Mathematics Number Definitions

Contents

  • rational
  • rational

    
    
    By Mathematical definition: a rational number is an integer divided by
    an integer. 
    
    An irrational number is a number that can not be exactly represented
    as a ratio of two integers.
    
    let  a, b, c, d be integres: 1, 2, 3, 4, 5, 6, ...
    
    then a/b is a rational number, and c/d is a rational number
    
    an integer plus an integer is an integer.
    an integer times an integer is an integer.
    all integers are rational numbers divided by 1
    
    a rational number plus a rational number is a rational number
    
    a/b + c/d = ad/bd + cb/db = (ad + cb)/bd  a rational number
    
    a rational number minus a rational number is a rational number
    
    a/b - c/d = ad/bd - cb/db = (ad - cb)/bd  a rational number
    (we may want to require ad > cb for a positive integer)
    
    a rational number times a rational number is a rational number
    
    (a/b) * (c/d) = ac/bd  a rational number
    
    a rational number divided by a rational number is a rational number
    
    (a/b) / (c/d) = ad/bc   a rational number
    
    the reciprocal of a rational number is a rational number
    
    1/(a/b) = b/a  a rational number
    
    the rational number 1/3 written as a decimal fraction is
    1/3 = 0.33333333333333333333333333333333333333333333333333333 ...
    
    the rational number 1/10 written as a DECIMAL fraction is
    1/10 = 0.1  exactly
    
    the rational number 1/10 written as a binary fraction is
    1/10 = 0.0001100110011001100110011001100110011001100110011 ...
         = 1/16 + 1/32 + 1/256 + 1/512 + ...
    
    taylor(sqrt(1+x),x,0,9);
    
                          2    3      4      5       6       7        8        9
                     X   X    X    5 X    7 X    21 X    33 X    429 X    715 X
    sqrt(1+x) =  1 + - - -- + -- - ---- + ---- - ----- + ----- - ------ + ------ + . . .
                     2   8    16   128    256    1024    2048    32768    65536
    
    sqrt(1+0) = sqrt(1) = 1
    sqrt(1+3) = sqrt(4) = 1 + 3/2 - 9/8 + 27/16 - 5*81/128 + ...  = 2
    sqrt(1+1) = sqrt(2) = 1 + 1/2 - 1/8 + 1/16  - 5/128    + ...  = 1.414213562373 ...
    
    taylor(exp(x),x,0,7);
    
                             2    3    4    5     6      7
                            X    X    X    X     X      X
                    1 + X + -- + -- + -- + --- + --- + ---- + . . .
                            2    6    24   120   720   5040
    
    
    
    taylor(atan(x),x,0,9);
    
                                  3    5    7    9
                                 X    X    X    X
                             X - -- + -- - -- + -- + . . .
                                 3    5    7    9
    
    taylor(atan(x+1),x,0,9);
    
                               2    3    5    6    7     9
                    %PI   X   X    X    X    X    X     X
                    --- + - - -- + -- - -- + -- - --- + --- + . . .
                     4    2   4    12   40   48   112   288
    
    

    Last updated 7/3/18