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Abstract

The purpose of the present work is to give a brief description of the
finite elasticity and of its approximation via finite element method. We
formulate the problem for the case of compressible elasticity. Weak for-
mulation allows to use any isotropic hyperelastic material model that
satisfies polyconvexity assumptions. Discretization using FEM leads to
systems of non-linear equations. Finally we also show the strategy of
solving such systems of equations by modification of Newton’s method
that can be used under some restrictions.

1 Introduction

The main object of the finite three-dimensional elasticity is to predict changes
in the geometry of solid bodies. The starting point of the classical theory of
linear elasticity is the concept of small strains: the deformation of structures
under working loads are not detectable by human eye. In contrast, many
modern situations involve large deformations. The nonlinear behavior of
polymers and synthetic rubbers are such examples. Applications in biome-
chanics are even more critical because the most of vital organs such as eye,
heart trachea or vocal apparatus fulfill their function only because of their
large deformations. In this framework the concept of finite elasticity covers
the simplest case where internal forces (stresses) depend only on the present
deformation of the body and not on the history. In the paper we show the
finite element approximation and strategy of solution of this nonlinear and
’visible’ stress-strain relationship.



2 Formulation of elasticity problem

Let us consider body Ω before deformation and Ωϕ after the deformation ϕ

ϕ : Ω → Ωϕ (1)

and

Ω̄ϕ = Ωϕ
∪ Γϕ (i.e. Γϕ = ∂Ωϕ). (2)

We can write the classic formulation of equilibrium equation in compo-
nent form as

divϕT
ϕ
i + f

ϕ
i = 0, (3)

resp.

∂T
ϕ
ij

∂x
ϕ
j

+ f
ϕ
i = 0. (4)

2.1 Weak formulation

Multiplication by test function v
ϕ
i and integration over the whole domain

Ω̄ϕ gives

∫

Ωϕ

∂T
ϕ
ij

∂x
ϕ
j

v
ϕ
i dxϕ +

∫

Ωϕ

f
ϕ
i v

ϕ
i dxϕ = 0. (5)

After applying Green’s theorem on the first term

∫

∂Ωϕ

T
ϕ
ijn

ϕ
j v

ϕ
i daϕ

−

∫

Ωϕ

T
ϕ
ij

∂v
ϕ
i

∂x
ϕ
j

dxϕ +

∫

Ωϕ

f
ϕ
i vϕdxϕ = 0. (6)

On the parts of boundary Γϕ = Γϕ
v ∪Γϕ

τ we prescribe following boundary
conditions

T
ϕ
ijn

ϕ
j = g

ϕ
i on Γϕ

τ (7)

v
ϕ
i = 0 on Γϕ

v . (8)



Finally we obtain after small rearrangement the weak formulation of
equilibrium equations of a body after deformation

∫

Ωϕ

T
ϕ
ij

∂v
ϕ
i

∂x
ϕ
j

dxϕ =

∫

Ωϕ

f
ϕ
i v

ϕ
i dxϕ +

∫

Γϕ
τ

g
ϕ
i v

ϕ
i daϕ. (9)

Unfortunatelly, in finite elasticity, Ωϕ is unknown and may be very dif-
ferent from the known reference configuration Ω. Therefore, it is more con-
venient to rewrite the equilibrium equations on Ω, using the formula for
changes of variables in multiple integrals. Doing this, we get

∫

Ω
T

ϕ
ij

∂v
ϕ
i

∂xk

∂xk

∂x
ϕ
j

det∇ϕdx =

∫

Ω
f

ϕ
i v

ϕ
i det∇ϕdx +

∫

Γτ

g
ϕ
i v

ϕ
i

daϕ

da
da. (10)

Rearranging the first term (considering that x = ϕ−1(xϕ)) in the follow-
ing way

∫

Ω



T
ϕ
ij

(

∂xk

∂x
ϕ
j

)T

det∇ϕ




∂v

ϕ
i

∂xk
dx =

∫

Ω

[

T
ϕ
ij∇ϕ−T

kj det∇ϕ
] ∂v

ϕ
i

∂xk
dx, (11)

we obtain

∫

Ω



T
ϕ
ij

(

∂xk

∂x
ϕ
j

)T

det∇ϕ




∂v

ϕ
i

∂xk

dx =

∫

Ω
f

ϕ
i det∇ϕv

ϕ
i dx +

∫

Γτ

g
ϕ
i

daϕ

da
v

ϕ
i da.(12)

