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1. INTRODUCTION

Numerical solution of linear problems arising from discretization by finite elements is important in many areas
of engineering. The matrix of the system is typically large, sparse, and often ill-conditioned. For large problems,
iterative methods such as the preconditioned conjugate gradients (PCG) are usually less expensive in terms of memory
and computational time. However, their convergence rate deteriorates with growing condition number of the solved
linear system and good preconditioning becomes essential. The need of first-rate preconditioners tailored to the solved
problem, which can be implemented in parallel, gave rise to the field of domain decomposition methods [12].

The Balancing Domain Decomposition based on Constraints (BDDC) [4, 9] is one of the most advanced precondi-
tioners of this class derived for symmetric positive definite problems.

We have implemented a parallel version of the BDDC method and verified its performance on problems arising
from linear elasticity problems. Then the method was successfully applied to the Stokes problem, which is beyond the
standard theory of the BDDC method.

2. BDDC DOMAIN DECOMPOSITION METHOD

The Balancing Domain Decomposition by Constraints (BDDC) method can be understood as a preconditioner for
large systems arising from finite element analysis. It was introduced by Dohrmann [4] in 2003 and the theory was
developed by Mandel and Dohrmann in [8]. The preconditioner was reformulated by Li and Widlund in [7].

Let Ω be a bounded domain in R2 or R3, let U be a finite element space of piecewise polynomial functions v
continuous on Ω and U ′ its dual space. Let a(·, ·) be a bilinear form on U × U and f ∈ U ′, and let 〈·, ·〉 denote the
duality pairing of U ′ and U . Consider an abstract variational problem: Find u ∈ U such that

(1) a(u, v) = 〈f, v〉 ∀ v ∈ U .

For the case of linear elasticity,

a(u, v) =
∫

Ω

(λ(∇ · uh)(∇ · vh) +
1
2
µ(∇uh +∇T uh) : (∇vh +∇T vh))dΩ,(2)

〈f, v〉 =
∫

Ω

f · vhdΩ.(3)

Here solution u = uh represents the discretized vector field of displacement, λ and µ represent the first and the second
Lammé’s constant, respectively, and f represents the external load.
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For the case of steady Stokes flow we adopt the following slightly unusual notation

a(u, v) = ν

∫
Ω

∇uh : ∇vhdΩ−
∫

Ω

ph∇ · vhdΩ +
∫

Ω

ψh∇ · uhdΩ,(4)

〈f, v〉 =
∫

Ω

f · vhdΩ.(5)

Solution u = (uh, ph) consists of the discretized vector field of velocity and the discretized scalar field of pressure, ν
represents the kinematic viscosity of the fluid, f represents the external load, and v = (vh, ψh).

For the case of linear elasticity, a(u, v) is a symmetric positive definite bilinear form on U×U , while for the Stokes
problem, it is symmetric indefinite [2, 5].

Write the matrix problem corresponding to (1) as

(6) Au = f.

The domain Ω is decomposed into N nonoverlapping subdomains Ωi, i = 1, ..., N , with characteristic size H ,
which form a conforming triangulation of the domain Ω. Each subdomain is a union of several finite elements of the
underlying mesh with characteristic mesh size h, i.e. nodes of the finite elements between subdomains coincide.

Unknowns common to at least two subdomains are called boundary unknowns and the union of all boundary
unknowns is called the interface Γ.

Let Wi be the space of finite element functions on subdomain Ωi and put

(7) W = W1 × · · · ×WN .

It is the space where subdomains are completely disconnected, and functions on them independent of each other.
Clearly, U ⊂W .

The main idea of the BDDC preconditioner in the abstract form [10] is to construct an auxiliary finite dimensional
space W̃ such that

(8) U ⊂ W̃ ⊂W,

and extend the bilinear form a (·, ·) to a form ã (·, ·) defined on W̃ × W̃ , such that solving the variational problem (1)
with ã (·, ·) in place of a (·, ·) is cheaper and can be split into independent computations performed in parallel. Then
the solution restricted to U is used for the preconditioning of (6). Space W̃ contains functions continuous at selected
coarse degrees of freedom such as values at selected nodes called corners. This space corresponds to a fictious mesh
with connections limited to corners, as illustrated in Figure 1.

In computation, the corresponding matrix denoted Ã is used. It is larger than the original matrix of the problem
A, but it possesses a simpler structure suitable for direct solution methods. This is the reason why it can be used as a
preconditioner.

The projection E : W̃ → U is realized as a weighted average of values from different subdomains at unknowns on
the interface Γ, thus resulting in functions continuous across the interface.

Let r ∈ U ′ be the residual in an iteration of an iterative method. The BDDC preconditioner MBDDC : U ′ → U in
the abstract form (see [10]) produces the preconditioned residual v ∈ U as

MBDDC : r → v = Ew,

where w ∈ W̃ is obtained as the solution to problem

(9) w ∈ W̃ : ã (w, z) = (r, Ez) ∀z ∈ W̃ ,

or in terms of matrices as

(10) v = EÃ−1ET r.

