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aDepartment of Mathematical Sciences, University of Colorado at Denver,

P.O. Box 173364, Campus Box 170, Denver, CO 80217, USA

bDepartment of Mathematics, Faculty of Civil Engineering, Czech Technical

University in Prague, Thákurova 7, 166 29 Prague 6, Czech Republic

Abstract

We propose a class of methods for the adaptive selection of the coarse space of
the BDDC and FETI-DP iterative substructuring methods. The methods work
by adding coarse degrees of freedom constructed from eigenvectors associated
with intersections of selected pairs of adjacent substructures. It is assumed that
the starting coarse degrees of freedom are already sufficient to prevent relative
rigid body motions in any selected pair of adjacent substructures. A heuristic
indicator of the the condition number is developed and a minimal number of coarse
degrees of freedom is added to decrease the indicator under a given threshold. It is
shown numerically on 2D elasticity problems that the indicator based on pairs of
substructures with common edges predicts the actual condition number reasonably
well, and that the method can select adaptively the hard part of the problem and
concentrate computational work there to achieve good convergence of the iterations
at a modest cost.

1 Introduction

The BDDC and FETI-DP methods are iterative substructuring methods that
use coarse degrees of freedom associated with corners and edges (in 2D) or faces
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(in 3D, further on just faces) between substructures, and they are currently
the most advanced versions of the BDD and FETI families of methods. The
BDDC method by Dohrmann [3] is a Neumann-Neumann method of Schwarz
type [4]. The BDDC method iterates on the system of primal variables reduced
to the interfaces between the substructures, and it can be understood as
a further development of the BDD method by Mandel [17]. The FETI-DP
method by Farhat et al. [5,6] is a dual method that iterates on a system
for Lagrange multipliers that enforce continuity on the interfaces, and it is a
further development of the FETI method by Farhat and Roux [7]. Algebraic
relations between FETI and BDD methods were pointed out by Rixen et
al. [21], Klawonn and Widlund [10], and Fragakis and Papadrakakis [8].
A common bound on the condition number of both the FETI and the BDD
method in terms of a single inequality in was given in [10]. In the case of corner
constraints only, methods same as BDDC were derived as primal versions of
FETI-DP by Fragakis and Papadrakakis [8], who have also observed that
the eigenvalues of BDD and a certain version of FETI are identical, and by
Cros [2]. Mandel, Dohrmann, and Tezaur [19] have formulated the methods in
terms of general coarse degrees of freedom without treating the corner degrees
of freedom in a special way, proved that the eigenvalues of the preconditioned
operators of BDDC and FETI-DP are the same except possibly for zero and
one, and obtained a simplified and fully algebraic version (i.e., without any
undetermined constants) of a common condition number estimate for BDDC
and FETI-DP, related to an estimate by Klawon and Widlund [10] for BDD
and FETI. The present work builds on the algebraic condition estimate from
[19]. Simpler proofs of the equality of eigenvalues were recently obtained by
Li and Widlund [15] and by Brenner and Sung [1], who also gave an example
when BDDC has an eigenvalue equal to one but FETI-DP does not. However,
in practice, there are other eigenvalues very close to one, and the performance
of the FETI-DP and BDDC methods is essentially identical [19].

In this paper, we build on the algebraic estimate from [19] to develop an
adaptive fast method. This estimate can be computed from the matrices
in the method as the solution of an eigenvalue problem. By restricting the
eigenproblems onto pairs of adjacent substructures, we obtain a reliable
heuristic indicator of the condition number. Finally, we show how to use the
eigenvectors, which are supported on subsets of the intersections of adjacent
substructures, to build coarse degrees of freedom that result in an optimal
decrease of the heuristic condition number indicator. We show on numerical
examples that the indicator is quite close and that our adaptive approach can
result in the concentration of computational work in a small troublesome part
of the problem, which leads to a good convergence behavior at a small added
cost.

We also give a new, very simple variational setting of BDDC, which is an
abstract version of partial subassembly described in [16], and a short proof of
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the condition number bound. However, we do not adopt the change of variables
introduced in [16], which would seem to require more work in our setting.

Related work on adaptive coarse space selection has focused on the global
problem of selecting the smallest number of corners to prevent coarse
mechanisms (Lesoinne [14]) and the smallest number of (more general) coarse
degrees of freedom to assure asymptotically optimal convergence estimates
(Klawonn and Widlund [11]). This required considering potentially large
chains of substructures, based on the global behavior of the structure. Our goal
is different. We assume that the starting coarse degrees of freedom (i.e., those
present before the adaptive selection of additional ones) are already sufficient
to prevent relative rigid body motions of any two adjacent substructures that
we compute the indicator and additional coarse degrees of freedom from. Our
methodology is local in nature, involving only two substructures at a time.
This methodology is quite general and dimension independent. In this paper,
the application is 2D, the selected pairs of adjacent substructures are those
sharing a common edge, and the starting coarse degrees of freedom are all
displacements at substructure corners. A brief presentation of the main result
of this paper, without proofs, is contained in the conference paper [20].

