

 Page 1 of 27
Copyright 2008 Imation. Imation and the Imation logo are trademarks of Imation Corp.

Solid State Drives

Data Reliability and Lifetime

White Paper
Alan R. Olson & Denis J. Langlois

April 7, 2008

Abstract

The explosion of flash memory technology has dramatically increased storage capacity and decreased the cost of
non-volatile semiconductor memory. The technology has fueled the proliferation of USB flash drives and is now
poised to replace magnetic hard disks in some applications. A solid state drive (SSD) is a non-volatile memory
system that emulates a magnetic hard disk drive (HDD). SSDs do not contain any moving parts, however, and
depend on flash memory chips to store data. With proper design, an SSD is able to provide high data transfer rates,
low access time, improved tolerance to shock and vibration, and reduced power consumption. For some applications,
the improved performance and durability outweigh the higher cost of an SSD relative to an HDD.

Using flash memory as a hard disk replacement is not without challenges. The nano-scale of the memory cell is
pushing the limits of semiconductor physics. Extremely thin insulating glass layers are necessary for proper operation
of the memory cells. These layers are subjected to stressful temperatures and voltages, and their insulating
properties deteriorate over time. Quite simply, flash memory can wear out. Fortunately, the wear-out physics are well
understood and data management strategies are used to compensate for the limited lifetime of flash memory.

Floating Gate Flash Memory Cells

Flash memory was invented by Dr. Fujio Masuoka while working for Toshiba in 1984. The name "flash" was
suggested because the process of erasing the memory contents reminded him of the flash of a camera. Flash
memory chips store data in a large array of floating gate metal–oxide–semiconductor (MOS) transistors. Silicon
wafers are manufactured with microscopic transistor dimension, now approaching 40 nanometers.

Floating Gate MOS Transistor
A floating gate memory cell is a type of metal-oxide-semiconductor field-effect transistor (MOSFET). Silicon forms the
base layer, or substrate, of the transistor array. Areas of the silicon are masked off and infused with different types of
impurities in a process called doping. Impurities are carefully added to adjust the electrical properties of the silicon.
Some impurities, for example phosphorous, create an excess of electrons in the silicon lattice. Other impurities, for
example boron, create an absence of electrons in the lattice. The impurity levels and the proximity of the doped
regions are set out in a lithographic manufacturing process. In addition to doped silicon regions, layers of insulating
silicon dioxide glass (SiO2) and conducting layers of polycrystalline silicon and aluminum are deposited to complete
the MOSFET structure.

Figure 1 – (Left) A 300 mm silicon wafer containing hundreds of NAND flash memory chips

(Right) A single NAND flash memory chip silicon die measures only 18 mm x 12 mm (not to scale)
Copyright Intel Corporation

Figure 2 – Scanning electron microscope (SEM) cross-sections of a typical single-level cell (SLC) NAND flash
memory cell

Copyright Chipworks

 Page 2 of 27
Copyright 2008 Imation. Imation and the Imation logo are trademarks of Imation Corp.

MOS transistors work by forming an electrically conductive channel between the source and drain terminals. When a
voltage is applied to the control gate, an electric field causes a thin negatively charged channel to form at the
boundary of the SiO2 and between the source and drain regions. When the N-channel is present, electricity is easily
conducted from the source to the drain terminals. When the control voltage is removed, the N-channel disappears
and no conduction takes place. The MOSFET operates like a switch, either in the on or off state.

P-well

N+ N+

CONTROL GATE

FLOATING GATE
SOURCE DRAIN

SiO2

N-channel

ONO

Figure 3 – A cross sectional depiction of a floating gate MOSFET memory cell (not to scale)

In addition to the control gate, there is a secondary floating gate which is not electrically connected to the rest of the
transistor. The voltage at the control gate required for N-channel formation can be changed by modifying the charge
stored on the floating gate. Even though there is no electrical connection to the floating gate, electric charge can be
put in to and taken off of the floating gate. A quantum physical process called Fowler-Nordheim tunneling coaxes
electrons through the insulation between the floating gate and the P-well. When electric charge is removed from the
floating gate, the cell is considered in an erased state. When electric charge is added to the floating gate, the cell is
considered in the programmed state. A charge that has been added to the floating gate will remain for a long period
of time. It is this process of adding, removing and storing electric charge on the floating gate that turns the MOSFET
into a memory cell.

Erasing the contents of a memory cell is done by placing a high voltage on the silicon substrate while holding the
control gate at zero. The electrons stored in the floating gate tunnel through the oxide barrier into the positive
substrate. Thousands of memory cells are etched onto a common section of the substrate, forming a single block of
memory. All of the memory cells in the block are simultaneously erased when the substrate is “flashed” to a positive
voltage. An erased memory cell will allow N-channel formation at a low control gate voltage because all of the charge
in the floating gate has been removed. This is referred to as logic level “1” in a single-level cell (SLC) flash memory
cell.

 Page 3 of 27
Copyright 2008 Imation. Imation and the Imation logo are trademarks of Imation Corp.