Using Piola transform

T (x) = Tϕ(xϕ(x))(∇ϕ)−T det∇ϕ (13)

we may write

Tik = T
ϕ
ij

(

∂xk

∂x
ϕ
j

)T

det∇ϕ (14)

and by setting

v(x) = vϕ(xϕ(x))

f(x) = fϕ(xϕ(x))det∇ϕ (15)

g(x) = gϕ(xϕ(x))
daϕ

da
,



where f(x) means density of body forces and g(x) density of surface tractions
(both in reference configuration), we finally obtain the following weak form
of equilibrium equation in the reference configuration

∫

Ω
Tik

∂vi

∂xk
dx =

∫

Ω
fivi dx +

∫

Γτ

givi da ∀ vi ∈ V, (16)

Considering the following constitutive relation for compressible material

Tij(u) =
∂Ŵ

∂Fij
(x, F (u)), (17)

we get

∫

Ω

∂Ŵ

∂Fij
(x, F (u))

∂vi

∂xj
dx =

∫

Ω
fivi dx +

∫

Γτ

givi da ∀ v ∈ V. (18)

3 Constitutive relations

The simplest law uses a quadratic isotropic function of the Green strain
tensor E = 1

2(C − I). So called St. Venant material is characterized by the
stored energy function

Ŵ =
λ

2
(trE)2 + µ tr(E2), (19)

where λ and µ are the Lamé coefficient introduced in linear elasticity. Un-
fortunately, such materials can reach infinite compression rates with finite
energy and do not satisfy the polyconvexity assumptions used in the exis-
tence theory. For these reason we do not use this material model here and
suggest to use polyconvex functions given in terms of invariants.

The simplest example of such materials is the neo-Hookean material

W = C10(I1 − 3). (20)

If we add a linear term, we get well-known Mooney-Rivlin material

W = C10(I1 − 3) + C01(I2 − 3). (21)



This energy function was further generalized into the third order poly-
nomial in invariants I1, I2 which fits well to numerous experimental data

W = C10(I1 − 3) + C01(I2 − 3) + C20(I1 − 3)2 + C02(I2 − 3)2 +

C11(I1 − 3)(I2 − 3) + C30(I1 − 3)3. (22)

Theorem (Rivlin-Eriksen representation theorem): For any isotropic hy-

perelastic material, the elastic potential W satisfies:

W (x, F ) = W (x, I1(E), I2(E), I3(E)). (23)

Invariants and their derivatives are given in the following table:

I1 = trE ∂I1
∂Eij

= δij

I2 = 1
2trE2 = 1

2EijEji
∂I2
∂Eij

= Eij

I3 = 1
3trE3 = 1

3EijEjkEki
∂I3
∂Eij

= EikEkj

(24)

∂W

∂Ekl

=
∂W

∂I1
δkl +

∂W

∂I2
Ekl +

∂W

∂I3
EkmEml (25)

∂

∂Eij

(
∂W

∂Ekl

)

=
∂2W

∂I2
1

δijδkl +
∂2W

∂I1∂I2
(Eijδkl + δijEkl) +

+
∂2W

∂I1∂I3
(EimEmjδkl + δijEkmEml) +

∂W

∂I2
δikδjl +

∂2W

∂I2
2

EijEkl +

+
∂2W

∂I2∂I3
(EimEmjEkl + EijEkmEml) +

∂W

∂I3
(δikEjl + δjlEik) +

+
∂2W

∂I2
3

(EinEnjEkmEml) (26)

4 Numerical solution technique

We recall the equilibrium equation in the form

∫

Ω

∂Ŵ

∂Fij
(x, F (u))

∂wi

∂xj
dx =

∫

Ω
fw dx +

∫

Γτ

gw da ∀w ∈ V. (27)

Such equation is generally nonlinear in the displacements u. We would
like to find the field of displacements u so that F(u) = 0 using Newton’s



method in the following way: in the (k+1)-th iteration of Newton’s method
we are looking for the field of displacements uk+1. The field of displace-
ments from k-th iteration uk is known and we must find increment h ∈ Rn

satisfying the equation

DF(uk) · h = −F(uk), (28)

then we add the increment h to the previous iteration so that

uk+1 = uk + h. (29)

