝑘∈K

∫ ℎ

0
𝐺̄𝑠
𝑘 (ℎ− 𝑢)𝑑𝐸

[𝑡]
𝑘 (𝑢)

−
∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)

𝐺𝑠
𝑘
(𝑥 + 𝑡 + ℎ) −𝐺𝑠

𝑘
(𝑥 + 𝑡)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥)

−
∑︁
𝑘∈K

∫ 𝑡

0
(𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢) − 𝑔

𝑠
𝑘 (𝑡 − 𝑢)) (𝑄𝑘 (0) + 𝐸 𝑘 (𝑢) −𝑄𝑘 (𝑢) − 𝑅𝑘 (𝑢))𝑑𝑢

= 𝑥(𝑡) −
∑︁
𝑘∈K

𝑄𝑘 (𝑡)𝐺𝑠
𝑘 (ℎ) +

∑︁
𝑘∈K

∫ ℎ

0
𝐺̄𝑠
𝑘 (ℎ− 𝑢)𝑑𝐸

[𝑡]
𝑘 (𝑢)

−
∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)

𝐺𝑠
𝑘
(𝑥 + 𝑡 + ℎ) −𝐺𝑠

𝑘
(𝑥 + 𝑡)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥)

−
∑︁
𝑘∈K

𝐿𝑘 (𝑡)𝐺𝑠
𝑘 (ℎ) −

∑︁
𝑘∈K

∫ 𝑡

0
(𝑔𝑠𝑘 (𝑡 + ℎ− 𝑢) − 𝑔

𝑠
𝑘 (𝑡 − 𝑢))𝐿𝑘 (𝑢)𝑑𝑢.

Comparing this with (3.59), we see that 𝜉 [𝑡] = 𝜁 [𝑡] . This and (3.61) together imply that for each

ℎ ∈ R+,
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𝑥 [𝑡] (ℎ) = 𝜉 [𝑡] (ℎ) −
∑︁
𝑘∈K

∫ ℎ

0
𝐺̄𝑠
𝑘 (ℎ− 𝑢)𝐵

[𝑡],𝑘 (𝑢, 𝑥 [𝑡] (𝑢))𝑑𝑢 +
∑︁
𝑘∈K

∫ ℎ

0
𝑔𝑠𝑘 (ℎ− 𝑢)𝐴

[𝑡],𝑘 (𝑢, 𝑥 [𝑡] (𝑢))𝑑𝑢.

Thus, 𝑥 [𝑡] (·) is a fixed point of Λ[𝑡] . The uniqueness of fixed points of Λ[𝑡] follows exactly the same

argument as for the uniqueness of fixed points of Λ in Proposition 2. □

Corollary 1. Suppose that Assumption 1 holds, the service time densities {𝑔𝑠
𝑘
, 𝑘 ∈ K} are

right continuous on their supports and are absolutely continuous on [0, 𝛿] for some 𝛿 > 0, and

suppose that
∑
𝑘∈K

∫
[0,𝐻𝑠

𝑘
) ℎ

𝑠
𝑘
(𝑥) 𝜈𝑘0 (𝑑𝑥) > 0. Then there exists 𝑇 ∈ (0,𝑇) such that for each 0 ≤ 𝑡 <

𝑡 + 𝑢 ≤ 𝑇 , 𝜒̃(𝑡 + 𝑢) ≤ 𝜒̃(𝑡) + 𝑢.

Proof Note that 𝑔𝑠
𝑘
, 𝑘 ∈ K, are absolutely continuous on [0, 𝛿] for some 𝛿 > 0, without loss of

generality, we may assume that 𝑔𝑠
𝑘
, 𝑘 ∈ K, are absolutely continuous on [0,𝑇]. For each 𝑡 ∈ [0,𝑇],

by Lemma 7, 𝑥 [𝑡] (·) = 𝑥(𝑡 + ·) is a fixed point of Λ[𝑡] restricted on [0,𝑇 − 𝑡].

For each 𝑡 ∈ [0,𝑇], 𝑘 ∈ K and 𝑢 ∈ R+, Define

𝐴̃[𝑡],𝑘 (𝑢, 𝑦) � 𝐹 [𝑡],𝑘
𝑢

(
(𝐹 [𝑡]

𝑢 )−1
(
[𝑦 − 1]+ ∧ 𝐹 [𝑡]

𝑢 ( 𝜒̃(𝑡) + 𝑢)
))

(3.62)

and

𝐵̃[𝑡],𝑘 (𝑢, 𝑦) �
∫ [𝑦−1]+∧𝐹 [𝑡 ]

𝑢 ( 𝜒̃(𝑡)+𝑢)

0
ℎ𝑟𝑘 ((𝐹

[𝑡]
𝑢 )−1(𝑤))𝑑𝐹 [𝑡],𝑘

𝑢 ((𝐹 [𝑡]
𝑢 )−1(𝑤)). (3.63)

Since, by Lemma 1, for each 𝑘 ∈ K, 𝜂[𝑡],𝑘 satisfies (2.5) with 𝜂𝑘𝑡 and 𝐸 [𝑡]
𝑘 in place of 𝜂𝑘0 and 𝐸 𝑘 , then

it can be checked readily that 𝐴̃[𝑡],𝑘 and 𝐵̃[𝑡],𝑘 , 𝑘 ∈ K, also satisfy the three properties of Lemma 4

with 𝐶̃𝑟,𝑘𝑢 � sup0≤𝑣≤ 𝜒̃(𝑡)+𝑢 ℎ
𝑟
𝑘
(𝑣) in place of𝐶𝑟,𝑘𝑡 . Consider the following functional map Λ̃[𝑡] analog

to Λ in (3.31):
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Λ̃[𝑡] (𝑦) (𝑢) � 𝜉 [𝑡] (𝑢) −
∑︁
𝑘∈K

∫ 𝑢

0
𝐺̄𝑠
𝑘 (𝑢 − 𝑠)𝐵̃

[𝑡],𝑘 (𝑠, 𝑦(𝑠))𝑑𝑠 +
∑︁
𝑘∈K

∫ 𝑢

0
𝑔𝑠𝑘 (𝑢 − 𝑠) 𝐴̃

[𝑡],𝑘 (𝑠, 𝑦(𝑠))𝑑𝑠

= 𝜉 [𝑡] (𝑢) −
∑︁
𝑘∈K

∫ 𝑢

0
𝐵̃[𝑡],𝑘 (𝑠, 𝑦(𝑠))𝑑𝑠

+
∑︁
𝑘∈K

∫ 𝑢

0
𝑔𝑠𝑘 (𝑢 − 𝑠)

(
𝐴̃[𝑡],𝑘 (𝑠, 𝑦(𝑠)) +

∫ 𝑠

0
𝐵̃[𝑡],𝑘 (𝑤, 𝑦(𝑤))𝑑𝑤

)
𝑑𝑠,

where 𝜉 [𝑡] is given in (3.59). Note that for each 𝑘 ∈ K and 𝑥 ∈ R+, 𝜂𝑘𝑡 ({𝑥}) = 0 due to the fact that

𝜂𝑘0 ({𝑥}) = 0 for each 𝑘 ∈ K and 𝑥 ∈ R+, the absolute continuity of 𝐸 𝑘 for each 𝑘 ∈ K, the definition

of 𝜂𝑡 and Remark 1. Also note that for each 𝑘 ∈ K, 𝐸 [𝑡]
𝑘 is absolutely continuous with a.e. derivative

𝜆
[𝑡] (·) � 𝜆(𝑡 + ·) and 𝜒̃(𝑡) ≤ 𝜒(0) + 𝑡. Thus, 𝜂𝑡 , 𝐸

[𝑡] and 𝜒̃(𝑡) also satisfies Assumption 1. It follows

from Proposition 2 that Λ̃[𝑡] has a unique continuous fixed point 𝑦̃ [𝑡] on R+. Consider the process

𝑧 [𝑡] (·) defined as

𝑧 [𝑡] (𝑢) � 𝜉 [𝑡] (𝑢) −
∑︁
𝑘∈K

∫ 𝑢

0
𝐵̃[𝑡],𝑘 (𝑠, 𝑦̃ [𝑡] (𝑠))𝑑𝑠 + 𝑔 [𝑡] (𝑢),

where
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𝑔 [𝑡] (𝑢) �
∑︁
𝑘∈K

∫ 𝑢

0
𝑔𝑠𝑘 (𝑢 − 𝑠)

(
𝐴̃[𝑡],𝑘 (𝑠,1+ 𝐹 [𝑡]

𝑠 ( 𝜒̃(𝑡) + 𝑠)) +
∫ 𝑠

0
𝐵̃[𝑡],𝑘 (𝑤,1+ 𝐹 [𝑡]

𝑤 ( 𝜒̃(𝑡) +𝑤))𝑑𝑤
)
𝑑𝑠.

Then 𝑧 [𝑡] (𝑢) ≥ 𝑦̃ [𝑡] (𝑢) for each 𝑢 ∈ R+. Consider the continuous function ℎ[𝑡] on R+ defined by

ℎ[𝑡] (𝑢) � 𝐹 [𝑡]
𝑢 ( 𝜒̃(𝑡) + 𝑢) + 1− 𝑧 [𝑡] (𝑢), 𝑢 ∈ R+.
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By using exactly the same argument as in the proof of Lemma 6, we have that 𝐹 [𝑡]
𝑢 ( 𝜒̃(𝑡) + 𝑢), as a

function of 𝑢, is absolutely continuous with a.e derivative

(
𝐹
[𝑡]
𝑢 ( 𝜒̃(𝑡) + 𝑢)

)′
= −

∑︁
𝑘∈K

∫
[0, 𝜒̃(𝑡)]

𝑔𝑟
𝑘
(𝑥 + 𝑢)
𝐺̄𝑟
𝑘
(𝑥)

𝜂
[𝑡],𝑘
0 (𝑑𝑥) +

∑︁
𝑘∈K

𝜆
[𝑡]
𝑘 (𝑢) (3.64)

−
∑︁
𝑘∈K

∫ 𝑢

0
𝑔𝑟𝑘 (𝑢 − 𝑠)𝜆

[𝑡]
𝑘 (𝑠) 𝑑𝑠,

and that 𝑔 [𝑡] is absolutely continuous with a.e. derivative (𝑔 [𝑡])′(𝑢) given by

(𝑔 [𝑡])′(𝑢) =
∑︁
𝑘∈K

𝑔𝑠𝑘 (𝑢) 𝐴̃
[𝑡],𝑘 (0,1+ 𝐹 [𝑡]

0 ( 𝜒̃(𝑡))) +
∑︁
𝑘∈K

∫ 𝑢

0
𝑔𝑠𝑘 (𝑢 − 𝑠)𝜆

[𝑡]
𝑘 (𝑠)𝑑𝑠

=
∑︁
𝑘∈K

𝑔𝑠𝑘 (𝑢)𝐹
[𝑡],𝑘
0

(
(𝐹 [𝑡]