P-well

N+ N+

0 V

N/C N/C
- - - - - - -

P-well

N+ N+

N/C

0 V 0 V

---- - - -
N-channel

ERASE
VOLTAGE

PROGRAM
VOLTAGE

Figure 4 – Erasing and programming the contents of a flash memory cell via Fowler-Nordheim tunneling

The cell is programmed by placing a high voltage on the control gate while holding the source and drain regions at
zero. The high electric field causes the N-channel to form and allows electrons to tunnel through the oxide barrier into
the floating gate. Programming the memory cells is performed one word at a time (i.e., cell by cell) and usually an
entire page (e.g., 2048 bytes) is programmed in a single operation. A programmed memory cell inhibits the control
gate from forming an N-channel at normal voltages because of the negative charge stored on the floating gate. To
form the N-channel in the substrate, the control gate voltage must be raised to a higher level. This is referred to as
logic level “0” in an SLC flash memory cell.

Single vs. Multiple Level Cells
The control gate voltage necessary to form the N-channel is controlled by the charge on the floating gate. The
required voltage is called the gate threshold voltage and is labeled Vth.

With SLC flash memory, there is only one programmed state in addition to the erased state. The total of two states
allows a single data bit to be stored in the memory cell.

 Page 4 of 27
Copyright 2008 Imation. Imation and the Imation logo are trademarks of Imation Corp.

- - - - - - -

Vth LOW Vth HIGH

ERASED CELL
LOGIC '1'

PROGRAMMED CELL
LOGIC '0'

Figure 5 – The erased and programmed states of an SLC memory cell

Because there are only two states of charge on the floating gate, there are only two threshold voltages required at the
control gate. It is important to note that the control gate threshold voltage varies from one cell to the next. This is a
result of the normal manufacturing process variations. The threshold voltages are usually depicted as bell shaped
distributions.

Figure 6 – The distribution of control gate threshold voltages for a large number of SLC memory cells

With multi-level cell (MLC) flash memory, there are multiple programmed states in addition to the erased state.
Typically, there are three programmed states resulting in a total of four states. This allows two data bits to be stored
in the memory cell. The additional two programmed states result from partially charging the floating gate. A partially
charged floating gate will result in an intermediate value for the control gate threshold voltage. In MLC devices, the

 Page 5 of 27
Copyright 2008 Imation. Imation and the Imation logo are trademarks of Imation Corp.

partial charging of the floating gate is carefully monitored and the resulting distribution of the intermediate threshold
voltages tends to be tighter.

Figure 7 – The distribution of control gate threshold voltages for a large number of MLC memory cells

MLC memory cells are erased in the same way as SLC memory cells and the time required to erase a block is
similar. MLC memory cells take longer to program than SLC memory cells, however. The charge state of the floating
gate must be carefully monitored during programming to ensure that the resulting control gate threshold voltages are
unambiguous.

MLC memory cells tend to wear out faster than SLC memory cells because they are more sensitive to physical
changes in the insulating SiO2 layer. MLC memory cells also experience higher levels of read errors due to variations
in control gate threshold voltage and disturbances from neighboring memory cells.

Flash Memory Array Architecture - NAND vs. NOR
Flash memory cells are organized into a hierarchy of bytes, pages, blocks and planes. The organization of one type
of 4 Gigabit (Gb) SLC NAND flash memory chip is shown below.

 Page 6 of 27
Copyright 2008 Imation. Imation and the Imation logo are trademarks of Imation Corp.

Figure 8 - Organization of MT29F4G08AAA 4Gb SLC NAND flash memory chip
Copyright Micron

In this example, the 4Gb chip consists of 4096 blocks, divided into even and odd numbered blocks. Each block
contains 64 pages. The memory page contains 2048 bytes of user data and 64 bytes of non-user data. The additional
64 bytes per page are used by the flash memory controller for data management. The flash memory controller may
additionally divide the 2048 bytes per page into four sectors of 512 bytes, a typical size for HDDs.

NAND flash memory chips arrange the memory cells in a logical “not-and” (NAND) configuration. This arrangement
strings together all of the cells for a common input / output (I/O) bit across all memory pages.

GND
Select

Bit Line
Select

Page 0
Line

Page 1
Line

Page 2
Line

Page 63
Line

I/O Bit Line

Figure 9 – NAND flash memory cell arrangement

Because of this arrangement, it is not possible to directly access individual data bytes within a memory page. The
flash memory controller must read an entire page of memory from the device. Also, an entire page must usually be
programmed at once, although some devices permit partial page programming. That makes NAND flash unsuitable
for most random byte-access memory applications.

 Page 7 of 27
Copyright 2008 Imation. Imation and the Imation logo are trademarks of Imation Corp.

I/O

I/O

I/O

I/O

GND
Select

Bit Line
Select

16,896
bits per page

64 pages
per block

String

Memory
Cell

Floating
Gate

Control
Gate

Page

NAND Flash Block Architecture

Page 0
Line

Page 1
Line

Page 2
Line

Page 63
Line

Figure 10 – Block architecture of MT29F4G08AAA 4Gb SLC NAND flash memory chip
Copyright Micron

A different type of arrangement combines cells into a “not-or” (NOR) logic configuration. NOR flash memory allows
each memory cell to be individually addressed and is suitable for random byte-access memory application.

Page 0
Line

Page 1
Line

Page 2
Line

Page 63
Line

I/O Bit Line

Figure 11 – NOR flash memory cell arrangement

NOR flash memory is less densely packed on the silicon due to the space required for all of the I/O bit lines and
ground connections. NOR flash memory has a corresponding higher cost per bit than NAND flash memory. Because
NOR flash memory allows random byte-access, it can be used as program storage for microcontrollers.

