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Abstract

The purpose of the present work is to give a brief description of the
finite elasticity and of its approximation via finite element method. We
formulate the problem for the case of compressible elasticity. Weak
formulation allows to use any isotropic hyperelastic material model
that satisfies polyconvexity assumptions. Discretization using FEM
leads to systems of non-linear equations. Such systems of equations
can be solved by Newton’s method and its modifications. In each
iteration of Newton’s method a linearized system of equations has to
be solved. We propose to use BDDC preconditioning iterative method
for the solution of linear system of equations.

1 Introduction

The main object of the finite three-dimensional elasticity is to predict changes
in the geometry of solid bodies. The starting point of the classical theory of
linear elasticity is the concept of small strains: the deformation of structures
under working loads are not detectable by human eye. In contrast, many
modern situations involve large deformations. The nonlinear behavior of
polymers and synthetic rubbers are such examples. Applications in biome-
chanics are even more critical because the most of vital organs such as eye,
heart trachea or vocal apparatus fulfill their function only because of their
large deformations. In this framework the concept of finite elasticity covers
the simplest case where internal forces (stresses) depend only on the present
deformation of the body and not on the history. In the paper we show the
finite element approximation and strategy of solution of this nonlinear and
’visible’ stress-strain relationship.
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2 Formulation of elasticity problem

Let us describe the deformation of a body by ϕ : Ω → Ωϕ, and the occupied
domain we decompose in an interior and boundary as Ω̄ϕ = Ωϕ ∪ Γϕ, (i.e.
Γϕ = ∂Ωϕ).

The classic formulation of equilibrium equation we write as

∂T
ϕ
ij

∂x
ϕ
j

+ f
ϕ
i = 0. (1)

2.1 Weak formulation

Multiplication by test function v
ϕ
i , integration over the whole domain Ω̄ϕ

and application of Green’s theorem gives

∫

∂Ωϕ

T
ϕ
ijn

ϕ
j v

ϕ
i daϕ −

∫

Ωϕ

T
ϕ
ij

∂v
ϕ
i

∂x
ϕ
j

dxϕ +

∫

Ωϕ

f
ϕ
i vϕdxϕ = 0. (2)

On the parts of boundary Γϕ = Γϕ
v ∪Γϕ

τ we prescribe following boundary
conditions

T
ϕ
ijn

ϕ
j = g

ϕ
i on Γϕ

τ (3)

v
ϕ
i = 0 on Γϕ

v . (4)

After some rearrangements we obtain the weak formulation of equilib-
rium equations of a body after deformation

∫

Ωϕ

T
ϕ
ij

∂v
ϕ
i

∂x
ϕ
j

dxϕ =

∫

Ωϕ

f
ϕ
i v

ϕ
i dxϕ +

∫

Γ
ϕ
τ

g
ϕ
i v

ϕ
i daϕ. (5)

Unfortunatelly, in finite elasticity, Ωϕ is unknown and may be very dif-
ferent from the known reference configuration Ω. Therefore, it is more con-
venient to rewrite the equilibrium equations on Ω, using the formula for
changes of variables in multiple integrals. Doing this, using Piola transform
and considering that x = ϕ−1(xϕ) we finally obtain the following weak form
of equilibrium equation in the reference configuration

∫

Ω

Tik
∂vi

∂xk

dx =

∫

Ω

fivi dx +

∫

Γτ

givi da ∀ vi ∈ V, (6)
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Considering the following constitutive relation for compressible material

Tij(u) =
∂Ŵ

∂Fij
(x, F (u)), (7)

we get

∫

Ω

∂Ŵ

∂Fij
(x, F (u))

∂vi

∂xj
dx =

∫

Ω

fivi dx +

∫

Γτ

givi da ∀ v ∈ V. (8)

3 Constitutive relations

The simplest law uses a quadratic isotropic function of the Green strain
tensor E = 1

2
(C − I). So called St. Venant material unfortunately can

reach infinite compression rates with finite energy and do not satisfy the
polyconvexity assumptions used in the existence theory. For these reason we
do not use this material model here and suggest to use polyconvex functions
given in terms of invariants.