The paper is organized as follows. In Sec. 2, we present the fundamentals of the
BDDC and FETI-DP methods and the condition number bound. In Sec. 3, we
derive an efficient eigenvalue formulation for computing the condition number
bound. In Sec. 4, we develop the heuristic condition number indicator. In Sec.
5, we describe the method of selection of additional coarse degrees of freedom.
In Sec. 6, we report on numerical results, which confirm the validity of the
heuristic indicator and demonstrate the efficiency of the proposed algorithm.

2 BDDC and FETI-DP

In this section, we first introduce substructuring concepts on a model problem
(Sec. 2.1). Then we define BDDC in a simple variational form and give the
bound on the condition number (Sec. 2.2). In Sec. 2.3, we show how the
spaces in the variational form arise in terms of linear algebra only, using
only algebraic properties of the matrices involved. The matrix formulation
is enough to formulate the BDDC and the FETI-DP algorithms in matrix
form in Sec. 2.4.

All spaces are Euclidean spaces of column vectors. We make no distinction
between a linear operator and its matrix. The symbol T denotes the transpose.
For a symmetric positive semidefinite matrix S, ‖u‖S denotes the seminorm√

uT Su. For a symmetric positive semidefinite bilinear form c, ‖u‖c denotes

the seminorm
√

c (u, u).
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2.1 Substructuring for a Model Problem

To fix ideas, we first show how the spaces and operators we will work with
arise in the standard substructuring setting for a model elliptic problem,
cf., e.g., [22]. Consider the plane stress problem on a bounded polygonal
domain Ω ⊂ R

2, decomposed into N nonoverlapping polygonal subdomains
Ωi, i = 1, ..., N (Fig. 1). Subdomain Ωi will be called substructure i. Each
substructure is the union of Lagrangean Q1 finite elements, and the nodes of
the elements on the interfaces between substructures coincide. The boundary
of Ωi is denoted by ∂Ωi. Define

Γ =
N⋃

i=1

∂Ωi, Γi = Γ ∩ ∂Ωi.

Each node is associated with two degrees of freedom. The interface Γ is
composed of substructure edges, which are regarded as sets open in Γ, and
of the substructure vertices (the endpoints of the edges), called corners. By
subassembly, we obtain local stiffness matrices of the substructures. Let Si be
Schur complement obtained by eliminating all degrees of freedom in the local
stiffness matrix of substructure i, other than on Γi.

In the remainder of this paper, we only need the following concepts of
substructuring rather than the specific properties of the model problem. The
space of all vectors of local degrees of freedom on Γi is denoted by Wi, and
we have Si : Wi → Wi. The matrices Si are assumed to be symmetric and
positive semidefinite. The space of all vectors of global degrees of freedom on
Γ is denoted by U . The vectors of the local substructure degrees of freedom
wi ∈ Wi and the vector of the global degrees of freedom u ∈ U are related by
wi = Riu, where Ri is the restriction operator (a zero-one matrix). Clearly,

Ri : U → Wi, RiR
T
i = I, i = 1, . . . , N. (1)

Let
W = W1 × · · · × WN ,

and consider vectors and matrices in the block form

w =




w1

...

wN




, w ∈ W, R =




R1

...

RN




, S =




S1

. . .

SN




.

The problem to be solved is the constrained minimization of energy,

1

2
a (w,w) − gT w → min subject to w ∈ Ŵ , (2)
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where

Ŵ = range R, R : U → W, (3)

is the space of all vectors of degrees of freedom on the substructures that
coincide on the interfaces, and

a (w, z) = wT Sz, w, z ∈ W. (4)

Equivalently, (2) can be written in the assembled form as the system of linear
algebraic equations

Au = RT g, where A = RT SR. (5)

Consider the matrix

B = [B1, . . . , BN ] ,

defined as follows. Each row B corresponds to a degree of freedom common
to a pair of substructures i and j. The entries of the row are zero except for
one +1 in the block i and one −1 in the block j, so that the condition

Bw = 0 ⇐⇒ w ∈ Ŵ ,

that is

range R = null B. (6)

An important ingredient of substructuring methods is the averaging operator

E = RRT DP , (7)

where DP : W → W is a given weight matrix such that the decomposition
of unity property holds, RT DP R = I. Clearly, E is a projection. In terms of
substructuring, E is an averaging operator that maps the substructure local
degrees of freedom to global degrees of freedom.

In the remainder of Sec. 2, except for (18), we do not rely on the substructuring
framework. Rather, only the algebraic properties expressed by the numbered
equations (1)–(7) are assumed. We proceed in an abstract manner, using the
substructuring concepts for illustration only.

From (6), Bw = 0 implies (I − E) w = 0, so there exist a matrix BD such
that I − E = BT

DB, hence

BT
DB + RRT DP = I. (8)

In computations, we use the matrix BD constructed from B as

BD = [DD1B1, . . . , DDNBN ] ,

where the matrices DDi are determined from DP , see [12,19].
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The operator B was originally introduced to formulate the FETI-DP algorithm
(Sec. 2.4) and it is not needed for the formulation of the BDDC algorithm,
but here we use it to take advantage of the property (8).

