Mrs. Bonny Tighe

25 points 4.4,4.5,4.7

Section Fri 3/31/06

1. Find the limit:

a)
$$\lim_{x \to \infty} \frac{(2x-1)(3-x)}{(x+2)(2-x)} =$$
b) $\lim_{x \to \infty} (x-1)(x-1) =$

b)
$$\lim_{x \to \infty} (x - \sqrt{x^2 + 3x + 2}) =$$

c)
$$\lim_{x \to \infty} \frac{x^2 - 3}{\sqrt{x^3 + 2}} =$$
 d) $\lim_{x \to \infty} (x - 1)^4 (2 - x)^3 (x + 2)^2 =$

d)
$$\lim_{x\to\infty} (x-1)^4 (2-x)^3 (x+2)^2 =$$

3. Show that any third-degree polynomial, $f(x) = ax^3 + bx^2 + cx + d$, always has exactly one point of inflection.

4. Find the vertical asymptotes and the slant asymptotes for the following functions.

a)
$$f(x) = \frac{2x^2 + 3}{x - 1}$$

b)
$$g(x) = \frac{2+3x-4x^2+4x^3}{2x^2-8}$$

- 5. Sketch the graph of each of the following functions by finding the critical points, intervals of increasing and decreasing, inflection points, intervals of concave up and concave down, asymptotes and intercepts.
- a) $f(x)=2x^3-6x^2-18x+6$

b) $y = \frac{x^2 - 1}{9 - x^2}$