0 )−1
(
𝐹
[𝑡]
0 ( 𝜒̃(𝑡))

))
+

∑︁
𝑘∈K

∫ 𝑢

0
𝑔𝑠𝑘 (𝑢 − 𝑠)𝜆

[𝑡]
𝑘 (𝑠)𝑑𝑠

=
∑︁
𝑘∈K

𝑔𝑠𝑘 (𝑢)𝐹
𝑘

𝑡 ( 𝜒̃(𝑡)) +
∑︁
𝑘∈K

∫ 𝑢

0
𝑔𝑠𝑘 (𝑢 − 𝑠)𝜆

[𝑡]
𝑘 (𝑠)𝑑𝑠

=
∑︁
𝑘∈K

𝑔𝑠𝑘 (𝑢)𝑄𝑘 (𝑡) +
∑︁
𝑘∈K

∫ 𝑢

0
𝑔𝑠𝑘 (𝑢 − 𝑠)𝜆

[𝑡]
𝑘 (𝑠)𝑑𝑠,

where the last equality follows from the definition of 𝑄 in (3.40) and the expression of 𝜒̃(𝑡) in

(3.54). For each 𝑘 ∈ K, since 𝑔𝑠
𝑘

is absolutely continuous on [0,𝑇], 𝑔𝑠
𝑘

has a.e. derivative (𝑔𝑠
𝑘
)′ that

is Lebesgue integrable. From the definition 𝜉 [𝑡] in (3.59), we see that 𝜉 [𝑡] is absolute continuous

with a.e. derivative given by
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(𝜉 [𝑡])′(𝑢) = −
∑︁
𝑘∈K

𝑄𝑘 (𝑡)𝑔𝑠𝑘 (𝑢) +
∑︁
𝑘∈K

𝜆
[𝑡]
𝑘 (𝑢) −

∑︁
𝑘∈K

∫ 𝑢

0
𝑔𝑠𝑘 (𝑢 − 𝑠)𝜆

[𝑡]
𝑘 (𝑠)𝑑𝑠

−
∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)

𝑔𝑠
𝑘
(𝑥 + 𝑡 + 𝑢)
𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥) −
∑︁
𝑘∈K

𝐿𝑘 (𝑡)𝑔𝑠𝑘 (𝑢) −
∑︁
𝑘∈K

∫ 𝑡

0
(𝑔𝑠𝑘 )

′(𝑡 + 𝑢 − 𝑠)𝐿𝑘 (𝑢)𝑑𝑠.
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Combining the above three displays, we see that ℎ[𝑡] is also absolute continuous with a.e. derivative

(ℎ[𝑡])′(𝑢) =
∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)

𝑔𝑠
𝑘
(𝑥 + 𝑡 + 𝑢)
𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥) +
∑︁
𝑘∈K

𝐿𝑘 (𝑡)𝑔𝑠𝑘 (𝑢)

+
∑︁
𝑘∈K

∫ 𝑡

0
(𝑔𝑠𝑘 )

′(𝑡 + 𝑢 − 𝑠)𝐿𝑘 (𝑠)𝑑𝑠

+
∑︁
𝑘∈K

(
𝐵̃[𝑡],𝑘 (𝑢, 𝑦̃ [𝑡] (𝑢)) −

∫
[0, 𝜒̃(𝑡)]

𝑔𝑟
𝑘
(𝑥 + 𝑢)
𝐺̄𝑟
𝑘
(𝑥)

𝜂
[𝑡],𝑘
0 (𝑑𝑥) −

∫ 𝑢

0
𝑔𝑟𝑘 (𝑢 − 𝑠)𝜆

[𝑡]
𝑘 (𝑠) 𝑑𝑠

)
.

Moreover, for each 𝑘 ∈ K and 𝑢 ∈ R+,

𝐵̃[𝑡],𝑘 (𝑢, 𝑦̃ [𝑡] (𝑢))

=

∫ [ 𝑦̃ [𝑡 ] (𝑢)−1]+∧𝐹 [𝑡 ]
𝑢 ( 𝜒̃(𝑡)+𝑢)

0
ℎ𝑟𝑘 ((𝐹

[𝑡]
𝑢 )−1(𝑤))𝑑𝐹 [𝑡],𝑘

𝑢 ((𝐹 [𝑡]
𝑢 )−1(𝑤))

=

∫
R+

1[0, 𝜒̃[𝑡 ] (𝑢)] (𝑥)ℎ𝑟𝑘 (𝑥)𝑑𝐹
[𝑡],𝑘
𝑢 (𝑥)

= 1{ 𝜒̃[𝑡 ] (𝑢)>𝑢}

(∫
R+

1[0, 𝜒̃[𝑡 ] (𝑢)−𝑢] (𝑥)
𝑔𝑟
𝑘
(𝑥 + 𝑢)
𝐺̄𝑟
𝑘
(𝑥)

𝜂
[𝑡],𝑘
0 (𝑑𝑥) +

∫ 𝑢

0
𝑔𝑟𝑘 (𝑢 − 𝑠)𝜆

[𝑡]
𝑘 (𝑠)𝑑𝑠

)
+ 1{ 𝜒̃[𝑡 ] (𝑢)≤𝑢}

∫ 𝑢

𝑢−𝜒̃[𝑡 ] (𝑢)
𝑔𝑟𝑘 (𝑢 − 𝑠)𝜆

[𝑡]
𝑘 (𝑠)𝑑𝑠,

where

𝜒̃[𝑡] (𝑢) � (𝐹 [𝑡]
𝑢 )−1( [ 𝑦̃ [𝑡] (𝑢) − 1]+ ∧ 𝐹 [𝑡]

𝑢 ( 𝜒̃(𝑡) + 𝑢)) ≤ 𝜒̃(𝑡) + 𝑢.

By considering the two mutually exclusive cases of 𝜒̃(𝑡) = 0 and 𝜒̃(𝑡) > 0 using exactly the same

argument as the one after (3.52) in the proof of Lemma 6, we have that as 𝑢 ↓ 0,∑︁
𝑘∈K

(
𝐵̃[𝑡],𝑘 (𝑢, 𝑦̃ [𝑡] (𝑢)) −

∫
[0, 𝜒̃(𝑡)]

𝑔𝑟
𝑘
(𝑥 + 𝑢)
𝐺̄𝑟
𝑘
(𝑥)

𝜂
[𝑡],𝑘
0 (𝑑𝑥) −

∫ 𝑢

0
𝑔𝑟𝑘 (𝑢 − 𝑠)𝜆

[𝑡]
𝑘 (𝑠) 𝑑𝑠

)
→ 0.

By the assumed right continuity of 𝑔𝑠
𝑘
, 𝑘 ∈ K and an application of Fatou’s Lemma, we have that

0 <
∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)
ℎ𝑠𝑘 (𝑥) 𝜈

𝑘
0 (𝑑𝑥) ≤ lim inf

𝑡,𝑢↓0

∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)

𝑔𝑠
𝑘
(𝑥 + 𝑡 + 𝑢)
𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥).
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By the definition 𝐿𝑘 , 𝑘 ∈ K, in (3.42), 𝐿𝑘 is continuous with 𝐿𝑘 (0) = 0 for each 𝑘 ∈ K. This and

the fact that for each 𝑘 ∈ K, 𝑔𝑠
𝑘

is absolutely continuous on [0,𝑇] with a.e. Lebesgue integrable

derivative (𝑔𝑠
𝑘
)′ imply that

∑︁
𝑘∈K

𝐿𝑘 (𝑡)𝑔𝑠𝑘 (𝑢) +
∑︁
𝑘∈K

∫ 𝑡

0
(𝑔𝑠𝑘 )

′(𝑡 + 𝑢 − 𝑠)𝐿𝑘 (𝑠)𝑑𝑠→ 0 as 𝑡, 𝑢 ↓ 0.

Thus, there exists 𝑇 ∈ (0,𝑇] such that
(
ℎ[𝑡]

)′
(𝑢) > 0 for all 0 ≤ 𝑡 < 𝑡 + 𝑢 ≤ 𝑇 . Since by (3.54) and

(3.59),

ℎ[𝑡] (0) = 𝐹 [𝑡]
0 ( 𝜒̃(𝑡)) + 1− 𝑧 [𝑡] (0) = 𝐹 𝑡 ( 𝜒̃(𝑡)) + 1− 𝜉 [𝑡] (0) = [𝑥(𝑡) − 1]+ + 1− 𝑥(𝑡) ≥ 0,

it follows that for each 𝑡 ∈ [0,𝑇) and each 𝑢 ∈ [0,𝑇 − 𝑡],

𝐹
[𝑡]
𝑢 ( 𝜒̃(𝑡) + 𝑢) ≥ 𝑧 [𝑡] (𝑢) − 1 ≥ 𝑦̃ [𝑡] (𝑢) − 1 and hence 𝐹 [𝑡]

𝑢 ( 𝜒̃(𝑡) + 𝑢) ≥ [ 𝑦̃ [𝑡] (𝑢) − 1]+.

Note that for 𝑡 ∈ [0,𝑇), by (3.54), 𝜒̃(𝑡) ≤ 𝜒(0) + 𝑡, then it follows that

[ 𝑦̃ [𝑡] (𝑢) − 1]+ ≤ 𝐹 [𝑡]
𝑢 ( 𝜒̃(𝑡) + 𝑢) ≤ 𝐹 [𝑡]

𝑢 (𝜒(0) + 𝑡 + 𝑢). (3.65)

Then by the definitions of 𝐴̃[𝑡],𝑘 and 𝐵̃[𝑡],𝑘 in (3.62) and (3.63), respectively and the definitions of

𝐴[𝑡],𝑘 and 𝐵[𝑡],𝑘 in (3.56), we have that for each 𝑡 ∈ [0,𝑇) and each 𝑢 ∈ [0,𝑇 − 𝑡],

𝐴̃[𝑡],𝑘 (𝑢, 𝑦̃ [𝑡] (𝑢)) = 𝐹 [𝑡],𝑘
𝑢

(
(𝐹 [𝑡]

𝑢 )−1
(
[ 𝑦̃ [𝑡] (𝑢) − 1]+ ∧ 𝐹 [𝑡]

𝑢 (𝜒(0) + 𝑡 + 𝑢)
))

= 𝐴[𝑡],𝑘 (𝑢, 𝑦̃ [𝑡] (𝑢))

and

𝐵̃[𝑡],𝑘 (𝑢, 𝑦̃ [𝑡] (𝑢)) =
∫ [ 𝑦̃ [𝑡 ] (𝑢)−1]+∧𝐹 [𝑡 ]

𝑢 (𝜒(0)+𝑡+𝑢)

0
ℎ𝑟𝑘 ((𝐹

[𝑡]
𝑢 )−1(𝑤))𝑑𝐹 [𝑡],𝑘

𝑢 ((𝐹 [𝑡]
𝑢 )−1(𝑤))

= 𝐵[𝑡],𝑘 (𝑢, 𝑦̃ [𝑡] (𝑢)).
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For each 𝑡 ∈ [0,𝑇), combining the above two displays with the fact that 𝑦̃ [𝑡] is the unique fixed point

of Λ̃[𝑡] , we have that for each 𝑢 ∈ [0,𝑇 − 𝑡],

𝑦̃ [𝑡] (𝑢) = Λ̃[𝑡] ( 𝑦̃ [𝑡]) (𝑢) = 𝜉 [𝑡] (𝑢) −
∑︁
𝑘∈K

∫ 𝑢

0
𝐺̄𝑠
𝑘 (𝑢 − 𝑠)𝐵̃

[𝑡],𝑘 (𝑠, 𝑦̃ [𝑡] (𝑠))𝑑𝑠

+
∑︁
𝑘∈K

∫ 𝑢

0
𝑔𝑠𝑘 (𝑢 − 𝑠) 𝐴̃

[𝑡],𝑘 (𝑠, 𝑦̃ [𝑡] (𝑠))𝑑𝑠

= 𝜉 [𝑡] (𝑢) −
∑︁
𝑘∈K

∫ 𝑢

0
𝐺̄𝑠
𝑘 (𝑢 − 𝑠)𝐵

[𝑡],𝑘 (𝑠, 𝑦̃ [𝑡] (𝑠))𝑑𝑠

+
∑︁
𝑘∈K

∫ 𝑢

0
𝑔𝑠𝑘 (𝑢 − 𝑠)𝐴

[𝑡],𝑘 (𝑠, 𝑦̃ [𝑡] (𝑠))𝑑𝑠.