2.2 Variational Setting of BDDC and Condition Number Bound

We now formulate the BDDC method in a particularly simple abstract
variational form, which is inspired by a view of the Neumann-Neumann
methods, going back to [4]. We also give a simplified proof of the condition
number bound from [19].

We wish to solve the abstract linear problem

u ∈ Ŵ : a(u, v) = 〈f, v〉 , ∀v ∈ Ŵ , (9)

where Ŵ is a finite dimensional linear space, a is a symmetric bilinear form
positive definite on Ŵ , and f ∈ Ŵ ′ is the right hand side, with 〈f, v〉 denoting
the value of the functional f at v. The operator A : Ŵ 7→ Ŵ ′ associated with
a is defined by

a(u, v) = 〈Au, v〉 , ∀u, v ∈ Ŵ .

Suppose that the bilinear form a is defined and symmetric positive semidefinite
on a larger space W ⊃ Ŵ . The BDDC preconditioner P : Ŵ ′ → Ŵ is defined
by

P : r 7−→ u = Ew, w ∈ W̃ : a (w, z) = 〈r, Ez〉 , ∀z ∈ W̃ . (10)

where E is projection from W̃ onto Ŵ , and the space W̃ is such that

Ŵ ⊂ W̃ ⊂ W.

Assumption 1 a (·, ·) is positive definite on W̃ .

It should be noted that the idea to restrict the bilinear form a(·, ·) from W to
W̃ is closely related to the subassembly in [16].

Let

ω = sup
w∈W̃

‖Ew‖2

a

‖w‖2

a

. (11)

Theorem 2 The abstract BDDC preconditioner (10) satisfies

κ =
λmax(PA)

λmin(PA)
≤ ω.
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PROOF. Define the operator G : Ŵ → W̃ by

G : u 7→ w,
1

2
a (w,w) → min, s.t. w ∈ W̃ , u = Ew. (12)

Since a is positive definite on W̃ , G is well defined. Define the bilinear form b
on Ŵ by b(u, v) = a (Gu,Gv). Now let u and w be as in (10). Since w is the
solution of

1

2
a (w,w) − 〈r, Ew〉 → min, w ∈ W̃ ,

it follows that u is the solution of

u ∈ Ŵ : b(u, v) = 〈r, v〉 , ∀v ∈ Ŵ . (13)

It remains to compare ‖u‖2

a and ‖u‖2

b . Let u ∈ Ŵ and define w = Gu. Then,

from the minimization property (12) and the fact that Eu = u ∈ Ŵ ⊂ W̃ , it
follows that

‖u‖2

b = ‖w‖2

a ≤ ‖u‖2

a .

On the other hand,

‖u‖2

a = ‖Ew‖2

a ≤ ω ‖w‖2

a = ω ‖u‖2

b ,

which concludes the proof. 2

This formulation of BDDC is remarkably simple, involving only the bilinear
form a, the space W̃ , and the projection E onto the subspace Ŵ . However, in
the application to substructuring, W and Ŵ are given, and the space W̃ and
the projection E are to be chosen. We need further notation to describe how
these choices are made and how the space W̃ will be selected adaptively.

With the specific form of the projection E from (7) and using (4), we can
restate the condition number bound.

Theorem 3 The condition number bound (11) satisfies

ω = sup
w∈W̃

∥∥∥RRT DP w
∥∥∥
2

S

‖w‖2

S

= sup
w∈W̃

∥∥∥BT
DBw

∥∥∥
2

S

‖w‖2

S

(14)

PROOF. The proof is similar as in [19, Theorem 25]. The proposition follows
from the fact that the operator RRT DP is a projection in the space W̃ and
the norm of a nontrivial projection in an inner product space depends only on
the angle between its range and its nullspace [9]. From (8), this angle is the
same for RRT DP and BT

DB = I − RRT DP . 2
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2.3 Construction of Coarse Degrees of Freedom

At this point, we still do not need to make an explicit reference to
substructuring. Instead, from now on, we assume the properties (3)–(8), and
that R is one-to-one. In particular, R is an isomorphism between U and Ŵ .

The space W̃ is constructed using so-called coarse degrees of freedom. The
coarse degrees of freedom can be, e.g., values at corners, or averages on edges.
The space W̃ is then given by the requirement that the coarse degrees of
freedom on adjacent substructures coincide; for this reason, the terms coarse
degrees of freedom and constraints are used interchangeably.

To choose the space W̃ , suppose we are given a space X and a linear operator
C : W → X and define

W̃ =
{
w ∈ W : ∃u ∈ Ŵ : Cw = Cu

}
.

By construction, Ŵ ⊂ W̃ . The values Cw will be called local coarse degrees
of freedom.The space W̃ consists of all vectors w whose local coarse degrees
of freedom Cw are in the same space as the local coarse degrees of freedom
of vectors from the subspace Ŵ ; that is, for w ∈ W̃ , the local coarse degrees
of freedom on adjacent substructures coincide. To represent their common
values, i.e., the global coarse degrees of freedom of vectors u ∈ W̃ , suppose
there is a space Uc and linear operators QT

P : U → Uc, Rc : Uc → X such
that Rc is one-to-one, and

CR = RcQ
T
P . (15)

The space W̃ then satisfies

W̃ = {w ∈ W : ∃uc ∈ Uc : Cw = Rcuc} , (16)

and from (15), for w ∈ W̃ , the unique uc that satisfies Cw = Rcuc is given by

uc = QT
P v, w = Rv.