 Page 8 of 27
Copyright 2008 Imation. Imation and the Imation logo are trademarks of Imation Corp.

NAND flash memory is more densely packed on the silicon due to the space saved by reducing the number of I/O bit
lines and ground connections. NAND flash memory has a lower cost per bit than NOR flash memory. NAND flash
memory is more suitable for data file storage where random byte-access is not essential. NAND flash memory cells
are more susceptible to disturbances from reading and programming neighboring pages due to the high density of
memory cells on the silicon wafer.

Sources of Data Errors with Flash Memory Cells

Floating gate memory cells are carefully designed and insulated and can retain a programming charge for more than
10 years under favorable conditions. While this is a long time, consideration must be given to the less than ideal
conditions these devices may experience.

SLC memory cells can survive approximately 100,000 erase / program cycles before the tunnel oxide begins to wear
out. MLC memory cells have a shorter lifetime of approximately 10,000 erase / program cycles. Erasure and
programming subjects the tunnel oxide to stress from large electric fields. The tunnel oxide insulation between the
silicon substrate and the floating gate is very thin, less than 10 nm.

Figure 12 – SLC flash memory cell endurance characteristics
Copyright Samsung

Over time, the tunnel oxide will lose its insulating properties leading to the inability to erase or program the memory
cell. As this occurs, the flash memory controller will retire blocks from use and replace them with reserve blocks. The
deterioration of the tunnel oxide is compensated for by using a “wear-leveling” algorithm. The wear-leveling algorithm
evenly spreads the erase / program cycles over all the memory blocks. Spreading the erase / program cycles over
the whole device prevents data “hot spots” from prematurely retiring the device. Manufacturing defects can also
cause the tunnel oxide to lose its insulating properties. However, memory cells that are inoperative after
manufacturing are marked as unusable and don’t necessarily prevent the flash chip from being used.

Stressful conditions in the tunnel oxide also can lead to data retention problems. There also is the risk of data
corruption from reading and programming neighboring memory pages. Data retention and corruption issues are
compensated for by using powerful error correction codes.

 Page 9 of 27
Copyright 2008 Imation. Imation and the Imation logo are trademarks of Imation Corp.

Stress Induced Leakage Current
During erasure and programming the electric field strength across the tunnel oxide is very high -- several million volts
per centimeter. Such high field strength can lead to structural changes in the SiO2 layer. These structural changes
can lead to defects that trap electrons in the oxide layer. The structural defects behave like tiny “cracks” in the
insulation. These defects permit the charge on the floating gate to leak out into the substrate. Over time, more and
more defects arise, which lead to a total breakdown of the oxide layer.

anode interface

(SiO2)

electron
traps

breakdown
path

New Oxide Damaged Oxide Oxide Breakdown

< 10 nm

SILCcathode interface

 Figure 13 – A percolation model for stress-induced leakage current (SILC) and eventual oxide breakdown

Disturb Faults
Programming and reading memory pages can cause charge disruptions within adjacent memory pages. Given the
high density of memory cells, voltage changes are capacitively coupled between memory cells in adjacent pages.
The coupling can lead to random bit errors in the stored data.

I/O

I/O

I/O

I/O

GND
Select

Bit Line
Select

16,896
bits per page

64 pages
per block

Page 0
Line

Page 1
Line

Page 2
Line

Page 63
LineSelected

Cell

Disturbed
Cells

Figure 14 – Program and read activity can disturb the contents of adjacent cells

 Page 10 of 27
Copyright 2008 Imation. Imation and the Imation logo are trademarks of Imation Corp.

 Page 11 of 27
Copyright 2008 Imation. Imation and the Imation logo are trademarks of Imation Corp.

Error Correction Codes

The deterioration of the tunnel oxide over time and the disruptions from neighboring memory pages can lead to
random bit errors in the stored data. While the chances of any given data bit being corrupted is quite small, the vast
number of data bits in a storage system makes the likelihood of data corruption a very real possibility.

Error detection and correction codes are used in flash memory storage systems to protect the data from corruption.
The construction and application of error control codes is a branch of mathematics called abstract algebra. Claude
Shannon laid the theoretical foundation for error control coding and information theory in his ground breaking 1948
paper, “A Mathematical Theory of Communications.” All types of error control codes add redundancy to the
information being transmitted through a communication channel or a storage system. The redundant data is
calculated when the data is transmitted (or written) and checked when the data is received (or read). The redundant
information is calculated so that a balance of correction power and efficiency is achieved.

Flash memory systems use a class of error correction codes (ECC) called block codes. With block codes, the
redundant data bits are calculated for a fixed size block of user data, (e.g., 512 bytes). The addition of redundant
ECC bits to the user data bits forms a larger set of bits called a code word. The code word space is designed to be
sparsely populated. That is to say that not every possible code word is valid. ECCs rely on the concept of binary
Hamming distance to calculate the difference between a received code word and a valid code word. ECCs use
“maximum-likelihood” decoding algorithms to estimate a valid code word from a received code word that contains an
error.

t

t

dmin

Cx

2n Possible
Code Words

2k Valid
Code Words

A sphere represents the
set of received code words

that will decode to Cx

Figure 15 – Depiction of ECC words and maximum-likelihood decoding

Block codes are designed using mathematical parameters n, k, t and dmin. The size of the code word is n bits, yielding
2n possible code words. The size of the user data is k bits, yielding 2k valid code words.

The correction power of the code is t bits and can be thought of as the radius of a sphere surrounding each valid
code word. The minimum Hamming distance between valid code words is dmin bits, where dmin ≥ 2t + 1, insuring that
the spheres do not overlap. The greater the Hamming distance between valid code words, the greater the correction
power of the code. The correction power of the code is the maximum number of received bits in error which can be
corrected. It is not the number of redundant ECC bits in the code word, however. The number of ECC bits stored with
the data is a function of both the correction power of the code (the t parameter) and the size of the code word (the n
parameter).

The process of encoding the ECC bits is done when data is written to the storage system. Circuits for calculating the
ECC bits are fast and efficient and do not significantly penalize system performance. In a flash memory system, the
ECC bits are stored in the additional 64 bytes associated with each memory page. The process of decoding the ECC
bits is done when data is read from the storage system. Correcting for errors in the received data is more
complicated, however. The first step is to determine if there are any bits in error in the received data. This operation

 Page 12 of 27
Copyright 2008 Imation. Imation and the Imation logo are trademarks of Imation Corp.

uses the same algorithm and circuits as the ECC encoding process. As a result, checking for the presence of a data
error is fast. If the received data is determined to contain an error, a second algebraic manipulation is necessary to
determine which valid code word was most likely sent. The procedure finds the most likely of the 2k valid code words
using calculated Hamming distances. This step is more time consuming, but only needs to be performed when a
received data error is detected, which is inherently unlikely. The final step, once the most likely valid code word is
found, is to calculate which received data bits are in error and to correct their values. It must be noted that the ECC
decoding process can fail if a valid code word cannot be located within the minimum Hamming distance or if the
decoder erroneously selects an incorrect code word. ECC failure can occur if the number of bits in error exceeds the
designed capabilities of the code. The ECC system must be properly designed so that the probability of ECC failure
is virtually zero.

Many modern flash memory system controllers use a block code invented by Hocquenghem, Bose and Ray-
Chaudhuri. The acronym BCH comprises the initials of these inventors’ names. The binary BCH codes are designed
to correct for multiple random bit errors and are relatively efficient in terms of overhead and computational
complexity. A t-bit correcting BCH code will detect and correct up to t error bits per code word. The code will detect,
but not correct, at least t+1 error bits per code word.

The probability of data corruption can be calculated by summing the probabilities of receiving all error patterns of at
least t+1 error bits:

∑
+=

=
n

ti
failcorrupt inPP

1
),((eqn 1)

The probability term, Pfail(n,i), is the probability of receiving “i” bits in error in a code word of “n” bits. The total
probability of corrupt data can be approximated by the largest term, the probability of receiving exactly t+1 error bits.
Given the ECC parameters (n,k,t), and the probability of a random bit error within the flash memory, Praw, the
probability of data corruption can be approximated by:

())1(1 1
1

)1,(+−+ −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=+≅ tn
raw

t
rawfailcorrupt PP

t
n

tnPP (eqn 2)

The formula is for the binomial probability density function, which is used to describe a succession of experiments,
each of which has two possible outcomes. Each experiment is independent and has the same probability of
outcomes. This function applies to flash memory data corruption when each data bit read is the “experiment,” and the
outcome is whether the data bit is “good” or “bad.” The probability of receiving a bad data bit is the term, Praw, and the
parenthetical term is the binomial coefficient, which is the number of ways to arrange “t+1” bad data bits out of “n” bits
read from the flash memory.

The probability of corrupted data is expressed as the number of errors per bit read, and is called the application bit
error rate. The random bit error probability of a flash memory cell is similarly expressed as the raw bit error rate.
Typical raw bit error rates for SLC NAND flash memory range from 1x10-9 to 1x10-11 errors per bit read, while typical
raw bit error rates for MLC NAND flash memory range from 1x10-5 to 1x10-7 errors per bit read. MLC raw bit error
rates are higher than SLC raw bit error rates because of the multiple control gate voltage thresholds that must be
programmed and detected.

 Page 13 of 27
Copyright 2008 Imation. Imation and the Imation logo are trademarks of Imation Corp.

Binary BCH ECCs are becoming widely used in flash memory systems. A critical design issue is the strength of the
ECC or how many bits in error can be corrected. Some flash memory systems, for example USB flash drives, do not
use a very strong ECC. A typical USB flash drive might employ a simple 1- or 2-bit correcting code. These devices
are often used as temporary storage, where the added expense of a powerful ECC system is not justified. SSDs are
intended for primary storage, however, and require a powerful error correction system.

10-1110-910-710-510-3

10-40

10-35

10-30

10-25

10-20

10-15

10-10

10-5

100

Raw NAND Bit Error Rate

A
pp

lic
at

io
n

B
it

E
rro

r R
at

e

Binary BCH(n,k,dmin) t-bit Error Correcting Code

t = 7 bit
t = 4 bit
t = 2 bit

MLC SLC

Figure 16 – Application bit error rates vs. raw NAND cell bit error rates
for Binary BCH codes over 512 byte user data sectors

BCH(k = 4096, n = k + 13t, dmin = 2t + 1)

The ECC parameters for an SSD must be chosen so that the application bit error rate is at least as small as the HDD
it is replacing. Modern hard drives typically use a different kind of ECC system, the Reed-Solomon codes. The
properties of Reed-Solomon codes make them especially well-suited to applications where errors occur in bursts.
Physical defects associated with rotating magnetic media often manifest as streaks making the Reed-Solomon codes
a good choice. Typical application bit error rates for hard drives are specified as 1x10-15 errors per bit read. A binary
BCH code capable of correcting 7 bits in error would deliver outstanding performance for an SSD using either SLC or
MLC NAND flash memory.