Then 𝑦̃ [𝑡] is a fixed point of Λ[𝑡] on [0,𝑇 − 𝑡]. Since Λ[𝑡] admits a unique fixed point by Lemma

7, then 𝑥 [𝑡] = 𝑦̃ [𝑡] on [0,𝑇 − 𝑡]. Thus, by (3.65), for each 𝑡 ∈ [0,𝑇) and each 𝑢 ∈ [0,𝑇 − 𝑡],
𝐹
[𝑡]
𝑢 ( 𝜒̃(𝑡) + 𝑢) ≥ [𝑥 [𝑡] (𝑢) − 1]+ and then

𝜒̃(𝑡 + 𝑢) = (𝐹 𝑡+𝑢)−1 (
[𝑥(𝑡 + 𝑢) − 1]+

)
= (𝐹 [𝑡]

𝑢 )−1
(
[𝑥 [𝑡] (𝑢) − 1]+

)
≤ 𝜒̃(𝑡) + 𝑢.

This completes the proof of this lemma. □

Corollary 2. Suppose that Assumptions 1 holds, the service time densities {𝑔𝑠
𝑘
, 𝑘 ∈ K} are

right continuous on their supports and are absolutely continuous on [0, 𝛿] for some 𝛿 > 0, and

suppose that
∑
𝑘∈K

∫
[0,𝐻𝑠

𝑘
) ℎ

𝑠
𝑘
(𝑥) 𝜈𝑘0 (𝑑𝑥) > 0. Then for 𝑇 given in Corollary 1 and 𝑘 ∈ K, 𝐿𝑘 is

non-decreasing on [0,𝑇].

Proof By Corollary 1, for each 0 ≤ 𝑡 < 𝑡 + 𝑢 ≤ 𝑇 , 𝜒̃(𝑡 + 𝑢) ≤ 𝜒̃(𝑡) + 𝑢. By following the same

argument as in Lemma 3, for each 𝑘 ∈ K, we can show that 𝐿𝑘 (𝑡 + 𝑢) ≥ 𝐿𝑘 (𝑡) for each 0 ≤ 𝑡 <
𝑡 + 𝑢 ≤ 𝑇 . This implies that 𝐿𝑘 is non-decreasing on [0,𝑇] for each 𝑘 ∈ K. □

Now we extend the result of Corollary 2 from [0,𝑇] to R+.

Proposition 4. Suppose that Assumptions 1 and 2 hold. Then 𝐿𝑘 is non-decreasing on R+ for

each 𝑘 ∈ K and 𝑥(𝑡) − 1 ≤ 𝐹 𝑡 (𝜒(0) + 𝑡) for all 𝑡 ∈ R+.

Proof First suppose that Condition A in Assumption 2 holds. Then 𝐻𝑠
𝑘
=∞ since otherwise,

for all 𝑡 ≥ 𝐻𝑠
𝑘
,
∑
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)
𝑔𝑠
𝑘
(𝑥 +𝐻𝑠

𝑘
)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥) = 0, which contradicts Condition A. It follows

from Condition A that
∑
𝑘∈K

∫
[0,𝐻𝑠

𝑘
) ℎ

𝑠
𝑘
(𝑥) 𝜈𝑘0 (𝑑𝑥) > 0. It follows from Corollary 2, Lemma 6 and
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Proposition 3 that the triple (𝑋, 𝜈, 𝜂) constructed from 𝑥(·) is a continuous solution to the fluid

model equations associated with (𝐸, 𝑋 (0), 𝜈0, 𝜂0) restricted on [0,𝑇]. In particular, 𝜈𝑡 satisfies

(2.3) for each 𝑡 ∈ [0,𝑇]. By Remark 1, we have that for each 𝑡 ∈ [0,𝑇],

∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)
ℎ𝑠𝑘 (𝑥) 𝜈

𝑘
𝑡 (𝑑𝑥) =

∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)

𝑔𝑠
𝑘
(𝑥 + 𝑡)
𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥) +
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑠) 𝑑𝐿𝑘 (𝑠).

Then Condition A and the fact that 𝐿𝑘 is non-decreasing on [0,𝑇] for each 𝑘 ∈ K together imply

that
∑
𝑘∈K

∫
[0,𝐻𝑠

𝑘
) ℎ

𝑠
𝑘
(𝑥) 𝜈𝑘

𝑇
(𝑑𝑥) > 0. By Lemma 7, 𝑥 [𝑇] is the unique fixed point of Λ[𝑇] , where

𝜉 [𝑇] (𝑢) = 𝑥(𝑇) −
∑︁
𝑘∈K

𝑄𝑘 (𝑇)𝐺𝑠
𝑘 (𝑢) +

∑︁
𝑘∈K

∫ 𝑢

0
𝐺̄𝑠
𝑘 (𝑢 − 𝑠)𝑑𝐸

[𝑇]
𝑘 (𝑠)

−
∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)

𝐺𝑠
𝑘
(𝑥 +𝑇 + 𝑢) −𝐺𝑠

𝑘
(𝑥 +𝑇)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘0 (𝑑𝑥)

−
∑︁
𝑘∈K

𝐿𝑘 (𝑇)𝐺𝑠
𝑘 (𝑢) −

∑︁
𝑘∈K

∫ 𝑇

0
(𝑔𝑠𝑘 (𝑇 + 𝑢 − 𝑠) − 𝑔𝑠𝑘 (𝑇 − 𝑠))𝐿𝑘 (𝑠)𝑑𝑠

= 𝑥(𝑇) −
∑︁
𝑘∈K

𝑄𝑘 (𝑇)𝐺𝑠
𝑘 (𝑢) +

∑︁
𝑘∈K

∫ 𝑢

0
𝐺̄𝑠
𝑘 (𝑢 − 𝑠)𝑑𝐸

[𝑇]
𝑘 (𝑠)

−
∑︁
𝑘∈K

∫
[0,𝐻𝑠

𝑘
)

𝐺𝑠
𝑘
(𝑥 + 𝑢) −𝐺𝑠

𝑘
(𝑥)

𝐺̄𝑠
𝑘
(𝑥)

𝜈𝑘
𝑇
(𝑑𝑥).

Note that Λ[𝑇] can be viewed as a functional map defined from the initial data (𝐸 [𝑇]
, 𝑋 (𝑇), 𝜈𝑇 , 𝜂𝑇 )

in the same way as the functional map Λ in 3.31 defined from (𝐸, 𝑋 (0), 𝜈0, 𝜂0). Then by applying

Lemma 6 and Corollary 2 to Λ[𝑇] with initial data (𝐸 [𝑇]
, 𝑋 (𝑇), 𝜈𝑇 , 𝜂𝑇 ) and using (3.54), there exists

𝑇 ′ > 0 such that for each 𝑘 ∈ K, 𝐿 [𝑇]
𝑘 defined by (3.42) with 𝑥 [𝑇] (·) in place of 𝑥(·) is non-decreasing

on [0,𝑇 ′] and for each 𝑡 ∈ [0,𝑇 ′], 𝑥 [𝑇] (𝑡) − 1 < 𝐹 [𝑇]
𝑡 (𝜒[𝑇] (0) + 𝑡), where

𝜒[𝑇] (0) � (𝐹 [𝑇]
𝑡 )−1

(∑︁
𝑘∈K

𝑄𝑘 (𝑇)
)
= (𝐹 [𝑇]

𝑡 )−1 (
[𝑥(𝑇) − 1]+

)
= 𝜒̃(𝑇) ≤ 𝜒(0) +𝑇.

Note that for each 𝑘 ∈ K and 𝑡 ∈ [0,𝑇], 𝐿𝑘 (𝑇 + 𝑡) = 𝐿 [𝑇]
𝑘 (𝑡) and

𝑥(𝑇 + 𝑡) − 1 = 𝑥 [𝑇] (𝑡) − 1 ≤ 𝐹 [𝑇]
𝑡 (𝜒[𝑇] (0) + 𝑡) ≤ 𝐹𝑇+𝑡 (𝜒(0) +𝑇 + 𝑡).
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Then 𝐿𝑘 is non-decreasing on [0,𝑇 + 𝑇 ′] and 𝑥(𝑡) − 1 ≤ 𝐹 𝑡 (𝜒(0) + 𝑡) for all 𝑡 ∈ [0,𝑇 + 𝑇 ′]. By
applying a simple contradiction argument, it is clear that the maximal interval on which 𝐿𝑘 is
non-decreasing for each 𝑘 ∈ K and 𝑥(𝑡) − 1 ≤ 𝐹 𝑡 (𝜒(0) + 𝑡) has to be [0,∞).

Suppose Condition B in Assumption 2 holds. If
∑
𝑘∈K

∫
[0,𝐻𝑠

𝑘
) ℎ

𝑠
𝑘
(𝑥) 𝜈𝑘0 (𝑑𝑥) > 0. By Corollary 2,

there exists𝑇 > 0 such that 𝐿𝑘 is non-decreasing on [0,𝑇] for each 𝑘 ∈ K and 𝑥(𝑡) −1 ≤ 𝐹 𝑡 (𝜒(0) + 𝑡)
for all 𝑡 ∈ [0,𝑇]. Otherwise, if

∑
𝑘∈K

∫
[0,𝐻𝑠

𝑘
) ℎ

𝑠
𝑘
(𝑥) 𝜈𝑘0 (𝑑𝑥) = 0, by Condition B,

∑
𝑘∈K ⟨1, 𝜈𝑘0⟩ = 0,

that is, 𝜈𝑘0 = 0 for all 𝑘 ∈ K. By the definition of S0 in (2.1),
∑
𝑘∈K 𝑋 𝑘 (0) = 0. Since 𝑥(·) is the

continuous solution to the equation (3.30), then

𝑥(𝑡) =
∑︁
𝑘∈K

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢)𝑑𝐸 𝑘 (𝑢) −

∑︁
𝑘∈K

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢)𝐵

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢

+
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)𝐴

𝑘 (𝑢, 𝑥(𝑢))𝑑𝑢.