An equivalent way to specify the space W̃ is by the choice of an operator QT
D

such that

W̃ =
{
w ∈ W : QT

DBw = 0
}

, (17)

which will be needed in the adaptive algorithm. We will only need to construct
QP for a given QD in a special case, see (44) below.

We will need a more specific construction of the matrix C in the substructuring
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framework. We build a block diagonal matrix C satisfying (15) by

C =




C1 . . . 0
...

. . .
...

0 . . . CN




, Ci = RciQ
T
P RT

i . (18)

Then (15) follows from (18) and (1).

Here is an interpretation. The matrix Ci maps a vector of local degrees of
freedom on substructure i to a vector of local coarse degrees of freedom on the
substructure, and Rci restricts a vector of all global coarse degree of freedom
to a vector of local coarse degree of freedom on substructure i. A global coarse
degree of freedom is given by a row of QP . The operator QT

P acts on vectors of
global degrees of freedom in U and it selects global coarse degrees of freedom
in Uc as linear combinations of global degrees of freedom.

In the model problem, there are corner coarse degrees of freedom, which are
values at the corner, and edge coarse degrees of freedom, which are linear
combinations of values on the edge.

2.4 The Iterative Algorithms

In this section, we formulate the methods how they were implemented in terms
of matrices in our computations, following [19]. The original implementation
of BDDC in [3,18] is mathematically equivalent but it requires a more
complicated substructuring notation and it treats the corner coarse degrees of
freedom and edge coarse degrees of freedom in the definition of W̃ in different
ways. Here, all coarse degrees of freedom are treated the same. The equivalence
of the formulations of BDDC in this section and in Sec. 2.2 follows from [19,
Lemma 7]. For another mathematically equivalent implementation of BDDC,
involving a change of variables, see [15].

The BDDC method is the method of preconditioned conjugate gradients for
the assembled system (5) and the preconditioner P defined by

Pr = RT DP (Ψuc + z) ,

where uc is the solution of the coarse problem

ΨT SΨuc = ΨT DT
P Rr (19)
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and z is the solution of

Sz + CT µ = DT
P Rr,

Cz = 0,
(20)

which is a collection of independent substructure problems. The coarse basis
functions Ψ are defined by energy minimization,

tr ΨT SΨ → min subject to CΨ = Rc,

which is equivalent to the system




S CT

C 0







Ψ

Λ


 =




0

Rc


 . (21)

Using corner coarse degrees of freedom, which allows to eliminate a part of the
second block in a simple manner, the problems (20) and (21) can be solved
without solving any indefinite systems [19].

For completeness, we state the FETI-DP method using the ingredients we
have introduced already. Again, this formulation treats all coarse degrees of
freedom in the same way and allows for a substatial simplification; the original
formulations [6,5,12] treat the corner degrees of freedom separately. The FETI-
DP method solves the saddle point problem

min
w∈W̃

max
λ

L(w, λ) = max
λ

min
w∈W̃

L(w, λ),

where

L(w, λ) =
1

2
wT Sw − wT f + wT BT λ,

by iterating on the dual problem

∂F(λ)

∂λ
= Fλ − h = 0,

where

F(λ) = min
w∈W̃

L(w, λ),

by preconditioned conjugate gradients, with the preconditioner

M = BDSBT
D.

See [19] for further details.

Theorem 4 ([19, Theorem 26]) The eigenvalues of the preconditioned
operators PA of BDDC and MF of FETI-DP are the same except possibly for
eigenvalues of zero and one. All other eigenvalues are larger or equal to one.
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Zero eigenvalues in FETI-DP originate from redundant constraints, i.e.,
linearly dependent rows of B. For a simplified proof of Theorem 4, see [15].
For a further study of the relation between FETI-DP and BDDC, see [1].

3 Eigenvalue Formulation of the Condition Number Bound

Clearly, the problem of finding the condition bound (14) can be written as
an eigenvalue problem on W̃ . The goal of this section is to formulate this
problem as a generalized eigenvalue problem on the space W with one of the
matrices positive definite, which makes the eigenvalues convenient to compute
numerically.

We do not advocate computing the condition bound ω numerically in practice.
Instead, this section serves as a preparation for the development of a local
indicator of the condition number in the following sections.

Denote by Π the orthogonal projection in W onto W̃ . The stationary points

of the Rayleigh quotient
∥∥∥BT

DBw
∥∥∥
2

S
/ ‖w‖2

S are the eigenvectors and the values

of the Rayleigh quotient at the stationary points are the eigenvalues of the
generalized eigenvalue problem on W ,

ΠBT BDSBT
DBΠw = λΠSΠw. (22)

The maximization problem (14) now becomes the problem to find the maximal
eigenvalue of (22). However, the matrices on both sides are in general singular,
and the eigenvector is in general determined only up to a component in null Π,
so we may look only for eigenvectors in range Π = W̃ .

