Environmental Risk Assessment and Remediation: Class #2

Physical-Chemical Properties: Physical-chemical properties determine how a specific chemical will interact in the environment, how the chemicals move in the environment, and how effectively they can be removed.

Solubility:

Solubility is the degree to which a substance (the solute) will dissolve into another (the solvent)

Factors affecting solubility for non-ioniozable compounds:

- -molecular size
- -functional groups
- -specific interactions (H-bonding)
- -temperature
- -salinity
- -cosolvents

		$\log C_{iw}^{\rm sat}(L) = -a \cdot V$	$\frac{(\text{mol} \cdot L^{-1})}{\sum_{ix} + b^{b}}$	
Set of Compounds	n ^c	а	b	R^2
<i>n</i> -Alkanes	8	0.0442	0.34	0.99
Branched alkanes	7	0.0349	-0.38	0.97
Primary alkanols	10	0.0416	3.01	0.99
Secondary alkanols	5	0.0435	3.52	0.99
Tertiary alkanols	6	0.0438	4.01	0.99
Chlorinated benzenes	13	0.0556	2.27	0.99
Polycyclic aromatic hydrocarbons	13	0.0399	1.90	0.99
Polyhalogenated C1- and C2-compounds	27	0.0404	1.85	0.86

Table 5.4 Linear Relationships Between log $C_{iw}^{sat}(L)$ and V_{ix}^{a} for the Various Sets of Compounds Shown in Fig. 5.2 (all data for 25°C)

Do example in class to calculate the solubility of an alkane and a PAH

^{*a*} Molar volume in cm³·mol⁻¹ estimated by the method discussed in Box. 5.1. ^{*b*} Eq. 5-18; note that decadic instead of natural logarithms are used. ^{*c*} Number of compounds.

Molar volume (V_{ix}) can be calculated by the method of Abraham and McGowan (1987) where each element is assigned a characteristic atomic volume. The total volume is calculated by summing up all atomic volumes and subtracting 6.56 cm³/mol for each bond. Eg. Benzene V_{ix}= (6)(16.35) + (6)(8.71) –(12)(6.56) = 71.6 cm³/mol

Characteristic atomic volumes

C=16.35	H=8.71	O=12.43	N=14.39
P=24.87	F=10.48	CI=20.95	Br=26.21
l=34.53	S=22.91	Si=26.83	

Solubility (continued):

Solubility for an ionizable compound is affected by solution pH. Eg: consider the precipitation of calcium chloride:

 $Ca^{+2} + 2OH^{-} \rightarrow Ca(OH)_{2}$

The solubility product of this reaction is:

 $K_{sp} = [Ca^{+2}][OH^{-}] = 7.88 \times 10^{-6}$

Do example 3-3 in class.

square brackets indicate molar concentration

Oxides and hydroxides	log K at 25°C
$H_{2}O(1) = H^{+} + OH^{-}$	-14.00
$Cd^{+2} + H_2O = CdOH^+ + H^+$	-10.1
$Cd^{+2} + 2H_2O + Cd(OH)_2$ (ag) + 2H ⁺	-20.4
$Cd^{+2} + 3H_2O = Cd(OH)_2^- + 3H^+$	< -33.3
$Cd^{+2} + 4H_2O = Cd(OH)^{-2} + 4H^+$	-47.4
$B_{\rm c}Cd(OH)_2$ (s) + 2H ⁺ = Cd ⁺² + 2H ₂ O	13.65
$H_{g}^{+2} + H_{g}O = H_{g}OH^{+} + H^{+}$	-3.4
$Hg^{+2} + 2H_2O = Hg(OH)_2 (ag) + 2H^+$	-6.2
$Hg^{+2} + 3H_2O = Hg(OH)_2^- + 3H^+$	-21.1
$H_{gO} + 2H^{+} = H_{g}^{+2} + H_{2}O$	2.56
$PbCO_{2}(s) = Pb^{+2} + CO_{2}^{-2}$	-13.1

Vapor pressure: