<- previous index next ->
System of ODE with solution eigenvalues and eigenvectors
Given unknown vector X, derivatives of X as X', and known matrix A
one possible system of ordinary differential equations might be:
X(t)' = A X(t)
Computing the eigenvalues %lambda; and corresponding eigenvectors v
of A, the general solution is of the form:
X(t) = sum { c_i * exp(%lambda;_i * t) * v_i }
A simple sample system of equations is
known constants an t = same value
|x(t)'| | 1 3 5 | | x(t) | with x(0) = a1 x'(0) = d1
|y(t)'| = | 2 6 7 | * | y(t) | y(0) = a2 y'(0) = d2
|z(t)'| | 8 9 4 | | z(t) | z(0) = a3 z'(0) = d3
expanding to system of ODE equations with three unknown functions
x(t), y(t), z(t)
d x(t)/dt = x(t)' = 1*x(t) + 3*y(t) + 5*z(t)
d y(t)/dt = y(t)' = 2*x(t) + 6*y(t) + 7*z(t)
d z(t)/dt = z(t)' = 8*x(t) + 9*y(t) + 4*z(t)
having a general solution
find eigen values l1, l2, l3 and eigen vectors v1, v2, v3 for
| 1 3 5 |
| 2 6 7 |
| 8 9 4 |
x(t) = c1 * exp(l1*t) * v1 + c2 * exp(l2) * v2 + c3 * exp(l3) * v3
y(t) = c1 * exp(l1*t) * v1 + c2 * exp(l2) * v2 + c3 * exp(l3) * v3
z(t) = c1 * exp(l1*t) * v1 + c2 * exp(l2) * v2 + c3 * exp(l3) * v3
substituting initial conditions gives 3 equations in 3 unknowns
(simplified at t=0, exp(l1*t) = 1, else compute numeric value
| x(0) | = | v1 v2 v3 | | c1 |
| y(0) | = | v1 v2 v3 | * | c2 |
| z(0) | = | v1 v2 v3 | | c3 |
substitute c1, c2, c3 in general solution
<- previous index next ->