3. NUMERICAL RESULTS

Our parallel implementation of the BDDC preconditioner has been extensively tested on problems with symmetric
positive definite matrices arising from linear elasticity (e.g. [11]). The current version is based on the multifrontal
massively parallel sparse direct solver MUMPS [1], which is used for factorization of matrix Ã in (10). The parallelism
is obtained through the parallel direct solver used for factorization of the matrix of preconditioner, in combination with
parallel PCG method.
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FIGURE 1. Example of an actual mesh (top) and the corresponding fictious mesh for construction
of BDDC preconditioner (bottom), blue dots mark corners

The applicability of the preconditioner to the steady problem of Stokes flow was tested, and results are presented in
this contribution. The system matrix of the Stokes problem is symmetric, but indefinite. For this reason, the standard
theory of BDDC does not cover this case. A way to assure positive definiteness of the preconditioned operator based on
BDDC was presented by Li and Widlund [6]. Their method relies on coarse degrees of freedom consisting of special
averages on edges of subdomains. However, the approach is limited to piecewise constant pressure approximation.
For P2/P1 and Q2/Q1 Taylor-Hood finite elements (e.g. [2]) used in our computations, we were not able to obtain
contributive results by that method. Instead, presented problems were successfully solved with basic constraints as
continuity at corners in the BDDC preconditioner setup. For the Stokes problem, matrix Ã is symmetric indefinite and
as such is factorized by the MUMPS solver. Thus, the method leads to an indefinite preconditioner.

The method was first tested on the problem of lid driven cavity, a popular benchmark problem for methods for vis-
cous flow. The domain is a unit square with homogeneous boundary conditions except horizontal velocity prescribed
on the upper side. Thus, the entire motion in the cavity is driven by viscosity of the fluid. The case of uniform mesh
of 128 ×128 Q2/Q1 elements was chosen. It was divided into 8 subdomains by METIS package (Figure 2).

Resulting streamlines and plot of pressure for Reynolds number 10, 000 are presented in Figure 3. Streamlines are
symmetric along the vertical centreline for the Stokes problem.

Solution of the problem by our earlier solver based on a serial frontal algorithm took 231 seconds on one 1.5 GHz
Intel Itanium 2 processor of SGI Altix 4700 computer in CTU Supercomputing Centre, Prague, compared to 17.2
seconds on 8 processors of the same computer necessary for the solution by the new implementation of BDDC. The
stopping criterion of PCG was chosen as ‖r‖2/‖g‖2 < 10−3, resulting in 59 PCG iterations.

In the second example, a geometry with a sudden reduction of diameter is considered. Flow in this geometry
described by the Navier-Stokes model was studied in [3], with respect to precise solution of corner singularities. Due
to the symmetry of the channel, only the upper part is considered in the computation. Division into 4 subdomains
obtained by METIS is presented in Figure 4.

Solution obtained by BDDC method at Reynolds number 250 for the Stokes flow is presented in Figure 5. The
stopping criterion of PCG was chosen as ‖r‖2/‖g‖2 < 10−3, resulting again in 59 PCG iterations. Note, that fluid
flows from right to left in the plot of pressure in order to show the situation at corners of domain.

To investigate the performance of the BDDC preconditioner in combination with standard iterative methods for
general matrices, namely BICGSTAB and GMRES, we have also performed several preliminary experiments with
our serial code written in MATLAB. In Table 1, we compare the resulting number of iterations of these methods
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FIGURE 2. Mesh and its division into 8 subdomains for lid driven cavity, 128× 128 elements
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FIGURE 3. Streamlines (left) and pressure (right) for lid driven cavity, 128× 128 elements
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FIGURE 4. Mesh and its division into 4 subdomains for channel with sudden reduction of diameter,
only the upper part of the channel is considered for symmetry.

preconditioned by BDDC and by the ILU preconditioner for several values of treshold τ for dropping entries in
incomplete factorization for the cavity problem. The desired tolerance of relative residual for these methods was
chosen as ‖r‖2/‖g‖2 < 10−8. Where ‘n/a’ is present in the table, BICGSTAB failed to converge.

without BDDC BDDC ILU ILU ILU
iterative method preconditioner corners only corners+faces τ = 10−3 τ = 10−4 τ = 10−5

BICGSTAB n/a 45 22 n/a 331 10
GMRES 759 49 38 472 87 18

TABLE 1. Number of iterations for BICGSTAB and GMRES without preconditioning, and pre-
conditioned by BDDC and ILU, lid driven cavity.
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FIGURE 5. Detail of streamlines (left) and pressure (right) for channel with sudden reduction of
diameter, Re = 250

4. CONCLUSION

In our contribution, we present a parallel implementation of the BDDC preconditioner. After a verification of the
solver on a number of problems from linear elasticity analysis, we explore the application of BDDC to problems
with indefinite matrices, namely the Stokes problem. Although the available theory either does not cover this case,
or treats it differently [6], the presented experiments suggest promising ways for this effort. Without claiming that
this is the general case, we have performed several experiments, for which PCG was successfully used even if the
system was indefinite. The reason why a breakdown was not observed lies probably in the indefiniteness of the BDDC
preconditioner for this case and deserves further investigation. Our serial experiments also led to promising results
for combination of BDDC method with standard iterative methods for solving systems with general matrices, such as
BICGSTAB and GMRES.
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[11] Š ÍSTEK, J., NOVOTNÝ, J., MANDEL, J., ČERTÍKOVÁ, M., AND BURDA, P. BDDC by a frontal solver and stress computation in a hip joint

replacement. Math. Comp. Simul. (2009). Available online at http://dx.doi.org/10.1016/j.matcom.2009.01.002.
[12] TOSELLI, A., AND WIDLUND, O. Domain decomposition methods—algorithms and theory, vol. 34 of Springer Series in Computational

Mathematics. Springer-Verlag, Berlin, 2005.