The simplest example of such materials is the neo-Hookean material

W = C10(I1 − 3). (9)

If we add a linear term, we get well-known Mooney-Rivlin material

W = C10(I1 − 3) + C01(I2 − 3). (10)

This energy function was further generalized into the third order poly-
nomial in invariants I1, I2 which fits well to numerous experimental data

W = C10(I1 − 3) + C01(I2 − 3) + C20(I1 − 3)2 + C02(I2 − 3)2 +

C11(I1 − 3)(I2 − 3) + C30(I1 − 3)3. (11)

Theorem (Rivlin-Eriksen representation theorem): For any isotropic hy-

perelastic material, the elastic potential W satisfies:

W (x, F ) = W (x, I1(E), I2(E), I3(E)). (12)

Invariants and their derivatives are given in the following table:

I1 = trE ∂I1
∂Eij

= δij

I2 = 1
2
trE2 = 1

2
EijEji

∂I2
∂Eij

= Eij

I3 = 1

3
trE3 = 1

3
EijEjkEki

∂I3
∂Eij

= EikEkj

(13)
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4 Numerical solution technique

Equilibrium equations are generally nonlinear in the displacements u. We
would like to find the field of displacements u so that F(u) = 0 using New-
ton’s method in the following way: in the (k+1)-th iteration of Newton’s
method we are looking for the field of displacements uk+1. The field of
displacements from k-th iteration uk is known and we must find increment
h ∈ Rn satisfying the equation

DF(uk) · h = −F(uk), (14)

then we add the increment h to the previous iteration so that

uk+1 = uk + h. (15)

Naturally, in our case,

F(u) =

∫

Ω

∂Ŵ

∂Fij
(x, F (u))

∂wi

∂xj
dx −

∫

Ω

fw dx −

∫

Γτ

gw da (16)

and the Fréchet derivative of F(u) is

DvF(u) =

∫

Ω

(
∂2Ŵ (x, F (u))

∂Fij∂Fkl

∂vk

∂xl

)
∂wi

∂xj
dx, (17)

5 Finite Element Formulation

First we use the equivalence relation W = Ŵ (F ) = W̃ (C) following from
definition Cij = FkiFkj = δij + 2Eij to transform F(u) and DF(u) in order
to use internal energy functions in terms of invariants and strain tensors Eij .

F(u) =

∫

Ω

∂W

∂Eij

[(
(δki +

∂uk

∂xi

)]
∂wk

∂xj
dx −

∫

Ω

fw dx −

∫

Γτ

gw da. (18)

and using the second Piola-Kirchhoff stress tensor Sij = 2 ∂W
∂Cij

we get

DvF(u) =

∫

Ω

{
∂2W

∂Eij∂Ekl

[(
δri +

∂ur

∂xi

)
∂vr

∂xj

] [(
δsk +

∂us

∂xk

)
∂vs

∂xl

]
+ Sij

∂vk

∂xi

∂wk

∂xj

}
dx(19)
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Taking w = (0, Nt, 0) and v = h = (hx, hy, hz) where

hx =
∑Nh

u=1 hxuNu hy =
∑Nh

u=1 hyuNu hz =
∑Nh

u=1 hzuNu (20)

we get the components of the stiffness matrix and right hand side vectors
into Newton’s method. Finally, the (k+1)-th iteration of Newton’s method
consists of two steps:

(i) First, we solve the following system of equations

Ak · h = bk, (21)

where the components of the matrix A and vectors h, b are defined as

A =




axx axy axz

ayx ayy ayz

azx azy azz


 (22)

b =




bx

by

bz


 h =




hx

hy

hz


 (23)

(ii) Next, we update the field of displacements

uk+1 = uk + h (24)

6 Formulation of BDDC method

Clearly, in each step of Newton’s iterations we solve a linear system of equa-
tion. Here, we describe the BDDC preconditioning method. This method
is closely related to FETI-DP method that is also briefly described. Let us
decompose the domain Ω into the nonoverlapping set of substructures (sub-
domains) Ωi, where i = 1, ...N and N means the number of subistructures.
Let Ki be the stiffness matrix and vi the vector of degrees of freedom (dofs)
for substructure i. We want to solve the problem in decomposed form

1

2
vT Kv − vT f → min (25)
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where

K =



K1 . . . 0
...

. . .
...