Since 𝑥(0) = ∑
𝑘∈K 𝑋 𝑘 (0) = 0, let 𝑇 = inf{𝑡 ≥ 0 : 𝑥(𝑡) = 1}. By the continuity of 𝑥(·), 𝑇 > 0

and 𝑥(𝑡) < 1 for all 𝑡 ∈ [0,𝑇]. It follows that 𝐴𝑘 (𝑡, 𝑥(𝑡)) = 𝐵𝑘 (𝑡, 𝑥(𝑡)) = 0 for all 𝑡 ∈ [0,𝑇] and
𝑘 ∈ K, then 𝑥(𝑡) =∑

𝑘∈K
∫ 𝑡

0 𝐺̄
𝑠
𝑘
(𝑡 − 𝑢)𝑑𝐸 𝑘 (𝑢) and for each 𝑘 ∈ K, 𝐿𝑘 (𝑡) = 𝐸 𝑘 (𝑡) for all 𝑡 ∈ [0,𝑇].

Thus 𝐿𝑘 is non-decreasing on [0,𝑇] and it is clear that 𝑥(𝑡) − 1 ≤ 0 ≤ 𝐹 𝑡 (𝜒(0) + 𝑡) for all 𝑡 ∈
[0,𝑇]. Let [0, 𝑆) be the maximal interval on which 𝐿𝑘 is non-decreasing for all 𝑘 ∈ K and
𝑥(𝑡) − 1 ≤ 𝐹 𝑡 (𝜒(0) + 𝑡). If 𝑆 <∞, it follows that

∑
𝑘∈K

∫
[0,𝐻𝑠

𝑘
) ℎ

𝑠
𝑘
(𝑥) 𝜈𝑘𝑆 (𝑑𝑥) = 0, since, otherwise, if∑

𝑘∈K
∫
[0,𝐻𝑠

𝑘
) ℎ

𝑠
𝑘
(𝑥) 𝜈𝑘𝑆 (𝑑𝑥) > 0, then there exists 𝑆′ > 0 such that 𝐿𝑘 is non-decreasing on [0, 𝑆 + 𝑆′]

for all 𝑘 ∈ K and 𝑥(𝑡) − 1 ≤ 𝐹 𝑡 (𝜒(0) + 𝑡) for all 𝑡 ∈ [0, 𝑆 + 𝑆′]. This contradicts the maximality of
[0, 𝑆]. Since

∑
𝑘∈K

∫
[0,𝐻𝑠

𝑘
) ℎ

𝑠
𝑘
(𝑥) 𝜈𝑘𝑆 (𝑑𝑥) = 0, then there exists 𝑆∗ > 0 such that 𝐿 [𝑆]

𝑘 (𝑡) = 𝐸 [𝑆]
𝑘 (𝑡) for

all 𝑡 ∈ [0, 𝑆∗] and 𝑥 [𝑆] (𝑡) ≤ 1 for all 𝑡 ∈ [0, 𝑆∗]. Thus, 𝐿𝑘 is non-decreasing on [0, 𝑆 + 𝑆′] for all
𝑘 ∈ K and 𝑥(𝑡) − 1 ≤ 𝐹 𝑡 (𝜒(0) + 𝑡) for all 𝑡 ∈ [0, 𝑆 + 𝑆′], which again contradicts the maximality of
[0, 𝑆]. This shows that 𝑆 =∞. □

Proof of Theorem 3.2. The statement in Theorem 3.2 follows directly from Proposition 3, Lemmas
6 and 7, Corollaries 1 and 2 and Proposition 4. □

4. Sensitivity Analysis of the Fluid Model Equations This section is devoted to the sen-
sitivity analysis of the fluid model equations on perturbations of the input data. To be specific, for
each 𝑛 ≥ 0, let (𝐸𝑛, 𝑋𝑛 (0), 𝜈𝑛0, 𝜂

𝑛
0) be a sequence of input data in S0 and let (𝑋𝑛, 𝜈𝑛, 𝜂𝑛) be a solution

to the fluid model equations associated with the input data (𝐸𝑛, 𝑋𝑛 (0), 𝜈𝑛0, 𝜂
𝑛
0).
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Assumption 3. We make the following set of assumptions on the sequence of input data

(𝐸𝑛, 𝑋𝑛 (0), 𝜈𝑛0, 𝜂
𝑛
0), 𝑛 ≥ 0. For each 𝑘 ∈ K, as 𝑛→∞,

1. for each 𝑇 > 0, sup𝑡∈[0,𝑇] |𝐸
𝑛

𝑘 (𝑡) − 𝐸
0
𝑘 (𝑡) | → 0,

2. 𝑋𝑛𝑘 (0) → 𝑋
0
𝑘 (0),

3. 𝜈𝑛,𝑘0 → 𝜈
0,𝑘
0 in total variation,

4. 𝜂𝑛,𝑘0 → 𝜂
0,𝑘
0 in total variation.

In addition, the patience time densities {𝑔𝑟
𝑘
, 𝑘 ∈ K} are absolutely continuous on [0, 𝛿) for some

𝛿 ∈ R+ ∪ {∞} and their hazard rate functions {ℎ𝑟
𝑘
, 𝑘 ∈ K} are assumed to be locally bounded and

it is assumed that
[∑

𝑘∈K 𝑋
0
𝑘 (0) − 1

]+
<

∑
𝑘∈K

〈
1, 𝜂0,𝑘

0

〉
if ℎ𝑟

𝑘
is not bounded for some 𝑘 ∈ K.

In this section, to ease the notation, for any two functions 𝑓 1 and 𝑓 2 defined on R+, let Δ 𝑓 (·)
denote 𝑓 1(·) − 𝑓 2(·) and for any two measures 𝜂1 and 𝜂2 on R+, let Δ𝜂 denote 𝜂1 − 𝜂2 and let |Δ𝜂 |
denote the total variation measure on R+ of Δ𝜂. The main result of this section is the following
theorem.

Theorem 4.3. Suppose that Assumption 3 holds. Then for each 𝑘 ∈ K and𝑇 ∈ [0, 𝛿), as 𝑛→∞,

sup𝑡∈[0,𝑇]
���𝑋𝑛𝑘 (𝑡) − 𝑋0

𝑘 (𝑡)
���→ 0, 𝜈𝑛,𝑘 → 𝜈0,𝑘 and 𝜂𝑛,𝑘 → 𝜂0,𝑘 weakly on [0,𝑇].

We first establish a local Lipschitz property on the solutions to the fluid model equations relative
to the input data in Section 4.1, then the proof of Theorem 4.3 is given in Section 4.2.

4.1. A Local Lipschitz Property

Proposition 5. For 𝑖 = 1,2, let (𝑋 𝑖, 𝜈𝑖, 𝜂𝑖) be a solution to the fluid model equations associated

with (𝐸 𝑖, 𝑋 𝑖 (0), 𝜈𝑖0, 𝜂
𝑖
0) ∈ S0. Suppose that the patience time densities {𝑔𝑟

𝑘
, 𝑘 ∈ K} are absolutely

continuous on [0, 𝛿) for some 𝛿 ∈ R+ ∪ {∞} and for each 𝑘 ∈ K and 𝑡 ∈ R+,

𝐾
𝑟,𝑘
𝑡 � sup

0≤𝑢≤𝜒1 (0)∨𝜒2 (0)+𝑡
ℎ𝑟𝑘 (𝑢) <∞, (4.66)

where 𝜒𝑖 (0), 𝑖 = 1,2, is defined as in (2.15) from (𝐸 𝑖, 𝑋 𝑖 (0), 𝜈𝑖0, 𝜂
𝑖
0) with 𝑡 = 0. Then for each

𝑇 ∈ [0, 𝛿), there exists a constant 𝐶𝑇 ∈ (0,∞) such that

sup
𝑡∈[0,𝑇]

|Δ𝑥(𝑡) | ≤ 𝐶𝑇 𝜁𝑇 , (4.67)

where

𝜁𝑇 �
∑︁
𝑘∈K

(
|Δ𝑋 𝑘 (0) | + ⟨1, |Δ𝜈𝑘0 |⟩ + sup

𝑤∈[0,𝑇]

���Δ𝐸 𝑘 (𝑤)���+ ⟨1, |Δ𝜂𝑘0 |⟩
)
. (4.68)
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Proof Fix 𝑇 ∈ [0, 𝛿). For each 𝑖 = 1,2, let Λ𝑖 (𝑥) be the functional map in (3.31) associated
with (𝐸 𝑖, 𝑋 𝑖 (0), 𝜈𝑖0, 𝜂

𝑖
0) ∈ S0, where 𝜉𝑖 is defined in (3.27) from (𝐸 𝑖, 𝑋 𝑖 (0), 𝜈𝑖0, 𝜂

𝑖
0). It follows that

𝑥𝑖 (·) �∑
𝑘∈K 𝑋

𝑖 (·) is a fixed point of Λ𝑖. Then, for each 𝑡 ∈ R+,

��𝑥1(𝑡) − 𝑥2(𝑡)
�� (4.69)

≤ |𝜉1(𝑡) − 𝜉2(𝑡) | +
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)

��𝐴𝑘,1(𝑢, 𝑥1(𝑢)) − 𝐴𝑘,2(𝑢, 𝑥2(𝑢))
�� 𝑑𝑢

+
∑︁
𝑘∈K

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢)

��𝐵𝑘,1(𝑢, 𝑥1(𝑢)) − 𝐵𝑘,2(𝑢, 𝑥2(𝑢))
�� 𝑑𝑢.

It follows from the definition of 𝜉 (·) in (3.27) and the definition of 𝜁𝑇 in (4.68) that for each 𝑡 ∈ R+,

��𝜉1(𝑡) − 𝜉2(𝑡)
�� (4.70)

≤ 2
∑︁
𝑘∈K

|Δ𝑋 𝑘 (0) | + 2
∑︁
𝑘∈K

⟨1, |Δ𝜈𝑘0 |⟩ +
∑︁
𝑘∈K

|Δ𝐸 𝑘 (𝑡) | +
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)

���Δ𝐸 𝑘 (𝑢)��� 𝑑𝑢
≤ 2

∑︁
𝑘∈K

|Δ𝑋 𝑘 (0) | + 2
∑︁
𝑘∈K

⟨1, |Δ𝜈𝑘0 |⟩ + 2
∑︁
𝑘∈K

sup
𝑢∈[0,𝑡]

���Δ𝐸 𝑘 (𝑢)��� ≤ 2𝜁𝑇 .