Lemma 5 Let S, T , Π be square matrices of the same size, Π an orthogonal
projection, t 6= 0, and λ 6= 0 scalars, and u a vector. Then

(1) It holds that
ΠTΠw = λΠSΠw and w ∈ range Π (23)

if and only
ΠTΠw = λ (ΠSΠ + t (I − Π)) w. (24)

(2) If S is symmetric and positive definite on range Π and t > 0, then
ΠSΠ + t (I − Π) is symmetric positive definite.

PROOF.

(1) Assume that (23) holds. Then (I − Π) w = 0, and (24) follows. On the
other hand, if (24) holds, then (I − Π) w ∈ range Π because t 6= 0 and
λ 6= 0, so (I − Π) w = 0, and, consequently, (23) holds.
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(2) Let S be symmetric and positive definite on range Π and v = w + z,
w ∈ range Π, z ∈ null Π. Then

vT (ΠSΠ + t (I − Π)) v = wT ΠSΠw + tzT (I − Π) z

= wT Sw + tzT z > 0,

unless w = z = 0. 2

Theorem 6 Let t > 0. Then the nonzero eigenvalues and the eigenvectors of
(22) are same as those of the generalized eigenvalue problem

ΠBT BDSBT
DBΠw = λ (ΠSΠ + t (I − Π)) w. (25)

The matrix on the left-hand side of (25) is symmetric positive semidefinite
and the matrix on the right-hand side is symmetric positive definite. In
particular, the upper bound ω on the condition number from (14) is the
maximal eigenvalue of (25).

PROOF. The equivalence of (22) and (25) follows from Lemma 5 (1). Positive
definiteness of the matrix ΠSΠ + t (I − Π) follows from Lemma 5 (2) and the
assumption that S is positive definite on W̃ . 2

In practice, we choose t to be roughly the same magnitude as S. Note that
if the eigenvalue is computed only approximately, the result will in general
depend on the parameter t.

We need an explicit formula for the projection Π.

Lemma 7 If C and Rc have linearly independent rows, then the orthogonal
projection in W onto W̃ is

Π = I −
[
CT 0

]



CCT Rc

RT
c 0




−1 


C

0


 . (26)

PROOF. The equation v = Πu is equivalent to

v ∈ W̃ , u − v ⊥ W̃ , (27)

which, from the definition of W̃ in (16), can be written as

∃vc : Cv = Rcvc

∀w :
(
Cw = Rcwc ⇒ (u − v)T w = 0

)
(28)
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Writing (28) in block matrix notation, we have

[
C −Rc

]



w

wc


 = 0 ⇒

[
(u − v)T 0

]



w

wc


 = 0,

and, consequently, (28) is equivalent to

∃x :
[
(u − v)T 0

]
= xT

[
C −Rc

]
.

Consequently, v = Πu is equivalent to the system of equations

Cv = Rcvc, u − v = CT x, RT
c x = 0.

Substituting from the second equation

v = u − CT x (29)

gives the system 


CCT Rc

RT
c 0







x

vc


 =




Cu

0


 . (30)

It follows from the assumptions that the system (30) is regular. Now using
(29), we have

v = u −
[
CT 0

]



x

vc


 = u −

[
CT 0

]



CCT Rc

RT
c 0




−1 


C

0


 u

and (26) follows. 2

If a subspace iteration type method, such as the efficient conjugate gradient
method for eigenvalues [13], is used for the generalized eigenvalue problem, the
matrix of the projection Π is not needed; only matrix-vector products need
to be evaluated. Each evaluation of Πu requires the solution the system (30).
The dimension of this system is the same as the dimension of the system (21),
which is solved to find the coarse basis functions.

4 Local Indicator of the Condition Number Bound

From now on, we need to assume the full substructuring framework from Sec.
2.1, though we are of course not limited to the model problem.
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As the indicator of the condition number, we propose the maximum of the
bounds ωij from (25) computed by considering the domains consisting of one
pair of adjacent substructures i, j at a time. For such pair, denote the vectors
of degrees of freedom associated with the two substructures by

wij =



wi

wj


 , wi ∈ Wi, wj ∈ Wj,

and the submatrices associated with the pair of substructures by

Sij =



Si 0

0 Sj


 , Cij =



Ci 0

0 Cj


 . (31)

Define Bij be a submatrix of
[
Bi Bj

]
that consists of a subset of all rows that

have exactly one +1 and one −1. Then the condition Bijwij = 0 enforces the
equality of wi and wj at a subset Sij of degrees of freedom at the intersection

of substructures i and j. Define BDij as the submatrix of
[
DDiBi DDjBj

]

consisting of the same selection of rows as Bij. Let Rcij be the submatrix of

Rci

Rcj


 consisting of all of its nonzero columns. Finally, let W̃ij be the space

of vectors with the coarse degrees of freedom same on the intersection of the
substructures i and j,

W̃ij = {wij : ∃wc : Cijwij = Rcijwc} . (32)

Then, analogously to (14), define

ωij = sup
wij∈W̃ij

∥∥∥BT
DijBijwij

∥∥∥
2

Sij

‖wij‖2

Sij

= sup
wij∈W̃ij

wT
ijB

T
ijBDijSijB

T
DijBijwij

wT
ijSijwij

. (33)

and let
ω̃ = max

ij∈A
ωij. (34)

The choice of the set A of pairs of adjacent substructures and the subsets Sij

of their intersections will be specified in Sec. 6.