0 . . . KN


 , v =




v1

...
vN


 , f =




f1

...
fN




subject to continuity dofs between substructures. Partitioning the dofs in
each subdomain i into internal and interface (boundary)

Ki =

[
Kii

i Kib
i

Kib
i

T
Kbb

i

]
, vi =

[
vi
i

vb
i

]
, fi =

[
f i

i

f b
i

]
,

and eliminating the interior dofs we obtain the problem reduced to interfaces

1

2
wT Sw − wT g → min, S = diag(Si), Si = Kbb

i − Kib
i

T
Kii−1

i Kib
i ,

again subject to continuity of dofs between substructures

In BDD type methods, the continuity of dofs between substructures is
enforced by imposing common values on substructures interfaces: w = Ru

for some u, where

R =




R1

...
RN




and Ri is the operator of restriction of global dofs on the interfaces to sub-
structure i. In FETI type methods, continuity of dofs between substructures
is enforced by the constraint Bw = 0, where the entries of B are typically
0,±1. By construction, we have

RiR
T
i = I, range R = nullB.

A BDDC or FETI-DP method is specified by the choice of coarse dofs
and the choice of weights for intersubdomain averaging. To define the coarse
problem for BDDC, choose a matrix QT

P that selects coarse dofs uc from
global interface dofs u, e.g. as values at corners or averages on sides:

uc = QT
P u.

We define W̃ as the space of all vectors of substructure interface dofs that
are continuous between substructures,

W̃ = {w ∈ W : ∃uc : Cw = Rcuc} = {w ∈ W : Cw ∈ range Rc} (26)
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where

Ci = RciQ
T
P RT

i , C =




C1 . . . 0
...

. . .
...

0 . . . CN


 , Rc =




Rc1

...
RcN


 , (27)

and the matrix Rci restricts the vector all coarse dof values into a vector
of coarse dof values that can be nonzero on substructure i . The dual
approach in FETI-DP is to construct QD such that

W̃ =
{
w ∈ W : QT

DBw = 0
}

(28)

In BDDC, the intersubdomain averaging is defined by the matrices

DP = diag (DPi)

that form a decomposition of unity,

RT DP R = I.

The corresponding dual matrices in FETI-DP are are

BD = [DD1B1, . . . DDNBN ] ,

where the dual weights DDi are defined so that

BT
DB + RRTDP = I. (29)

The BDDC method is then the method of conjugate gradients for the
assembled system Au = RT g with the system matrix

A = RT SR

and the preconditioner P defined by

Pr = RT DP (Ψuc + z) ,

where uc is the solution of the coarse problem

ΨT SΨuc = ΨT DT
P Rr

and z is the solution of

Sz + CT µ = DT
P Rr

Cz = 0
,

which is a collection of independent substructure problems. The coarse basis
functions Ψ are defined by energy minimization,

[
S CT

C 0

] [
Ψ
Λ

]
=

[
0
Rc

]
.
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7 Conclusion

In the paper we showed finite element approximation of the non-linear three-
dimensional finite elasticity problem for compressible material model. We
also described the strategy of solution of the non-linear system of equations
arised.

The linearized system of equations will be solved by an iterative solver of
conjugate gradient type with BDDC preconditioning proposed and studied
in [1], [3]. Currently we are developing and testing this finite element code
in programming language FORTRAN. We will also continue in developing
of adaptive strategies for the selection of constraints studied in the paper
[4]. The whole code will be finally parallelized using MPI library.
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and by the Program Information Society under project IET 400300415.

References

[1] Dohrmann, C.R.: A preconditioner for substructuring based on con-
strained energy minimization, SIAM J. Sci. Comput., 25(1):246-258,
2003

[2] Le Tallec, P.: Numerical Methods for Nonlinear Three-dimensional
Elasticity, in ’Handbook of Numerical Analysis, Vol. III’, (P. G. Ciarlet
and J. L. Lions eds.) North-Holland, 1994

[3] Mandel, J., Dohrmann, C.R.: Convergence of balancing domain
decomposition by constraints and energy minimization, Numer. Linear

Algebra Appl. 10:639-659, 2003

[4] Mandel, J., Soused́ık, B.: Adaptive Coarse Space Selection in
BDDC and FETI-DP Iterative Substructuring Methods: Optimal Face
Degrees of Freedom, 16th International Domain Decomposition Con-

ference, New York, January 2005, Lecture Notes in Computational Sci-

ence, submitted

[5] Soused́ık, B., Burda, P.: Finite Element Formulation of the Three-
dimensional Non-linear Elasticity Problem, Seminar in Applied Math-

ematics, Czech Technical University in Prague, Prague, April 2005

8