 Page 14 of 27
Copyright 2008 Imation. Imation and the Imation logo are trademarks of Imation Corp.

Wear Leveling

NAND flash memory is susceptible to wear due to repeated program and erased cycles that are commonly done in
data storage applications. Constantly programming and erasing to the same memory location eventually wears that
portion of memory out and makes it invalid. As an example, systems using File Allocation Tables (FAT) require
frequent updating during data write operations, which means many program erase cycles would be required to the
same memory location. As a result, the NAND flash would have limited lifetime. To prevent scenarios such as these
from occurring, special algorithms are deployed within the SSD called wear leveling. As the terms suggests, wear
leveling provides a method for distributing program and erase cycles uniformly throughout all of the memory within
the SSD. This prevents continuous program and erase cycles to the same memory location, resulting in greater
extended life to the overall NAND flash memory.

Memory Layout
To understand how wear leveling is performed on memory within the SSD flash drive, it is important to understand
the architecture layout of the NAND flash. An SSD is made up of many individual NAND flash chips. Each individual
NAND flash chip is made up of an array of blocks. Within each block is an array of memory cells called pages (or
sectors).

•
•
•

B0

B1

B2

B3

BN

•
•
•

Page1

Page2

Page3

Pagem

OH1

•
•
•

Memory Blocks

Pages within a Block

OH2

OH3

OHm

Simple Memory Layout of
a NAND Flash Chip

Erase done at Block level

Write and Read done at Page Level

Figure 17 - Simple NAND flash memory layout

Pages are typically about 512 bytes, but can be as large as 2048 bytes. Each page incorporates additional overhead
bytes to handle such things as ECC and indexing.

 Page 15 of 27
Copyright 2008 Imation. Imation and the Imation logo are trademarks of Imation Corp.

To write data to a portion of memory within the NAND flash, a memory location must first be erased prior to being
programmed. The smallest unit that can be erased is a block and the smallest unit that can be programmed or read is
a page (or sector).

SSD System Architecture
Before entering a discussion on wear leveling, the basic system architecture for an SSD will be described to help
visualize the main components that assist in the wear-leveling algorithm. Below is a simple block diagram of an SSD.
Data transferred to and from the SSD passes through a Host interface chip that is configured for different interfaces
(PATA, SATA, SCSI, SAS, etc). The host interface is connected to two buses, a system bus used for addressing and
control, and a data bus that provides the data path to the NAND flash. On the control bus is the CPU, Flash controller
and static random access memory (SRAM). The SRAM is used for tables, CPU scratch pad computing and logical
block to physical block address mapping. Since the SRAM is volatile memory, pertinent information, such as tables
and logical to physical address mapping, are continually backed up to NAND flash. The CPU is the main controller for
the SSD. It provides coordination of writing and reading to and from the flash memory. It also executes and monitors
the wear-leveling algorithms used on the flash memory. The flash controller performs the intimate control of
addressing, programming, erasing and reading of the flash memory.

CPU

Flash
Controller

DRAM
BufferHost Interface

SRAM

Control Bus

Data Bus Data Bus

PATA, SATA
SCSI, etc

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

Flash Bus

SSD Simple Diagram

Figure 18 - Simple block diagram of SSD architecture

 Page 16 of 27
Copyright 2008 Imation. Imation and the Imation logo are trademarks of Imation Corp.

On the data bus, data received is transferred from the host interface into a synchronous dynamic random access
memory (SDRAM) buffer. From there, data is flushed and routed to the flash controller, which writes the data into
flash memory. Similarly, a read command along with the logical address is sent to the CPU via the host interface
chip. The CPU determines the physical address of memory from the mapping table and sends the information to the
Flash controller chip so that the data can be accessed and sent to the host interface. From there the data is sent to
the host.

Block Configuration
Blocks are pooled into two categories for wear leveling: data blocks and free blocks. The majority of blocks in
memory are data blocks and are subjected to wear leveling and data storage. Free blocks, which are made up of 2
percent of the entire number of blocks in memory, are used to buffer the wear-leveling algorithm. Meaning that blocks
will be swapped between the data block pool and the free block pool based on the wear-leveling criteria.

2% of entire
number of blocks

Free
BlocksData Blocks

2 Pools of Memory

Figure 19 - Blocks are pooled into two categories

Flash Translation Layer (FTL) Management
The FTL provides management of logical to physical address mapping of sector addresses, erase count
management for the flash memory and invalid block mapping. Erase count management of each block must be
maintained to effectively execute the wear-leveling algorithms. Erase count of every block is maintained in a table
called the erase count table (ECT). Each time a block is erased, the ECT is updated by incrementing the erase count
value for that block. The wear-leveling algorithms must scan this table to determine which blocks to swap between
the data block pool and the free block pool. Because SSDs are typically 32GB or higher, significant time would be
required to scan each individual erase count value in the ECT. To reduce this time, the ECT is expanded to a second
tier made up of a group of blocks. A total group erase count sum (eqn 3) is calculated for each group. As indicated in
eqn 3, the group sum is a summation of the entire individual block erase count values assigned within a group. The
size of a group is determined by the number of blocks assigned within a group. The scan process of the ECT scans

 Page 17 of 27
Copyright 2008 Imation. Imation and the Imation logo are trademarks of Imation Corp.

the group’s total sum erase count, then scans the block erase counts within the group. This method greatly reduces
the time required for scanning the ECT.