To guarantee that ωij is finite, we need

Assumption 8 ∀wij ∈ W̃ij : Sijwij = 0 ⇒ Bijwij = 0.

Assumption 8 is satisfied when the substructures i and j linked by only the
coarse degrees of freedom do not form a mechanism, in other words, if the
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coarse degrees of freedom are sufficient to constrain the rigid body modes of
the two substructures into a single set of rigid body modes, which are then
continuous across substructure boundary. Assumption 8 can be satisfied in
some other cases as well, for example when two substructures in 3D share a
straight edge, all degrees of freedom are displacement degrees of freedom, and
the coarse degrees of freedom are displacements at the ends of the edge. Then
Sijwij = 0 allows for independent rigid body rotations of the substructures
around the common edge, dim(null Sij) = 7, yet the values of wij on the
common edge coincide.

The computation of ωij proceeds exactly as the computation of ω in Sec. 3.
Let Πij be obtained from (26), where all matrices on the right-hand side are
replaced by their restrictions on substructures i and j as in (31-32). Then ωij

is the largest eigenvalue of the generalized eigenvalue problem

ΠijB
T
ijBDijSijB

T
DijBijΠijwij = ωij (ΠijSijΠij + t (I − Πij)) wij. (35)

However, the matrices on both sides of (35) are typically singular even if
Assumption 8 is satisfied because of rigid body modes that move substructures
i and j as a whole. To reduce (35) to an eigenvalue problem with the matrix
on the right-hand side positive definite, we use matrices Zi, Zj that generate
a superspace of rigid body modes of the two substructures:

null Si ⊂ range Zi, null Sj ⊂ range Zj (36)

The matrices Zi and Zj are often available from finite element software. To
avoid using any other information than the system matrices, we can instead
use the matrices of the coarse basis functions

Zi = Ψi, Zj = Ψj

from (21), because the span of the coarse basis functions contains the rigid
body modes. In this case, however, this will be more expensive, because there
are typically more coarse basis functions for the two substructures than the
number of the rigid body modes.

Let

Zij =



Zi

Zj


 .

Then
null (ΠijSijΠij + t (I − Πij)) ⊂ null Sij ⊂ range Zij

and we find a basis of null (ΠijSijΠij + t (I − Πij)) by computing first the
nullspace of a much smaller symmetric positive semidefinite matrix,

null
(
ZT

ij (ΠijSijΠij + t (I − Πij)) Zij

)
= range K, (37)
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and applying the QR decomposition

ZijK = QR, QT Q = I,

which gives
range Q = null (ΠijSijΠij + t (I − Πij)) .

Consequently,
Πij = I − QQT

is the orthogonal projection onto range (ΠijSijΠij + t (I − Πij)), and applying
Lemma 5 again, we have:

Theorem 9 The nonzero eigenvalues λij,k and the corresponding eigenvectors
wij,k of

ΠijB
T
ijBDijSijB

T
DijBijΠijwij,k = λij,kΠijSijΠijwij,k, (38)

are the same as the nonzero eigenvalues and the corresponding eigenvectors of

Xijwij,k = λij,kYijwij,k, (39)

where

Xij = ΠijB
T
ijBDijSijB

T
DijBijΠij,

Yij =
(
Πij (ΠijSijΠij + t (I − Πij)) Πij + t

(
I − Πij

))
,

In addition, Xij is symmetric positive semidefinite and Yij is symmetric
positive definite.

The matrices in the eigenvalue problems (37) and (39) are dense. If it is more
efficient to represent the matrices as dense or to use an eigensolver that requires
only matrix-vector multiplications depends on the size of the substructures and
the dimension of the problem.

5 Adaptive Selection of Coarse Degrees of Freedom

We start with the following well known result from linear algebra, formulated
in a way suitable for our purposes.

Lemma 10 Let d (·, ·) and e (·, ·) be symmetric positive semidefinite bilinear
forms on a linear space Y of dimension n, e (·, ·) positive definite. Then the
generalized eigenvalue problem in variational form

u ∈ Y : d (u, v) = λe (u, v) , ∀v ∈ V

has n linearly independent eigenvectors uk and the corresponding eigenvalues
λk ≥ 0. Order λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. Then for any subspace Yk ⊂ Y of
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dimension k,

max
u∈Yk,u6=0

d (u, u)

e (u, u)
≥ λk+1,

with equality if

Yk = {u ∈ V : e(ul, u) = 0, ∀l = 1, . . . , k} . (40)

Write the space of vectors with the coarse degrees of freedom continuous across
the interface between the substructures i and j as

W̃ij =
{
wij : QT

DijBijwij = 0
}

, (41)

similarly as in (17). Now the dual writing (41) of the coarse degrees of freedom
allows us to garantee that ωij does not exceed a given target value τ by adding
the minimal number of coarse degrees of freedom:

Theorem 11 Let wT
ij,k be the eigenvectors and λij,k the eigenvalues from (38),

where, without loss of generality, λij,1 ≥ λij,2 ≥ . . . . Suppose `ij ≥ 0. Let the
dual coarse degree of freedom selection matrix QT

Dij be augmented to become[
QT

Dij, q
T

Dij,1
, . . . , qT

Dij,`ij

]
with

qT
Dij,k = wT

ij,kB
T
ijBDijSijB

T
Dij , (42)

Then ωij = λij,`ij+1, and ωij ≥ λij,`ij+1 for any other augmentation of QT
Dij by

at most `ij columns. In particular, if λij,`ij+1 ≤ τ for all pairs of substructures
i, j with a common edge, then ω̃ ≤ τ .

PROOF. Apply Lemma 10 with Y = W̃ij, u = wij, and

d (u, u)

e (u, u)
=

∥∥∥BT
DijBijwij

∥∥∥
2

Sij

‖wij‖2

Sij

=
wT

ijB
T
ijBDijSijB

T
DijBijwij

wT
ijSijwij

.

Then the orthogonality conditions in (40) become

wT
ij,kB

T
ijBDijSijB

T
Dij︸ ︷︷ ︸

qT
Dij,k

Bijwij = 0, k = 1, . . . , `ij,

and Vk is W̃ij after the augmentation of QT
Dij . 2

It remains to construct the augmentation of the primal constraint matrix QP

from the augmentation of QT
Dij. We need some more notation. Recall that

by construction, every row of Bij contains exactly one +1 and one −1. Let
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Uij be the space of vectors of global degrees of freedom on the intersection
of substructures i and j that are constrained to coincide by the condition
Bijwij = 0. Then

Bijwij = Dij (Iijwi − Ijiwj) .

where Iij : Wi → Uij and Iji : Wj → Uij are 0−1 matrices that restrict vectors
of local degrees of freedom on substructure i and j, respectively, to degrees of
freedom in the subset Sij, and Dij is a diagonal matrix with diagoal entries

±1. Then the condition wij ∈ W̃ij can be written as

QT
DijDij(Iijwi − Ijiwj) = 0,

Let Rij : U → Uij be the 0 − 1 matrix that restrict global vectors of degrees
of freedom to the intersection of substructures i and j. Then the constraint
defined by a column of QDij can be written as

qT
DRT

ijDijIijwi = qT
DRT

ijDijIjiwj, (43)

where qD ∈ U has zeros everywhere outside of the subset Sij of the intersection
of the substructures i and j. The common value of both sides of (43) defines a
coarse degree of FReedom, and the corresponding column qP of QP is obtained
by a permutation and a possible change of sign of the entries of qD so that

qT
P RT

i = qT
DRT

ijDijIij. (44)

The matrices Rci and Rcj are augmented by one additional row.

Note that the new coarse degrees of freedom are defined as linear combinations
of degrees of freedom from the given subset Sij of the intersection of the
adjacent substructures.

Now Lemma 10 and the formulation of the constraints allow us to add
constraints that decrease the indicator ωij in an optimal manner. The proposed
adaptive algorithm follows.

Algorithm 1 To add coarse degrees of freedom to guarantee that ωij ≤ τ , for
a given a target value τ ,

(1) compute the eigenvalues and eigenvectors of (39), starting from the largest
eigenvalues, until the first `ij is found such that λij,`ij+1 ≤ τ

(2) Add to QDij the colums qDij,k from (42).
(3) Obtain the corresponding columns of QP from (44) and update the

constraint matrices Ci and Rci from (18).

The following two tests were done to check the correctness of our
implementation.
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(1) To make sure that the constraints were added correctly, we have
confirmed that the two definitions of W̃ij from (32) and (41) coincide,

{
wij : QT

DijBijwij = 0
}

= {wij : ∃uc : Cijwij = Rcijuc} .

In particular, we have computed matrices G and H such that

range G = null(QT
DijBij) range H =

[
I 0

]
null

([
Cij − Rcij

])
,

and then we have checked numerically that range G = range H by testing
that GG†H = H and HH†G = G, where † is the Moore-Penrose
pseudoinverse.

(2) We have confirmed that after the new coarse degrees of freedom are
added, the new ωij equals λij,`ij+1 following Theorem 11.

6 Numerical Results

The method was tested on plane elasticity, discretized by Lagrange bilinear
elements on a rectangular mesh decomposed into 16 substructure, with one
edge between the substructures jagged (Fig. 1). The set A of pairs of adjacent
substructures to compute the condition number indicator ω̃ by (34) was chosen
as the set of all pairs of substructures with a common edge. The subsets Sij

to define new coarse degrees of freedom were taken as whole edges including
corners. The starting set of coarse degrees of freedom consisted of all corner
degrees of freedom. The matrices DP in the averaging operator E = RDP RT

were diagonal, with the diagonal entries proportional to the diagonal entries
of the substructure matrices before elimination of interiors. The computations
were done in Matlab. The generalized eigenproblems on pairs of substructures
were solved by the Matlab eig function with Choleski decomposition.