We first estimate the second term on the right-hand side of (4.69), that is,∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)

��𝐴𝑘,1(𝑢, 𝑥1(𝑢)) − 𝐴𝑘,2(𝑢, 𝑥2(𝑢))
�� 𝑑𝑢.

Note that, by applying the usual triangle inequality and property (2) of Lemma 4, for each 𝑢 ∈ [0, 𝑡]
and 𝑘 ∈ K,

��𝐴𝑘,1(𝑢, 𝑥1(𝑢)) − 𝐴𝑘,2(𝑢, 𝑥2(𝑢))
�� (4.71)

≤
��𝐴𝑘,1(𝑢, 𝑥1(𝑢)) − 𝐴𝑘,1(𝑢, 𝑥2(𝑢))

��+ ��𝐴𝑘,1(𝑢, 𝑥2(𝑢)) − 𝐴𝑘,2(𝑢, 𝑥2(𝑢))
��

≤ |𝑥1(𝑢) − 𝑥2(𝑢) | +
��𝐴𝑘,1(𝑢, 𝑥2(𝑢)) − 𝐴𝑘,2(𝑢, 𝑥2(𝑢))

�� .
By applying Lemma 2, we have that for each 𝑡 ∈ R+, 𝜒2(𝑡) ≤ 𝜒2(0) + 𝑡, which in turn implies that
[𝑥2(𝑡) − 1]+ ≤ 𝐹2

𝑡 (𝜒2(0) + 𝑡) and then by the definition of 𝐴𝑘 (𝑡, 𝑥) in (3.29), we have that for each
𝑢 ∈ [0, 𝑡] and 𝑘 ∈ K,

𝐴𝑘,2(𝑢, 𝑥2(𝑢)) = 𝐹𝑘,2𝑢
(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
.
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From this and an application of triangle inequality, we see that for each 𝑢 ∈ [0, 𝑡] and 𝑘 ∈ K,

��𝐴𝑘,1(𝑢, 𝑥2(𝑢)) − 𝐴𝑘,2(𝑢, 𝑥2(𝑢))
�� (4.72)

=

���𝐹𝑘,1𝑢 (
(𝐹1

𝑢)−1
(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
))

− 𝐹𝑘,2𝑢
(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))���
≤

���𝐹𝑘,1𝑢 (
(𝐹1

𝑢)−1
(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
))

− 𝐹𝑘,1𝑢
(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))���
+
���𝐹𝑘,1𝑢 (

(𝐹2
𝑢)−1

(
[𝑥2(𝑢) − 1]+

))
− 𝐹𝑘,2𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))��� .
For 𝑖 = 1,2 and 𝑘 ∈ K, it follows from (2.5) with 𝑓 (𝑥) = 1[

0,(𝐹2
𝑢)−1( [𝑥2 (𝑢)−1]+)

] (𝑥) (cf. Remark 1) and

𝑡 = 𝑢 that
ATTENTION: The following displayed equation, in its current form, exceeds the column width that will be used

in the published edition of your article. Please break or rewrite this equation to fit, including the equation

number, within a column width of 470 pt / 165.81 mm / 6.53 in (the width of this red box).

𝐹
𝑘,𝑖

𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
=

∫
[0,𝐻𝑟

𝑘
)
1[

0,(𝐹2
𝑢)−1( [𝑥2 (𝑢)−1]+)

] (𝑥) 𝜂𝑘,𝑖𝑢 (𝑑𝑥)

=

∫
[0,𝐻𝑟

𝑘
)
1[

0,(𝐹2
𝑢)−1( [𝑥2 (𝑢)−1]+)

] (𝑥 + 𝑢) 𝐺̄𝑟𝑘 (𝑥 + 𝑢)
𝐺̄𝑟
𝑘
(𝑥)

𝜂
𝑘,𝑖

0 (𝑑𝑥)

+
∫ 𝑢

0
1[

0,(𝐹2
𝑢)−1( [𝑥2 (𝑢)−1]+)

] (𝑢 −𝑤)𝐺̄𝑟𝑘 (𝑢 −𝑤)𝑑𝐸 𝑖𝑘 (𝑤).

Note that, by an application of integration by parts, the second term on the right-hand side of the

above display can be rewritten as

∫ 𝑢

0
1[

0,(𝐹2
𝑢)−1( [𝑥2 (𝑢)−1]+)

] (𝑢 −𝑤)𝐺̄𝑟𝑘 (𝑢 −𝑤)𝑑𝐸 𝑖𝑘 (𝑤)
=

∫ 𝑢[
𝑢−(𝐹2

𝑢)−1( [𝑥2 (𝑢)−1]+)
]+ 𝐺̄𝑟𝑘 (𝑢 −𝑤)𝑑𝐸 𝑖𝑘 (𝑤)

= 𝐸
𝑖

𝑘 (𝑢) − 𝐺̄𝑟𝑘
(
𝑢 ∧ (𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
𝐸
𝑖

𝑘

( [
𝑢 − (𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

)]+)
−

∫ 𝑢[
𝑢−(𝐹2

𝑢)−1( [𝑥2 (𝑢)−1]+)
]+ 𝐸 𝑖𝑘 (𝑤)𝑔𝑟𝑘 (𝑢 −𝑤)𝑑𝑤.
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Then the second term on the right-hand side of (4.72) can be estimated as

���𝐹𝑘,1𝑢 (
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
− 𝐹𝑘,2𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))��� (4.73)

≤
�����∫[0,𝐻𝑟

𝑘
)
1[

0,(𝐹2
𝑢)−1( [𝑥2 (𝑢)−1]+)

] (𝑥 + 𝑢) 𝐺̄𝑟𝑘 (𝑥 + 𝑢)
𝐺̄𝑟
𝑘
(𝑥)

Δ𝜂𝑘0 (𝑑𝑥)
�����

+
���Δ𝐸 𝑘 (𝑢)���+ ���Δ𝐸 𝑘 ( [

𝑢 − (𝐹2
𝑢)−1

(
[𝑥2(𝑢) − 1]+

)]+)���+∫ 𝑢

0

���𝐸 𝑖𝑘 (𝑤)���𝑔𝑟𝑘 (𝑢 −𝑤)𝑑𝑤
≤ ⟨1, |Δ𝜂𝑘0 |⟩ + 3 sup

𝑤∈[0,𝑇]

���Δ𝐸 𝑘 (𝑤)��� .
For the first term on the right-hand side of (4.72), that is,���𝐹𝑘,1𝑢 (

(𝐹1
𝑢)−1

(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
))

− 𝐹𝑘,1𝑢
(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))��� ,
we consider the following three mutually exclusive cases:

Case 1: (𝐹1
𝑢)−1

(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
)
≥ (𝐹2

𝑢)−1 (
[𝑥2(𝑢) − 1]+

)
.

For each 𝑘 ∈ K, since 𝐹𝑘,1𝑢 (𝑥) as a function of 𝑥 is non-decreasing, then

𝐹
𝑘,1
𝑢

(
(𝐹1

𝑢)−1
(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
))

≥ 𝐹𝑘,1𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
.

This, together with the fact that 𝐹1
𝑢 =

∑
𝑘∈K 𝐹

𝑘,1
𝑢 , implies that for each 𝑘 ∈ K,

���𝐹𝑘,1𝑢 (
(𝐹1

𝑢)−1
(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
))

− 𝐹𝑘,1𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))���
= 𝐹

𝑘,1
𝑢

(
(𝐹1

𝑢)−1
(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
))

− 𝐹𝑘,1𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
≤ 𝐹1

𝑢

(
(𝐹1

𝑢)−1
(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
))

− 𝐹1
𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
.

Note that

𝐹
1
𝑢

(
(𝐹1

𝑢)−1
(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
))

= [𝑥2(𝑢) − 1]+ ∧ 𝐹1
𝑢 (𝜒1(0) + 𝑢) (4.74)

= 𝐹
2
𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
))

≤ 𝐹2
𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
.
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From this and (4.73), we have that for each 𝑘 ∈ K,

���𝐹𝑘,1𝑢 (
(𝐹1

𝑢)−1
(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
))

− 𝐹𝑘,1𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))���
≤ 𝐹2

𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
− 𝐹1

𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
.

Case 2: (𝐹1
𝑢)−1

(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
)
< (𝐹2

𝑢)−1 (
[𝑥2(𝑢) − 1]+

)
and [𝑥2(𝑢) − 1]+ ≤

𝐹
1
𝑢 (𝜒1(0) + 𝑢).

In this case, we have that for each 𝑘 ∈ K,

���𝐹𝑘,1𝑢 (
(𝐹1

𝑢)−1
(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
))

− 𝐹𝑘,1𝑢
(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))���
= 𝐹

𝑘,1
𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
− 𝐹𝑘,1𝑢

(
(𝐹1

𝑢)−1
(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
))

= 𝐹
𝑘,1
𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
− 𝐹𝑘,1𝑢

(
(𝐹1

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
≤ 𝐹1

𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
− 𝐹1

𝑢

(
(𝐹1

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
= 𝐹

1
𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
− 𝐹2

𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
≤

���𝐹1
𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
− 𝐹2

𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))��� ,

where the first equality is due to the first case condition, the second equality is due to the second

case condition and the third equality is due to (4.74).

Case 3: (𝐹1
𝑢)−1

(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
)
< (𝐹2

𝑢)−1 (
[𝑥2(𝑢) − 1]+

)
and [𝑥2(𝑢) − 1]+ >

𝐹
1
𝑢 (𝜒1(0) + 𝑢).

The second case condition and Lemma 2 together imply that

[𝑥2(𝑢) − 1]+ > 𝐹1
𝑢 (𝜒1(0) + 𝑢) ≥ [𝑥1(𝑢) − 1]+.
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Then for each 𝑘 ∈ K,

���𝐹𝑘,1𝑢 (
(𝐹1

𝑢)−1
(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
))

− 𝐹𝑘,1𝑢
(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))���
= 𝐹

𝑘,1
𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
− 𝐹𝑘,1𝑢

(
(𝐹1

𝑢)−1
(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
))

= 𝐹
𝑘,1
𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
− 𝐹𝑘,1𝑢

(
(𝐹1

𝑢)−1
(
𝐹

1
𝑢 (𝜒1(0) + 𝑢)

))
≤ 𝐹1

𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
− 𝐹1

𝑢

(
(𝐹1

𝑢)−1
(
𝐹

1
𝑢 (𝜒1(0) + 𝑢)

))
= 𝐹

1
𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
− 𝐹2

𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
+ 𝐹2

𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
− 𝐹1

𝑢 (𝜒1(0) + 𝑢)

≤ 𝐹1
𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
− 𝐹2

𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
+ [𝑥2(𝑢) − 1]+ − [𝑥1(𝑢) − 1]+

≤ 𝐹1
𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
− 𝐹2

𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
+ |Δ𝑥(𝑢) | .