∑=
N

necBlockSumGroup
0

__ (eqn 3)

Where N = size of Group

When blocks are swapped between the data block pool and the free block pool, the translation table manages the
reallocation of logical block addresses to physical block addresses and regroups the new block addresses and erase
count values into the their new groups. Once this is complete, the group sum must subtract the departing blocks’
erase count value and add in the arriving blocks’ erase count value (eqn 4).

()ecBlockDepartecBlockArrivalSumGroupSumGroup ______ −+= (eqn 4)

The illustration below shows a simple block diagram of the ECT and translation mapping table. It should be noted that
in typical operation the ECT and translation mapping table are managed in SRAM.

 Page 18 of 27
Copyright 2008 Imation. Imation and the Imation logo are trademarks of Imation Corp.

�
�
�

�
�
�

�
�
�

Block_ec0

Block_ec1

Block_ec2

Block_ecN

Block_ec0

Block_ec1

Block_ec2

Block_ecN

Block_ec0

�
�
�

Block_ec1

Block_ec2

Block_ecN

�
�
�

�
�
�

Phy_address1

Phy_address0

Phy_address2

Phy_addressN

�
�
�

�
�
�

Phy_address0

Phy_address1

Phy_address2

Phy_addressN

Phy_address0

Phy_address1

Phy_address2

Phy_addressN

ec or EC => Erase count

�
�
�

�
�
�

�
�
�

Phy_address1

Phy_address0

Phy_address2

Phy_addressN

�
�
�

�
�
�

Phy_address0

Phy_address1

Phy_address2

Phy_addressN

Phy_address0

Phy_address1

Phy_address2

Phy_addressN

Logical_address0

Logical_address1

Logical_address2

Logical_addressN

Logical_address0

Logical_address1

Logical_address2

Logical_addressN

Logical_address0

Logical_address1

Logical_address2

Logical_addressN

�
�
�

�
�
�

�
�
�

�
�
�

Translation Mapping Table
Erase Count Table

(ECT)

Group 0
Total EC Sum

Group 1
Total EC Sum

Group M
Total EC Sum

Figure 20 - Erase count table (ECT) and associated translation mapping table

However, SRAM is a volatile memory, so the table must be backed up in NAND flash. On power-up, the tables stored
in NAND flash are retrieved and placed into SRAM, where they are managed and updated. At periodic times of low
activity or at power-down, the tables are backed-up into NAND flash.

Also within the FTL is a translation table that holds the physical address of each page and its related logical page
address. The FTL manages the physical address mapping when data passes from the host interface with a logical

 Page 19 of 27
Copyright 2008 Imation. Imation and the Imation logo are trademarks of Imation Corp.

address. The combination of the FTL and an aggressive write buffering scheme using external dynamic random
access memory (DRAM) allows the reordering of write requests in the write buffer. This makes it possible to process
high volumes of data at one time and augment or block level map the data in the buffer; therefore, data is only
committed to flash memory in near block packet sizes. Thus, data transaction time is improved and the need for
garbage collection is unnecessary, since aging and fragmentation hardly ever occurs.

When data is requested by the host interface with a logical address, the FTL locates the physical address where the
data is located in flash memory. The data is then transferred from flash memory through the read data path of the
foreground unit to the host interface.

Dynamic Wear Leveling
There are two levels of wear leveling, dynamic and static. The dynamic wear algorithm guarantees that data program
and erase cycles will be evenly distributed throughout all the blocks within the NAND flash. The algorithm is dynamic
because it is executed every time the data in the buffer is flushed and written to flash memory. As will be shown, the
algorithm eliminates situations where the application repeatedly writes to the same location over and over again until
wear out occurs.

Write Operation Complete

Write Operation Executed

Scan Erase Count Table (ECT)
Select Block From Free Block

Pool With Minimum Erase
 Count Value

Write Data To Block Selected
In Free Block Pool

Update Mapping Table
 Pointing Logical Block Address (LBA) Of Data

To New Physical Address (PBA) Of Selected Block

Erase Designated Data Block
That Was Initally Pointed To By The LBA

Increment Erase Count Value
For Designated Block In ECT

Place Designated Block Into
The Free Block Pool

Update Erase Block Grouping For Both
Blocks In The ECT

Figure 21 - Simple flow diagram for dynamic wear leveling
 Page 20 of 27

Copyright 2008 Imation. Imation and the Imation logo are trademarks of Imation Corp.

 Page 21 of 27
Copyright 2008 Imation. Imation and the Imation logo are trademarks of Imation Corp.

When a write command is initiated, the dynamic wear algorithm is executed. The algorithm first scans the ECT within
the free block pool, searching for a block with the minimum number of erase counts. Once located, the data is written
to that block and is pooled into the data block pool. Since the host writes to a logical block address, the new block’s
physical address must be mapped to the logical block address within the translation table. This is why continuous
writes to the same logical address are never written to the same physical block. The next step is to erase the data
block initially mapped with the logical block address and to update the ECT block erase count for that block. Finally,
this block is now pooled into the free block pool and the final grouping of the ECT table is updated.

