MATH 152 Mrs. Bonny Tighe

## **FINAL EXAM**

200 points

| NAME |  |
|------|--|
|      |  |

Section \_\_\_\_\_ Fri 5/19/06

1. Find the derivative using logarithmic differentiation.

a) 
$$f(x) = \left(\frac{x+1}{x+2}\right)^x$$

2. Evaluate: a)  $\int \csc^3 \alpha \ d\alpha =$ 

b) 
$$\int e^{-x} \sin 2x \, dx dx = \underline{\hspace{1cm}}$$

3. Find the following limits. a) 
$$\lim_{x \to \infty} \left( \frac{e^{2x}}{x^3} \right) = \underline{\qquad}$$

c) 
$$\lim_{x \to 0} x^2 \ln x =$$
\_\_\_\_\_

4. Evaluate:  $\int x^3 \sqrt{9x^2 - 1} \ dx$ 

5. Evaluate the integral using partial fractions:  $\int \frac{x^3 + 3}{x^2 - 2x - 3} dx = \underline{\qquad}$ 

6. Find the Macluarin series for the given function and find the radius and interval of convergence.  $f(x) = \frac{1}{\sqrt{x+4}}$ 

- 7. Determine whether the series are convergent or divergent using the given test. Comparison Test Integral Test
- a)  $\sum_{n=0}^{\infty} \frac{\sin n}{n^2 + 1}$

b)  $\sum_{n=2}^{\infty} \frac{2}{n \ln n}$ 

8. Find the radius of convergence and the interval of convergence if it is convergent. 
$$\sum_{n=2}^{\infty} \frac{1 \cdot 4 \cdot 7 \cdots (3n-5)(x+1)^{2n-1}}{(\ln n)n!} (-1)^{n-1}$$

9. Expand  $\frac{1}{(1-2x)^3}$  as a power series using the binomial series. State the radius of convergence.

10. Set up but do not evaluate the following:

a) Find the length of the curve,  $x = \sec t$ ,  $y = \ln(1+t)$ ,  $0 \le t \le 2$ 

b) Find the surface area generated by revolving the given curve about the y-axis.  $y = \ln(\cos x)$ ,  $0 \le y \le 3$ 

11. Sketch the curve and find the area that it encloses.  $r = 3\cos 2\theta$ 

12. a) Find the foci, vertices and center of the ellipse  $9x^2 + 4y^2 + 18x - 16y = 11$  and then sketch the graph.

b) Find the vertices, foci and asymptotes of the hyperbola and sketch its graph.

$$\frac{x^2}{9} - \frac{y^2}{16} = 1$$