Combining all the three cases, we have that the first term on the right-hand side of (4.72) can be
estimated as���𝐹𝑘,1𝑢 (

(𝐹1
𝑢)−1

(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
))

− 𝐹𝑘,1𝑢
(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))��� (4.75)

≤
���𝐹1
𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
− 𝐹2

𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))���+ |Δ𝑥(𝑢) |

≤
∑︁
𝑘∈K

���𝐹𝑘,1𝑢 (
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
− 𝐹𝑘,2𝑢

(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))���+ |Δ𝑥(𝑢) |

≤
∑︁
𝑘∈K

(
⟨1, |Δ𝜂𝑘0 |⟩ + 3 sup

𝑤∈[0,𝑇]

���Δ𝐸 𝑘 (𝑤)���) + |Δ𝑥(𝑢) | .

Then it follows from (4.72), (4.73) and (4.75) that for each 𝑢 ∈ [0, 𝑡] and 𝑘 ∈ K,
ATTENTION: The following displayed equation, in its current form, exceeds the column width that will be used

in the published edition of your article. Please break or rewrite this equation to fit, including the equation

number, within a column width of 470 pt / 165.81 mm / 6.53 in (the width of this red box).

��𝐴𝑘,1(𝑢, 𝑥1(𝑢)) − 𝐴𝑘,2(𝑢, 𝑥2(𝑢))
�� (4.76)

≤ |Δ𝑥(𝑢) | +
(∑︁
𝑘∈K

(
⟨1, |Δ𝜂𝑘0 |⟩ + 3 sup

𝑤∈[0,𝑇]

���Δ𝐸 𝑘 (𝑤)���) + |Δ𝑥(𝑢) |
)
+

(
⟨1, |Δ𝜂𝑘0 |⟩ + 3 sup

𝑤∈[0,𝑇]

���Δ𝐸 𝑘 (𝑤)���) .
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Thus, the second term on the right-hand side of (4.69) can be estimated by using (4.76) as follows.

∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢)

��𝐴𝑘,1(𝑢, 𝑥1(𝑢)) − 𝐴𝑘,2(𝑢, 𝑥2(𝑢))
�� 𝑑𝑢 (4.77)

≤ 2
∑︁
𝑘∈K

∫ 𝑡

0
𝑔𝑠𝑘 (𝑡 − 𝑢) |Δ𝑥(𝑢) | 𝑑𝑢 + (3𝐾 + 3)

∑︁
𝑘∈K

(
⟨1, |Δ𝜂𝑘0 |⟩ + sup

𝑤∈[0,𝑇]

���Δ𝐸 𝑘 (𝑤)���) .

We next turn to estimate the third term on the right-hand side of (4.69), that is,

∑︁
𝑘∈K

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢)

��𝐵𝑘,1(𝑢, 𝑥1(𝑢)) − 𝐵𝑘,2(𝑢, 𝑥2(𝑢))
�� 𝑑𝑢.

For each 𝑢 ∈ [0, 𝑡], by an application of the triangle inequality and property (3) of Lemma 4, we

have that

��𝐵𝑘,1(𝑢, 𝑥1(𝑢)) − 𝐵𝑘,2(𝑢, 𝑥2(𝑢))
��

≤
��𝐵𝑘,1(𝑢, 𝑥1(𝑢)) − 𝐵𝑘,1(𝑢, 𝑥2(𝑢))

��+ ��𝐵𝑘,1(𝑢, 𝑥2(𝑢)) − 𝐵𝑘,2(𝑢, 𝑥2(𝑢))
��

≤ 𝐾𝑟,𝑘𝑡 |Δ𝑥(𝑢) | +
��𝐵𝑘,1(𝑢, 𝑥2(𝑢)) − 𝐵𝑘,2(𝑢, 𝑥2(𝑢))

�� ,
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where 𝐾𝑟,𝑘𝑡 is given by (4.66). Also it follows from the definition of 𝐵𝑘 (𝑡, 𝑥) in (3.29) and Lemma

2 that for each 𝑢 ∈ [0, 𝑡],

��𝐵𝑘,1(𝑢, 𝑥2(𝑢)) − 𝐵𝑘,2(𝑢, 𝑥2(𝑢))
�� (4.78)

=

�����∫ [𝑥2 (𝑢)−1]+∧𝐹1
𝑢 (𝜒1 (0)+𝑢)

0
ℎ𝑟𝑘 ((𝐹

1
𝑢)−1(𝑤))𝑑𝐹𝑘,1𝑢 ((𝐹1

𝑢)−1(𝑤))

−
∫ [𝑥2 (𝑢)−1]+

0
ℎ𝑟𝑘 ((𝐹

2
𝑢)−1(𝑤))𝑑𝐹𝑘,2𝑢 ((𝐹2

𝑢)−1(𝑤))
�����

≤
�����∫ [𝑥2 (𝑢)−1]+∧𝐹1

𝑢 (𝜒1 (0)+𝑢)

0
ℎ𝑟𝑘 ((𝐹

1
𝑢)−1(𝑤))𝑑𝐹𝑘,1𝑢 ((𝐹1

𝑢)−1(𝑤))

−
∫ [𝑥2 (𝑢)−1]+

0
ℎ𝑟𝑘 ((𝐹

2
𝑢)−1(𝑤))𝑑𝐹𝑘,1𝑢 ((𝐹2

𝑢)−1(𝑤))
�����

+
�����∫ [𝑥2 (𝑢)−1]+

0
ℎ𝑟𝑘 ((𝐹

2
𝑢)−1(𝑤))𝑑𝐹𝑘,1𝑢 ((𝐹2

𝑢)−1(𝑤))

−
∫ [𝑥2 (𝑢)−1]+

0
ℎ𝑟𝑘 ((𝐹

2
𝑢)−1(𝑤))𝑑𝐹𝑘,2𝑢 ((𝐹2

𝑢)−1(𝑤))
����� ,

where the equality uses the fact that [𝑥2(𝑢) − 1]+ ∧ 𝐹1
𝑢 (𝜒2(0) + 𝑢) = [𝑥2(𝑢) − 1]+ by Lemma 2 and

the inequality is an application of the triangle inequality. For the first term on the right-hand side

of (4.78), note that by an application of change of variables, this term can be rewritten as�����∫ [𝑥2 (𝑢)−1]+∧𝐹1
𝑢 (𝜒1 (0)+𝑢)

0
ℎ𝑟𝑘 ((𝐹

1
𝑢)−1(𝑤))𝑑𝐹𝑘,1𝑢 ((𝐹1

𝑢)−1(𝑤)) (4.79)

−
∫ [𝑥2 (𝑢)−1]+

0
ℎ𝑟𝑘 ((𝐹

2
𝑢)−1(𝑤))𝑑𝐹𝑘,1𝑢 ((𝐹2

𝑢)−1(𝑤))
�����

=

����∫
R+

1[
0,(𝐹1

𝑢)−1
(
[𝑥2 (𝑢)−1]+∧𝐹1

𝑢 (𝜒1 (0)+𝑢)
)] (𝑤)ℎ𝑟𝑘 (𝑤)𝑑𝐹𝑘,1𝑢 (𝑤)

−
∫
R+

1[
0,(𝐹2

𝑢)−1( [𝑥2 (𝑢)−1]+)
] (𝑤)ℎ𝑟𝑘 (𝑤)𝑑𝐹𝑘,1𝑢 (𝑤)

����
≤

∫
R+

����1[
0,(𝐹1

𝑢)−1
(
[𝑥2 (𝑢)−1]+∧𝐹1

𝑢 (𝜒1 (0)+𝑢)
)] (𝑤)

−1[0,(𝐹2
𝑢)−1( [𝑥2 (𝑢)−1]+)] (𝑤)

���� ℎ𝑟𝑘 (𝑤)𝑑𝐹𝑘,1𝑢 (𝑤).
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Note that the term with absolute value in the right-hand side of (4.79), that is,����1[
0,(𝐹1

𝑢)−1
(
[𝑥2 (𝑢)−1]+∧𝐹1

𝑢 (𝜒1 (0)+𝑢)
)] (𝑤) − 1[0,(𝐹2

𝑢)−1( [𝑥2 (𝑢)−1]+)] (𝑤)
����

is in fact an indicator function of an interval with the two boundary points that are determined by

(𝐹1
𝑢)−1

(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
)

and (𝐹2
𝑢)−1 (

[𝑥2(𝑢) − 1]+
)
. Since for each 𝑢 ∈ [0, 𝑡],

(𝐹1
𝑢)−1

(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
)
≤ (𝐹1

𝑢)−1
(
𝐹

1
𝑢 (𝜒1(0) + 𝑢)

)
≤ 𝜒1(0) + 𝑡

and as a consequence of Lemma 2,

(𝐹2
𝑢)−1

(
[𝑥2(𝑢) − 1]+

)
≤ 𝜒2(0) + 𝑢 ≤ 𝜒2(0) + 𝑡.

Thus, the intergrand of the integral in the right-hand side of (4.79) is bounded above as����1[
0,(𝐹1

𝑢)−1
(
[𝑥2 (𝑢)−1]+∧𝐹1

𝑢 (𝜒1 (0)+𝑢)
)] (𝑤) − 1[0,(𝐹2

𝑢)−1( [𝑥2 (𝑢)−1]+)] (𝑤)
���� ℎ𝑟𝑘 (𝑤)

≤ 𝐾𝑟,𝑘𝑡
����1[

0,(𝐹1
𝑢)−1

(
[𝑥2 (𝑢)−1]+∧𝐹1

𝑢 (𝜒1 (0)+𝑢)
)] (𝑤) − 1[0,(𝐹2

𝑢)−1( [𝑥2 (𝑢)−1]+)] (𝑤)
���� .

Note that by comparing the two terms (𝐹1
𝑢)−1

(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
)

and

(𝐹2
𝑢)−1 (

[𝑥2(𝑢) − 1]+
)
, we can see that

∫ ����1[
0,(𝐹1

𝑢)−1
(
[𝑥2 (𝑢)−1]+∧𝐹1

𝑢 (𝜒1 (0)+𝑢)
)] (𝑤) − 1[0,(𝐹2

𝑢)−1( [𝑥2 (𝑢)−1]+)] (𝑤)
���� 𝑑𝐹𝑘,1𝑢 (𝑤)

=

���𝐹𝑘,1𝑢 (
(𝐹1

𝑢)−1
(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
))

− 𝐹𝑘,1𝑢
(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))��� .
It follows the above two displays, (4.75) and (4.79) that for each 𝑢 ∈ [0, 𝑡],�����∫ [𝑥2 (𝑢)−1]+∧𝐹1

𝑢 (𝜒1 (0)+𝑢)

0
ℎ𝑟𝑘 ((𝐹

1
𝑢)−1(𝑤))𝑑𝐹𝑘,1𝑢 ((𝐹1

𝑢)−1(𝑤)) (4.80)

−
∫ [𝑥2 (𝑢)−1]+

0
ℎ𝑟𝑘 ((𝐹

2
𝑢)−1(𝑤))𝑑𝐹𝑘,1𝑢 ((𝐹2

𝑢)−1(𝑤))
�����

≤ 𝐾𝑟,𝑘𝑡
���𝐹𝑘,1𝑢 (

(𝐹1
𝑢)−1

(
[𝑥2(𝑢) − 1]+ ∧ 𝐹1

𝑢 (𝜒1(0) + 𝑢)
))

− 𝐹𝑘,1𝑢
(
(𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))���
≤ 𝐾𝑟,𝑘𝑡

(∑︁
𝑘∈K

(
⟨1, |Δ𝜂𝑘0 |⟩ + 3 sup

𝑤∈[0,𝑇]

���Δ𝐸 𝑘 (𝑤)���) + |Δ𝑥(𝑢) |
)
.
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Now for the second term on the right-hand side of (4.78), by an application of change of variables,

this term is the same as
ATTENTION: The following displayed equation, in its current form, exceeds the column width that will be used

in the published edition of your article. Please break or rewrite this equation to fit, including the equation

number, within a column width of 470 pt / 165.81 mm / 6.53 in (the width of this red box).