 Page

Mapping Table

Free Block Pool

Data Block Pool New Data Block Pool

New Free Block Pool

Erase Count Table
(ECT)

Minimum Erase Count
Selected

Data Written to
Selected block in

Free Pool

Free Pool
Erase Counts

Data Pool
Erase Counts

Updated Mapping Table

Updated Erase Count Table
(ECT)

Swap

Data Pool
Erase Counts

Free Pool
Erase Counts

Write Executed

L0 � B 0

L1 � B 1

L2 � B 2

L3 � B 3

•
•
•

LN � B N

B(N+1) B(N+2) … B(N+M)

L0 � B (N + 1)

L1 � B 1

L2 � B 2

L3 � B 3

•
•
•

LN � B N

B0 B1 B2 B3 B4 … BN

B0

B(N+1)

B(N+2) … B(N+M)

B1 B2 B3 B4 … BN

•
•
•

B1 E1

B2 E2

•
•
•

B1 E1

B2 E2

B0 E0+1

B(N+1) E(N+1)

Simple Block Diagram Describing Dynamic Wear Leveling

B(N+1) E(N+1)

•
•
•

B(N+M) E(N+M)

B0 E0

BN EN BN EN

•
•
•

B(N+M) E(N+M)

Erase designated Block
Corresponding to LBA

22

Figure 22 – Dynamic wear leveling block diagram

 Page 23

Static Wear Leveling
Dynamic wear leveling alone cannot insure that all blocks are being wear-leveled at the same rate. There is also the
special case when data is written and stored in flash for long periods of time or indefinitely. While other blocks are
actively being swapped, erased and pooled, these blocks remain inactive in the wear-leveling process.

To insure that all blocks are being wear-leveled at the same rate, a secondary wear-leveling algorithm called static
wear leveling is deployed. Static wear leveling addresses the blocks that are inactive and have data stored in them.
Unlike dynamic wear leveling, which is evaluated each time a write flush buffer command is executed, static wear
leveling has two trigger mechanisms that are periodically evaluated. The first trigger condition evaluates the idle
stage period of inactive blocks. If this period is greater than the set threshold, then a scan of the ECT is initiated.

The scan searches for the minimum erase count block in the data pool and the maximum erase count block in the
free pool. Once the scan is complete, the second level of triggering is checked by taking the difference between the
maximum erase count block found in the free pool and the minimum erase count block found in the data pool, and
checking if that result is greater than a set wear-level threshold. If it is greater, then a block swap is initiated by first
writing the content of the minimum erase count block found in the data pool to the maximum erase count block found
in the free pool.

Next, each block is re-associated in the opposite pool. The minimum erase count block found in the data pool is
erased and placed in the free pool, and the maximum erase count block, which now has the contents of the other
block’s data, is now associated in the data block pool. With the block swap complete, the re-mapping of the logical
block address to the new physical block address is completed in the FTL. Finally, the ECT is updated by associating
each block to its new groups. A simple block diagram illustrating static wear-leveling algorithm is shown in Figure 23.

 Page

WL_threshold
<

(max_ec_free_Blks -min_ec_data_Blks)

Erase Count Table
(ECT)

Free Pool
Erase Counts

Data Pool
Erase Counts

B0 E0

•
•
•

B1 E1

B2 E2

BN EN

Scan Data
Pool for
Smallest
Erase
Count
of Inactive
Data

Scan Free
 Pool for
Largest
Erase
Count

Free Block Pool

B(N+1) B(N+2) … B(N+M)

Data Block Pool

B0 B1 B2 B3 B4 … BN

WL_Thr_Period
<

idle_Stage_Period

yes

yes

Start/ Idle

No

No

B(N+1) B1 B2 B3 B4 … BN

New Free Block Pool

B0 B(N+2) … B(N+M)

New Data Block Pool

B(N+1) E(N+1)

•
•
•

B(N+M) E(N+M)

Swap
Data Written to

Selected block in
Free Pool

Write Data from Selected Block in
Data Block Pool to Selected Block in Free Pool

L0 � B (N + 1)

L1 � B 1

L2 � B 2

L3 � B 3

•
•
•

LN � B N

L0 � B 0

L1 � B 1

L2 � B 2

L3 � B 3

•
•
•

LN � B N

Re-Map Logical block address
to new Physical Block Address

in Translation Table

Data Pool
Erase Counts

Free Pool
Erase Counts

•
•
•

B1 E1

B2 E2

BN EN

B0 E0+1

B(N+1) E(N+1)

•
•
•

B(N+M) E(N+M)

Update Erase Count Table and Grouping
(ECT)

Perform Erase on Original block in the
Data Block Pool. Then Perform Block Swap

 between Data Pool and Free Pool

24

Figure 23 – Static wear leveling block diagram

 Page 25

Invalid Block Handling and Mapping
Invalid blocks are blocks that contain one or more invalid bits whose reliability can no longer be guaranteed. Bad
blocks can occur during the manufacturing process or during runtime. NAND flash vendors indicate which blocks are
invalid from the manufacturing process by typically providing block status in the first byte of the spare area and
writing “00” in the first or second page of each invalid block at the last address column. When the SSD is initially
booted up, the drive scans the blocks and maps which blocks are marked invalid in the invalid block table (IBT) in the
FTL.

