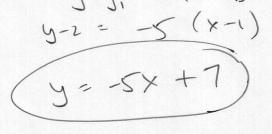
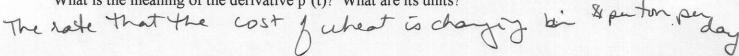
MA	TH 151	
Mrs.	Bonny	Tighe

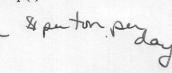
QUIZ 2A 2.5, 2.6, 3.1, 3.2 25 points


NAME

SECTION Fri 2/17/06

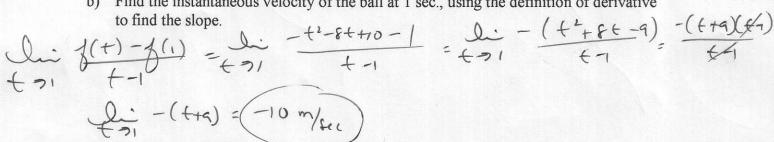
1. Use the **definition** of a derivative to find the slope of the tangent line and use it to find an equation of the tangent line to the curve at the given point.


$$f(x) = x - 3x^{2} + 4 \text{ at } (1, 2)$$


$$f'(x) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{f(x) - f(1)}{$$

1 -(3×n) = 5

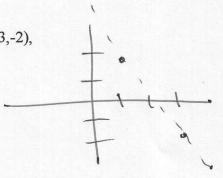
2. The cost of wheat, in dollars per ton, t days after the harvest, is given by W=p(t)What is the meaning of the derivative p'(t)? What are its units?


3. The position function of a particle after time t seconds is given by $s(t) = -t^2 - 8t + 10$.

a) Find the average velocity of the particle from t = 0 to t = 1 seconds.

the average velocity of the particle from
$$t = 0$$
 to $t = 1$ seconds.

$$\frac{S(1) - S/0}{1 - 0} = \frac{1 - 10}{1} = \frac{9}{10} = \frac{1 - 10}{10} = \frac{1$$


b) Find the instantaneous velocity of the ball at 1 sec., using the definition of derivative

c) Explain why the answers vary by so much.

4. If the tangent line to
$$y = f(x)$$
 at $(1,2)$ passes through the point $(3,-2)$, find $f(1) = 2$ and $f'(1) = 2$

$$m = \frac{-2 - 2}{3 - 1} = \frac{-4}{2} = -2$$

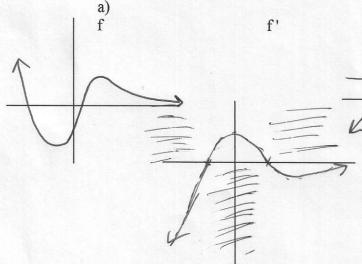
5. Find the derivative of the given functions using the **definition of derivative**. State the domain of the function and the domain of the derivative.

$$a) h(x) = \frac{2}{3-x}$$

$$\frac{2}{3-(x+h)} - \frac{2}{3-x}$$

$$\frac{2}{3-(x+h)} - \frac{2}{3-x}$$

$$\frac{2}{3-(x+h)} - \frac{2}{3-x}$$

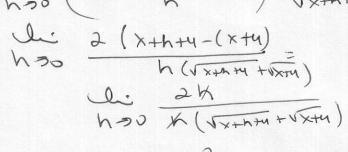

$$\frac{2}{3-(x+h)} - \frac{2}{3-x}$$

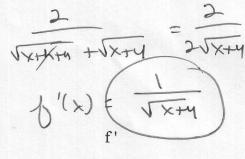
$$\frac{3}{3-(x+h)} - \frac{2}{3-x}$$

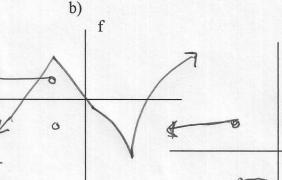
$$\frac{2x}{h > 0} \frac{2x}{(3-x+)(3-x)} = \frac{2}{(3-x)(3-x)}$$

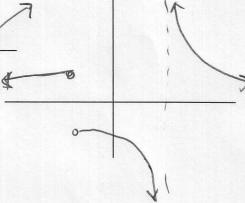
$$h'(x) = \frac{2}{(3-x)^2}$$

6. Sketch f beside each function f.




b)
$$f(x) = 2\sqrt{x+4}$$


$$2\sqrt{x+h+4} - 2\sqrt{x+4}$$


$$\sqrt{x+h+4} + \sqrt{x+4}$$

$$\sqrt{x+h+4} + \sqrt{x+4}$$