�����∫ [𝑥2 (𝑢)−1]+

0
ℎ𝑟𝑘 ((𝐹

2
𝑢)−1(𝑤))𝑑𝐹𝑘,1𝑢 ((𝐹2

𝑢)−1(𝑤)) (4.81)

−
∫ [𝑥2 (𝑢)−1]+

0
ℎ𝑟𝑘 ((𝐹

2
𝑢)−1(𝑤))𝑑𝐹𝑘,2𝑢 ((𝐹2

𝑢)−1(𝑤))
�����

=

����∫
R+

1[
0,(𝐹2

𝑢)−1( [𝑥2 (𝑢)−1]+)
] (𝑤)ℎ𝑟𝑘 (𝑤)𝑑𝐹𝑘,1𝑢 (𝑤) −

∫
R+

1[
0,(𝐹2

𝑢)−1( [𝑥2 (𝑢)−1]+)
] (𝑤)ℎ𝑟𝑘 (𝑤)𝑑𝐹𝑘,2𝑢 (𝑤)

����
Note that for each 𝑖 = 1,2, by (2.5) with 𝑓 (𝑥) = 1[

0,(𝐹2
𝑢)−1( [𝑥2 (𝑢)−1]+)

] (𝑥)ℎ𝑟
𝑘
(𝑥) and 𝑡 = 𝑢,

∫
R+

1[
0,(𝐹2

𝑢)−1( [𝑥2 (𝑢)−1]+)
] (𝑤)ℎ𝑟𝑘 (𝑤)𝑑𝐹𝑘,𝑖𝑢 (𝑤)

=

∫
R+

1[
0,(𝐹2

𝑢)−1( [𝑥2 (𝑢)−1]+)
] (𝑤)ℎ𝑟𝑘 (𝑤)𝜂𝑘,𝑖𝑢 (𝑑𝑤)

=

∫
R+

1[
0,(𝐹2

𝑢)−1( [𝑥2 (𝑢)−1]+)
] (𝑤 + 𝑢)

𝑔𝑟
𝑘
(𝑤 + 𝑢)
𝐺̄𝑟
𝑘
(𝑤)

𝜂
𝑘,𝑖

0 (𝑑𝑤)

+
∫ 𝑢

0
1[

0,(𝐹2
𝑢)−1( [𝑥2 (𝑢)−1]+)

] (𝑢 −𝑤)𝑔𝑟𝑘 (𝑢 −𝑤))𝑑𝐸 𝑖𝑘 (𝑤)
=

∫
R+

1[
0,(𝐹2

𝑢)−1( [𝑥2 (𝑢)−1]+)
] (𝑤 + 𝑢)

𝑔𝑟
𝑘
(𝑤 + 𝑢)
𝐺̄𝑟
𝑘
(𝑤)

𝜂
𝑘,𝑖

0 (𝑑𝑤) + 𝐸 𝑖𝑘 (𝑢)𝑔𝑟𝑘 (0)

− 𝑔𝑟𝑘
(
𝑢 ∧ (𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

))
𝐸
𝑖

𝑘

( [
𝑢 − (𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

)]+)
−

∫ 𝑢[
𝑢−(𝐹2

𝑢)−1( [𝑥2 (𝑢)−1]+)
]+ 𝐸 𝑖𝑘 (𝑤) (𝑔𝑟𝑘 )′(𝑢 −𝑤)𝑑𝑤,

where the last equality follows from the fact that the patience time densities {𝑔𝑟
𝑘
, 𝑘 ∈ K} are abso-

lutely continuous on [0,∞) and hence a.e. derivatives {(𝑔𝑟
𝑘
)′, 𝑘 ∈ K} exist and locally integrable.
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Then it follows that

�����∫ [𝑥2 (𝑢)−1]+

0
ℎ𝑟𝑘 ((𝐹

2
𝑢)−1(𝑤))𝑑𝐹𝑘,1𝑢 ((𝐹2

𝑢)−1(𝑤))

−
∫ [𝑥2 (𝑢)−1]+

0
ℎ𝑟𝑘 ((𝐹

2
𝑢)−1(𝑤))𝑑𝐹𝑘,2𝑢 ((𝐹2

𝑢)−1(𝑤))
����� (4.82)

≤
∫
R+

1[
0,(𝐹2

𝑢)−1( [𝑥2 (𝑢)−1]+)
] (𝑤 + 𝑢)

𝑔𝑟
𝑘
(𝑤 + 𝑢)
𝐺̄𝑟
𝑘
(𝑤)

���Δ𝜂𝑘0 ��� (𝑑𝑤) + ���Δ𝐸 𝑘 (𝑢)���𝑔𝑟𝑘 (0)
+ 𝑔𝑟𝑘

(
𝑢 ∧ (𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

)) ���Δ𝐸 𝑘 ( [
𝑢 − (𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

)]+)���
+
∫ 𝑢

0

���Δ𝐸 𝑘 (𝑤)��� ��(𝑔𝑟𝑘 )′(𝑢 −𝑤)�� 𝑑𝑤
≤ 𝐾𝑟,𝑘𝑡

∫
R+

𝐺̄𝑟
𝑘
(𝑥 + 𝑢)
𝐺̄𝑟
𝑘
(𝑥)

|Δ𝜂𝑘0 | (𝑑𝑥) +𝐾
𝑟,𝑘
𝑡

���Δ𝐸 𝑘 ( [
𝑢 − (𝐹2

𝑢)−1
(
[𝑥2(𝑢) − 1]+

)]+)���
+𝐾𝑟,𝑘𝑡

���Δ𝐸 𝑘 (𝑢)���+∫ 𝑢

0

���Δ𝐸 𝑘 (𝑤)��� ��(𝑔𝑟𝑘 )′(𝑢 −𝑤)�� 𝑑𝑤
≤ 𝐾𝑟,𝑘𝑡

(
⟨1, |Δ𝜂𝑘0 |⟩ + 2 sup

𝑤∈[0,𝑇]

���Δ𝐸 𝑘 (𝑤)���) + sup
𝑤∈[0,𝑇]

���Δ𝐸 𝑘 (𝑤)��� ∫ 𝑇

0

��(𝑔𝑟𝑘 )′(𝑤)�� 𝑑𝑤,

where the second inequality follows from the fact that ℎ𝑟
𝑘
(𝑤) ≤ 𝐾

𝑟,𝑘
𝑡 for each 𝑤 ∈

[0, (𝐹2
𝑢)−1 (

[𝑥2(𝑢) − 1]+
)
] since (𝐹2

𝑢)−1 (
[𝑥2(𝑢) − 1]+

)
≤ 𝜒2(0) +𝑢 ≤ 𝜒2(0) + 𝑡 by Lemma 2. Com-

bining the estimations of the two terms on the right-hand side of (4.78) in (4.80) and (4.82), we

have that for each 𝑢 ∈ [0, 𝑡] and 𝑘 ∈ K,

��𝐵𝑘,1(𝑢, 𝑥1(𝑢)) − 𝐵𝑘,2(𝑢, 𝑥2(𝑢))
�� (4.83)

≤ 𝐾𝑟,𝑘𝑡

(∑︁
𝑘∈K

(
⟨1, |Δ𝜂𝑘0 |⟩ + 3 sup

𝑤∈[0,𝑇]

���Δ𝐸 𝑘 (𝑤)���) + |Δ𝑥(𝑢) |
)

+𝐾𝑟,𝑘𝑡

(
⟨1, |Δ𝜂𝑘0 |⟩ + 2 sup

𝑤∈[0,𝑇]

���Δ𝐸 𝑘 (𝑤)���) + sup
𝑤∈[0,𝑇]

���Δ𝐸 𝑘 (𝑤)��� ∫ 𝑇

0

��(𝑔𝑟𝑘 )′(𝑤)�� 𝑑𝑤
≤ 𝐾𝑟,𝑘𝑡 |Δ𝑥(𝑢) | +

(
2𝐾𝑟,𝑘𝑡 +

∫ 𝑇

0

��(𝑔𝑟𝑘 )′(𝑤)�� 𝑑𝑤) ∑︁
𝑘∈K

(
⟨1, |Δ𝜂𝑘0 |⟩ + 3 sup

𝑤∈[0,𝑇]

���Δ𝐸 𝑘 (𝑤)���) .
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Then the third term of the right-hand side of (4.69) can be estimated by using (4.83) as follows.

∑︁
𝑘∈K

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢)

��𝐵𝑘,1(𝑢, 𝑥1(𝑢)) − 𝐵𝑘,2(𝑢, 𝑥2(𝑢))
�� 𝑑𝑢 (4.84)

≤
∑︁
𝑘∈K

𝐾
𝑟,𝑘
𝑡

∫ 𝑡

0
𝐺̄𝑠
𝑘 (𝑡 − 𝑢) |Δ𝑥(𝑢) | 𝑑𝑢

+ 3
∑︁
𝑘∈K

(
2𝐾𝑟,𝑘𝑡 +

∫ 𝑇

0

��(𝑔𝑟𝑘 )′(𝑤)�� 𝑑𝑤) ∑︁
𝑘∈K

(
⟨1, |Δ𝜂𝑘0 |⟩ + sup

𝑤∈[0,𝑇]

���Δ𝐸 𝑘 (𝑤)���) .
Thus, by combining (4.69), (4.70), (4.77) and (4.84) and the definition of 𝜁𝑇 in (4.68), we have that

for each 𝑡 ∈ [0,𝑇],

|Δ𝑥(𝑡) | ≤
(
3𝐾 + 5+ 6

∑︁
𝑘∈K

𝐾
𝑟,𝑘

𝑇
+ 3

∑︁
𝑘∈K

∫ 𝑇

0

��(𝑔𝑟𝑘 )′(𝑤)�� 𝑑𝑤)
𝜁𝑇 +

∫ 𝑡

0
𝑘 (𝑡 − 𝑢) |Δ𝑥(𝑢) | 𝑑𝑢,

where

𝑘 (𝑡) � 2
∑︁
𝑘∈K

𝑔𝑠𝑘 (𝑡) +
∑︁
𝑘∈K

𝐾
𝑟,𝑘

𝑇
𝐺̄𝑠
𝑘 (𝑡), (4.85)

Let 𝑟 (·) be the resolvent kernel of 𝑘 (·) in (4.85). Since 𝑘 (·) is non-negative and integrable over R+,

then the resolvent 𝑟 (·) is also non-negative and is locally integrable over R+. It is well known from

the theory of linear Volterra integral equations that for each 𝑡 ∈ [0,𝑇], |Δ𝑥(𝑡) | ≤ 𝐶𝑇 𝜁𝑇 , where

𝐶𝑇 �

(
1+

∫ 𝑇

0
𝑟 (𝑢)𝑑𝑢

) (
3𝐾 + 5+ 6

∑︁
𝑘∈K

𝐾
𝑟,𝑘

𝑇
+ 3

∑︁
𝑘∈K

∫ 𝑇

0

��(𝑔𝑟𝑘 )′(𝑤)�� 𝑑𝑤)
∈ (0,∞).