At runtime, errors can occur during erasing and programming. They are detected by monitoring the status register in
the NAND flash chip during an erase and program operation. If a hard error occurs during one of these operations, a
bit is set in the status register, indicating that the block is no longer reliable and should be marked invalid. When a
bad block is detected, the FTL re-writes the block from the buffer to a block with the least amount of erase counts
from the free pool and re-maps the logical address to the new physical address of the new block. The block with the
detected error is mapped invalid in the IBT and excluded from the free pool. The amount of flash memory in the free
pool is determined by the following equation:

Total # of valid flash memory blocks - # of blocks allocated for disk capacity (eqn 5)

Typically, this value is usually more than two percent of the total number of valid flash memory blocks. As the number
of invalid blocks increases, the number of valid flash memory decreases, reducing the amount of available blocks in
the free pool. This technique enhances the usage rate of the overall flash memory as compared to the usual bad
block replacement algorithm found in other SSDs, where reserved unused blocks are swapped with invalid blocks.

Life Time Estimation
Program and erase cycles (P/E) of the flash memory are the limiting factor for the overall lifetime of the SSD. Efficient
use of the wear-leveling algorithm guarantees equally distributed P/E cycles on each block of flash memory.

Depending on the type of NAND flash memory (SLC or MLC), and the predicted usage per day, one can estimate the
overall lifetime of the SSD (sometimes called the write endurance of the SSD). However, it is particularly important to
emphasize usage per day. Embedded in the word usage and often overlooked is the type of usage, such as
sequentially written, random written or mixed written (random and sequential). Each scenario affects performance
(IOPS, transfer rate, block size, etc.) and the overhead written along with the data. These parameters, when
accounted for properly, can effect the resulting life time estimation, even when the total perceived usage per day is
the same. This is why, when life time estimation is quoted, the vendor indicates the type of written strategy executed,
which is usually sequential write. Sequentially written data provides an ideal scenario for estimating lifetime since the
IOPS, transfer rate and overhead are constant factors that can be used in a simple formula, as opposed to random or
mixed written data, which can vary the overhead size. The calculated lifetime estimation example used in this paper
will exercise the sequential written usage type, which is a reasonable estimation for the SSD lifetime, and will give the
reader a base of understanding for the predicted value. Keep in mind, the true written usage will vary depending on
the type of write strategy used.

Recall for the SLC NAND flash, which is the present technology used today, P/E cycle endurance is approximately
100,000 cycles, as opposed to MLC which is only 10,000 cycles.

In all cases the equation for lifetime is based on the simple product of SSD capacity and the write endurance of the
NAND flash memory. This is because the wear-leveling algorithm insures the wear rate for each block of flash

memory to be essentially equal throughout the entire lifetime of the drive. The plot below shows the wear leveling
result after constantly writing to a 32GB Imation SSD for 170 hours. Note each block has about the same number of
erase counts.

Figure 24 – Effects of wear leveling algorithms

The wear-leveling algorithm allows the lifetime calculation to be simply described as the product of the SSD capacity
and the P/E cycle endurance of the flash memory divided by the usage per day. Additional factors such as percent
utilization can be used as a safety net to indicate when wear out is imminent, and a capacitor rate factor is added to
the equation to indicate the written overhead accompanying the data. The capacity rate factor, as described earlier, is
constant for the sequentially written usage strategy, but can vary when alternative write strategies are used, causing
the overhead to vary in size.

Parameters:

• NAND flash P/E cycle endurance
o SLC 100,000 cycles, MLC 10,000 cycles

• NAND flash P/E utilization
o The allowable amount of P/E utilization before flash memory is considered worn out – 95%

• SSD capacity
o Total capacity of the SSD

• Capacity rate factor – The amount of written overhead accompanying the data
o Sequential write has a constant value of 1.1
o Mixed written data has a value that varies depending on the percent mixture of sequential and random

written data

()()()()
()()()yeardaysRateCapacityDayUsage

nUtilizatioPercentEPGBCapacitySSDyearsLifetime
/365_/

/)(= (eqn 6)

 Page 26

The table below shows the resulting lifetime of a 32GB drive using sequentially written data.

Usage Lifetime of a Sequential Written data
(GB/day) Years

3.2 2366.1
10 757.2
32 236.6

100 75.7
320 23.7

Table 25 – 32GB SSD lifetime

Alan Olson is an electrical engineering specialist at Imation’s New Product Development Laboratory; Denis Langlois
is senior design specialist at Imation’s Advanced Tape and Systems Laboratory. Both laboratories are located at
Imation’s worldwide headquarters in Oakdale, Minn.

 Page 27

	Abstract
	Floating Gate Flash Memory Cells
	Floating Gate MOS Transistor
	Single vs. Multiple Level Cells
	Flash Memory Array Architecture - NAND vs. NOR

	Sources of Data Errors with Flash Memory Cells
	Stress Induced Leakage Current
	Disturb Faults

	Error Correction Codes
	Wear Leveling
	Memory Layout
	SSD System Architecture
	Block Configuration
	Flash Translation Layer (FTL) Management
	Dynamic Wear Leveling
	Static Wear Leveling
	Invalid Block Handling and Mapping
	Life Time Estimation