Naturally,

F(u) =

∫

Ω

∂Ŵ

∂Fij
(x, F (u))

∂wi

∂xj
dx −

∫

Ω
fw dx −

∫

Γτ

gw da (30)

Now we need to compute the Fréchet derivative of F(u) as

DvF(u) =

∫

Ω

∂2Ŵ

∂Fij∂Fkl
Dx
︸︷︷︸

=0

∂w

∂xj
dx +

∫

Ω

∂2Ŵ

∂Fij∂Fkl
DvFkl(u)

∂wi

∂xk
dx. (31)

Based on definition Fkl(u) = δkl + ∂uk

∂xl
, we compute

DvFkl(u) = lim
t→0

1

t

(
δkl + ∂uk + t∂vk

∂xl

−
δkl + ∂uk

∂xl

)

=
∂vk

∂xl

. (32)

After substituting back we get

DvF(u) =

∫

Ω

(

∂2Ŵ (x, F (u))

∂Fij∂Fkl

∂vk

∂xl

)

∂wi

∂xj
dx, (33)

5 Finite Element Formulation

First we use the equivalence relation W = Ŵ (F ) = W̃ (C) following from
definition

Cij = FkiFkj = δij + 2Eij (34)

to transform F(u) and DF(u) in order to use internal energy functions in
terms of invariants and strain tensors Eij . For the derivatives then holds

∂W

∂Eij
=

∂W̃

∂Ckl

∂Ckl

∂Eij
= 2

∂W̃

∂Cij
(35)



Using previous relations we derive

Tij =
∂Ŵ

∂Fij
=

∂W̃

∂Ckl

∂Ckl

∂Fij
= 2

∂W̃

∂Cjk
Fik =

∂W

∂Ejk
Fik (36)

and after substitution into F(u) we obtain

F(u) =

∫

Ω

∂W

∂Ejk
Fik

∂wi

∂xj
dx −

∫

Ω
fw dx −

∫

Γτ

gw da. (37)

Exchanging indeces ik and using symmetry of Eij we get

F(u) =

∫

Ω

∂W

∂Eij
Fki

∂wi

∂xj
dx −

∫

Ω
fw dx −

∫

Γτ

gw da (38)

resp.

F(u) =

∫

Ω

∂W

∂Eij

[(

(δki +
∂uk

∂xi

)]
∂wk

∂xj
dx −

∫

Ω
fw dx −

∫

Γτ

gw da. (39)

Considering w = (0, Nt, 0) and writing b instead of F(u) we get the
component form and righ-hand side vectors into for the Newton’s method

bx =

∫

Ω

∂W

∂Eij

[(

(δxi +
∂ux

∂xi

)]
∂Nt

∂xj
dx −

∫

Ω
fxNt dx −

∫

Γτ

gxNt da

by =

∫

Ω

∂W

∂Eij

[(

(δyi +
∂uy

∂xi

)]
∂Nt

∂xj
dx −

∫

Ω
fyNt dx −

∫

Γτ

gyNt da (40)

bz =

∫

Ω

∂W

∂Eij

[(

(δzi +
∂uz

∂xi

)]
∂Nt

∂xj
dx −

∫

Ω
fzNt dx −

∫

Γτ

gzNt da

Now, using the relation Cij = δij + 2Eij we can derive

∂2W

∂Eij∂Ekl

= 4
∂2W

∂Cij∂Ckl

(41)

and together with the definition of the second Piola-Kirchhoff stress ten-
sor

Sij = 2
∂W

∂Cij
(42)



we get

∂

∂Fmn

(

∂Ŵ

∂Fij

)

= 4
∂2W̃

∂Cjk∂Cns
FmsFik + Sjnδim =

∂2W

∂Ejk∂Ens
FmsFik + Sjnδim(43)

Substituting into

DvF(u) =

∫

Ω

∂2W

∂Fij∂Fmn

∂vi

∂xj

∂wm

∂xn
dx (44)

leads after some rearrangements to

DvF(u) =

∫

Ω

[
∂2W

∂Ejk∂Ens
Fik

∂vi

∂xj
Fms

∂wm

∂xn
+ Sjn

∂vi

∂xj
δim

∂wm

∂xn

]

dx = (45)

=

∫

Ω

{
∂2W

∂Ejk∂Ens

[(

δik +
∂ui

∂xk

)
∂vi

∂xj

] [(

δms +
∂um

∂xs

)
∂vm

∂xn

]

+ Sjn
∂vi

∂xj

∂wi

∂xn

}

dx

Exchanging indeces ki,sk,nl,ms,ir in the first term, ji,nj,ik in the second
term and writing au instead of DvF(u) we have

au =

∫

Ω

{
∂2W

∂Eij∂Ekl

[(

δri +
∂ur

∂xi

)
∂vr

∂xj

] [(

δsk +
∂us

∂xk

)
∂vs

∂xl

]

+ Sij
∂vk

∂xi

∂wk

∂xj

}

dx(46)

Taking w = (0, Nt, 0) and v = h = (hx, hy, hz) where

hx =
∑Nh

u=1 hxuNu hy =
∑Nh

u=1 hyuNu hz =
∑Nh

u=1 hzuNu (47)

we get the components of the stiffness matrix as



axx =

∫

Ω

{
∂2W

∂Eij∂Ekl

[(

δxi +
∂ux

∂xi

)
∂Nu

∂xj

] [(

δxk +
∂ux

∂xk

)
∂Nt

∂xl

]

+ Sij
∂Nu

∂xi

∂Nt

∂xj

}

dx

axy =

∫

Ω

{
∂2W

∂Eij∂Ekl

[(

δyi +
∂uy

∂xi

)
∂Nu

∂xj

] [(

δxk +
∂ux

∂xk

)
∂Nt

∂xl

]}

dx

axz =

∫

Ω

{
∂2W

∂Eij∂Ekl

[(

δzi +
∂uz

∂xi

)
∂Nu

∂xj

] [(

δxk +
∂ux

∂xk

)
∂Nt

∂xl

]}

dx

ayx =

∫

Ω

{
∂2W

∂Eij∂Ekl

[(

δxi +
∂ux

∂xi

)
∂Nu

∂xj

] [(

δyk +
∂uy

∂xk

)
∂Nt

∂xl

]}

dx

ayy =

∫

Ω

{
∂2W

∂Eij∂Ekl

[(

δyi +
∂uy

∂xi

)
∂Nu

∂xj

] [(

δyk +
∂uy

∂xk

)
∂Nt

∂xl

]

+ Sij
∂Nu

∂xi

∂Nt

∂xj

}

dx

ayz =

∫

Ω

{
∂2W

∂Eij∂Ekl

[(

δzi +
∂uz

∂xi

)
∂Nu

∂xj

] [(

δyk +
∂uy

∂xk

)
∂Nt

∂xl

]}

dx

azx =

∫

Ω

{
∂2W

∂Eij∂Ekl

[(

δxi +
∂ux

∂xi

)
∂Nu

∂xj

] [(

δzk +
∂uz

∂xk

)
∂Nt

∂xl

]}

dx

azy =

∫

Ω

{
∂2W

∂Eij∂Ekl

[(

δyi +
∂uy

∂xi

)
∂Nu

∂xj

] [(

δzk +
∂uz

∂xk

)
∂Nt

∂xl

]}

dx

azz =

∫

Ω

{
∂2W

∂Eij∂Ekl

[(

δzi +
∂uz

∂xi

)
∂Nu

∂xj

] [(

δzk +
∂uz

∂xk

)
∂Nt

∂xl

]

+ Sij
∂Nu

∂xi

∂Nt

∂xj

}

dx

Finally, the (k+1)-th iteration of Newton’s method consists of two steps:
(i) First, we solve the following system of equations

Ak
· h = bk, (48)

where the components of the matrix A and vectors h, b are defined as

A =





axx axy axz

ayx ayy ayz

azx azy azz



 (49)

b =





bx

by

bz



 h =





hx

hy

hz



 (50)

(ii) Next, we update the field of displacements

uk+1 = uk + h (51)



6 Conclusion

In the paper we showed finite element approximation of the non-linear three-
dimensional finite elasticity problem for compressible material model. We
also described the strategy of solution of the non-linear system of equations
arised.

Currently we are developing and testing finite element code in program-
ming language FORTRAN. The linearized system will be solved by frontal
(direct) solver. We will also study possibility of application of iterative
solvers, esp. conjugate gradient solver with BDDC preconditioning de-
scribed in [3], [6], which is also very promising from the parallelisation point
of view.
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