□

4.2. Proof of Theorem 4.3. The proof of Theorem 4.3 relies on the local Lipschitz property

established in Proposition 5. The following lemma is required to implement the local Lipschitz

property.
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Lemma 8. Suppose that Assumption 3 holds. For each 𝑛 ≥ 0, recall that 𝜒𝑛 (0) =(
𝐹
𝑛

0

)−1 ( [∑
𝑘∈K 𝑋

𝑛

𝑘 (0) − 1
]+)

. Then either ℎ𝑟
𝑘

is bounded for each 𝑘 ∈ K or ℎ𝑟
𝑘

is not bounded for

some 𝑘 ∈ K and there exists 𝑝 > 0 such that

lim sup
𝑛→∞

𝜒𝑛 (0) < 𝜒0(0) + 𝑝 <∞. (4.86)

Proof From Assumption 3, for each 𝑘 ∈ K, 𝜂𝑛,𝑘0 → 𝜂
0,𝑘
0 in total variation and 𝑋𝑛𝑘 (0) → 𝑋

0
𝑘 (0)

as 𝑛→∞, then we have that, as 𝑛→∞,

sup
𝑦∈R+

���𝐹𝑛0 (𝑦) − 𝐹0
0(𝑦)

��� ≤ ∑︁
𝑘∈K

sup
𝑦≥0

���𝐹𝑛,𝑘0 (𝑦) − 𝐹0,𝑘
0 (𝑦)

��� ≤ ∑︁
𝑘∈K

〈
1,

���𝜂𝑛,𝑘0 − 𝜂0,𝑘
0

���〉 → 0

and [∑︁
𝑘∈K

𝑋
𝑛

𝑘 (0) − 1

]+
→

[∑︁
𝑘∈K

𝑋
0
𝑘 (0) − 1

]+
.

Suppose that ℎ𝑟
𝑘

is not bounded for some 𝑘 ∈ K, then by Assumption 3, 𝜒0(0) <∞ and

𝐹
0
0(𝜒0(0)) =

[∑︁
𝑘∈K

𝑋
0
𝑘 (0) − 1

]+
<

∑︁
𝑘∈K

〈
1, 𝜂0,𝑘

0

〉
= 𝐹

0
0(∞).

Then, there exists 𝑝 > 0 such that 𝐹0
0(𝜒0(0) + 𝑝) > 𝐹0

0(𝜒0(0)). Now we show that (8) holds for

the existed 𝑝 by a contradiction argument. Suppose that lim sup𝑛→∞ 𝜒
𝑛 (0) ≥ 𝜒0(0) + 𝑝. Then for

each 𝛿 > 0, there exists a subsequence 𝜒𝑛𝑘 (0) such that 𝜒𝑛𝑘 (0) > 𝜒0(0) + 𝑝 − 𝛿 for each 𝑘 ∈N. The

definition of 𝜒𝑛 (0) implies that

𝐹
𝑛𝑘
0 (𝜒0(0) + 𝑝 − 𝛿) <

[∑︁
𝑘∈K

𝑋
𝑛𝑘
𝑘 (0) − 1

]+
for each 𝑘 ∈N.

By taking the limits on both sides of the above inequality as 𝑘 → ∞ and then letting 𝛿→ 0, it

follows that

𝐹
0
0(𝜒0(0) + 𝑝) ≤

[∑︁
𝑘∈K

𝑋
0
𝑘 (0) − 1

]+
.

Then we have that[∑︁
𝑘∈K

𝑋
0
𝑘 (0) − 1

]+
= 𝐹

0
0(𝜒0(0)) < 𝐹0

0(𝜒0(0) + 𝑝) ≤
[∑︁
𝑘∈K

𝑋
0
𝑘 (0) − 1

]+
,

which is clearly a contradiction. Thus, we obtained the desired result. □
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Proof of Theorem 4.3. It follows from Lemma 8 that either ℎ𝑟
𝑘

is bounded for each 𝑘 ∈ K or ℎ𝑟
𝑘

is

not bounded for some 𝑘 ∈ K and there exist 𝑝 > 0 and 𝑁 > 0 such that 𝜒𝑛 (0) < 𝜒0(0) + 𝑝 for all

𝑛 ≥ 𝑁 . For each 𝑘 ∈ K, 𝑛 ≥ 𝑁 and 𝑡 ∈ R+, consider the quantity in (4.66) for the pair of indexes 𝑛,0

in place of 1,2, denoted as 𝐾𝑟,𝑘𝑛,𝑡 , and let

𝐾𝑟𝑡 �


∑
𝑘∈K sup𝑢∈R+ ℎ

𝑟
𝑘
(𝑢) if ℎ𝑟

𝑘
is bounded for each 𝑘 ∈ K,∑

𝑘∈K sup0≤𝑢≤𝜒0 (0)+𝑝+𝑡 ℎ
𝑟
𝑘
(𝑢) if ℎ𝑟

𝑘
is not bounded for some 𝑘 ∈ K.

Note that 𝐾𝑟𝑡 is non-decreasing in 𝑡 and since ℎ𝑟
𝑘

is locally bounded for each 𝑘 ∈ K, then for each

𝑘 ∈ K and 𝑡 ∈ R+, 𝐾𝑟,𝑘𝑛,𝑡 ≤ 𝐾𝑟𝑡 <∞.

For each 𝑛 ≥ 𝑁 , since (𝑋𝑛, 𝜈𝑛, 𝜂𝑛) and (𝑋0
, 𝜈0, 𝜂0) are solutions to the fluid model equations

associated with (𝐸𝑛, 𝑋𝑛 (0), 𝜈𝑛0, 𝜂
𝑛
0) and (𝐸0

, 𝑋
0(0), 𝜈0

0, 𝜂
0
0), respectively, and 𝐾

𝑟,𝑘
𝑛,𝑡 < ∞ for each

𝑡 ∈ [0,∞), then it follows from Proposition 5 that for each 𝑇 > 0, there exists a constant𝐶𝑇 > 0 such

that

sup
𝑡∈[0,𝑇]

��𝑥𝑛 (𝑡) − 𝑥0(𝑡)
�� ≤ 𝐶𝑇 𝜁𝑛𝑇 ,

where

𝜁𝑛𝑇 =
∑︁
𝑘∈K

|𝑋𝑛𝑘 (0) − 𝑋
0(0) | +

∑︁
𝑘∈K

⟨1,
���𝜈𝑘,𝑛0 − 𝜈𝑘,00

���⟩ + ∑︁
𝑘∈K

sup
𝑤∈[0,𝑇]

���𝐸𝑛𝑘 (𝑤) − 𝐸0
𝑘 (𝑤)

���
+

∑︁
𝑘∈K

〈
1,

���𝜂𝑘,𝑛0 − 𝜂𝑘,00

���〉 .
The assumed convergences on the input data implies that, as 𝑛→∞,

𝜁𝑛𝑇 → 0 and then sup
𝑡∈[0,𝑇]

��𝑥𝑛 (𝑡) − 𝑥0(𝑡)
��→ 0. (4.87)

Recall that for 𝑛 ≥ 0, 𝑡 ∈ [0,𝑇] and 𝑘 ∈ K,

𝑄
𝑛

𝑘 (𝑡) = 𝐴𝑛,𝑘 (𝑡, 𝑥𝑛 (𝑡)),

𝑅
𝑛

𝑘 (𝑡) =
∫ 𝑡

0
𝐵𝑛,𝑘 (𝑤, 𝑥𝑛 (𝑤))𝑑𝑤,

𝐿
𝑛

𝑘 (𝑡) =𝑄
𝑛

𝑘 (0) + 𝐸
𝑛

𝑘 (𝑡) −𝑄
𝑛

𝑘 (𝑡) − 𝑅
𝑛

𝑘 (𝑡).
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It follows from (4.76) and (4.87) that, for each 𝑘 ∈ K, as 𝑛→∞,

sup
𝑡∈[0,𝑇]

���𝑄𝑛𝑘 (𝑡) −𝑄0
𝑘 (𝑡)

��� = sup
𝑡∈[0,𝑇]

��𝐴𝑛,𝑘 (𝑡, 𝑥𝑛 (𝑡)) − 𝐴0,𝑘 (𝑡, 𝑥0(𝑡))
��→ 0.

It follows from (4.83) and (4.87) that, for each 𝑘 ∈ K, as 𝑛→∞,

sup
𝑡∈[0,𝑇]

���𝑅𝑛𝑘 (𝑡) − 𝑅0
𝑘 (𝑡)

��� = sup
𝑡∈[0,𝑇]

����∫ 𝑡

0

(
𝐵𝑛,𝑘 (𝑢, 𝑥𝑛 (𝑢)) − 𝐵0,𝑘 (𝑢, 𝑥0(𝑢))

)
𝑑𝑢

����
≤ 𝑇 sup

𝑡∈[0,𝑇]

��𝐵𝑛,𝑘 (𝑡, 𝑥𝑛 (𝑡)) − 𝐵0,𝑘 (𝑡, 𝑥0(𝑡))
��→ 0.

It then follows from (2.12) that for each 𝑘 ∈ K, sup𝑡∈[0,𝑇]
���𝐿𝑛𝑘 (𝑡) − 𝐿0

𝑘 (𝑡)
��� → 0 as 𝑛→∞, which,

together with the assumed sup𝑡∈[0,𝑇]
���𝐸𝑛𝑘 (𝑡) − 𝐸0

𝑘 (𝑡)
��� → 0 as 𝑛→∞, implies that 𝜈𝑛 → 𝜈0 weakly

on [0,𝑇] and 𝜂𝑛 → 𝜂0 weakly on [0,𝑇] as 𝑛→∞. Lastly, the convergence of 𝑋𝑛 to 𝑋0 uniformly

on [0,𝑇] follows from (2.6). This establishes the theorem. □
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