In Table 1, we show that the eigenvalues λij,k associated with edges between
substructures clearly distinguish between the problematic edge and the others.
Table 2 demonstrates that the addition of the coarse degrees of freedom
created from the associated eigenvectors according to Theorem 11 decreases
the condition number of the preconditioned system to approximately the
prescribed value τ . Tables 3 and 4 contain the results of the same test for
almost incompressible elasticity; here the iterations converge poorly or not at
all without the additional coarse degrees of freedom, but adding the coarse
degrees of freedom again decreases the condition number of the preconditioned
system to approximately the prescribed value τ , and, in particular, the
convergence of the iterations is recovered. This incompressible elasticity
problem is particularly hard for an iterative method because standard bilinear
elements were used instead of stable elements or reduced integration. The
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number of the added coarse degrees of freedom grows as the material
approaches incompressibility. However, the purpose of this test was to show
that the method can identify the problematic part of the problem and deal
with it. We do not advocate the present method or the elements used for the
solution of almost incompressible problems.

We have also simulated the effect of approximate eigensolvers. The eigenvector
wij from (39) was replaced by w̃ij = wij + εr, where r is a random vector
with independent normally distributed entries, and ε was determined from
the condition |Yijεr| = 0.5 |Yijwij|, where |·| is the Euclidean norm. The
eigenvalues λij were replaced by the Rayleigh-Ritz values w̃T

ijXijw̃
T
ij/w̃

T
ijYijw̃

T
ij.

The approximate eigenvectors and eigenvalues were then used in all
computations instead of the exact ones. The results were essentially identical
within display accuracy to those in Table 3.

7 Conclusion

Robustness of iterative substructuring methods in the presence of irregular
mesh decomposition, singularities, and other adverse circumstances, is very
important. We have described an adaptive algorithm that aims heuristically
to achieve a predetermined convergence rate by adding coarse degrees of
freedom using the solutions of eigenproblem associated with pairs of adjacent
substructures. We have tested the performance of our algorithm on linear
elasticity problems (both compressible and almost incompressible) in 2D with
a regular mesh decomposition. Numerical tests have verified that the proposed
condition number indicator is quite close to the actual condition number of
the preconditioned problem and that the algorithm can find troublesome parts
of the problem and concentrate computational work there to achieve good
convergence at low cost. It was also verified numerically that the method still
works well when the eigenproblems used to create the added coarse degrees of
freedom are solved only approximately.

Future developments include identification of suitable 3D versions of the
algorithm, tests on industrial type problems, and an efficient implementation
with approximate eigensolvers. Our method is based on the assumption that
the starting coarse degrees of freedom are already sufficient to prevent rigid
body motions between certain pairs of adjacent substructures; the use of cheap
approximate eigensolvers to obtain such starting coarse degrees of freedom
should be also studied. A formulation of the present method in terms of the
change of variable from [15] or in an abstract variational setting only would be
also interesting. Finally, extensions of the adaptive approach to the multilevel
case would be important to make possible the solution of problems that are
both very large and numerically difficult.
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Fig. 1. Mesh with H/h = 16, 4 × 4 substructures, and one jagged edge between
substructures 2 and 6. Zero displacement is imposed on the left edge. For
compressible elasticity (Tables 1 and 2(a)) and tolerance τ = 10, 7 coarse degrees
of freedom at the jagged edge and 1 coarse degree of freedom at an adjacent edge
are added automatically.

i j λij,1 λij,2 λij,3 λij,4 λij,5 λij,6 λij,7 λij,8

1 2 3.7 2.3 1.4 1.3 1.1 1.1 1.1 1.1

1 5 5.8 3.2 2.3 1.4 1.2 1.1 1.1 1.1

2 3 6.0 2.5 1.7 1.3 1.2 1.1 1. 1.1

2 6 21.7 19.5 17.8 14.9 14.5 11.7 11.2 9.7

3 4 3.3 2.3 1.4 1.3 1.1 1.1 1.1 1.1

3 7 7.1 5.1 3.2 1.8 1.4 1.3 1.2 1.1

4 8 5.9 3.4 2.6 1.4 1.2 1.1 1.1 1.1

5 6 12.0 4.9 4.4 1.8 1.6 1.3 1.3 1.2

5 9 5.9 3.4 2.6 1.4 1.3 1.3 1.1 1.1

6 7 8.7 4.9 3.9 1.8 1.5 1.3 1.2 1.1

6 10 7.3 4.8 3.4 1.8 1.4 1.3 1.2 1.1

Table 1
Several largest eigenvalues λij,k for several edges for the elasticity problem from
Fig. 1 with H/h = 16. (i, j) = (2, 6) is the jagged edge.
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H/h Ndof τ Nc ω̃ κ it

4 578 42 10.3 5.6 19

10 43 5.2 4.0 18

3 44 3.0 4.0 18

2 58 2.0 2.8 15

16 8450 42 22 20 37

10 50 8.7 9.9 29

3 77 3.0 4.6 22

2 112 2.0 2.6 15

64 132098 42 87 40 55

10 89 9.8 9.9 36

3 151 3.0 4.7 22

2 174 2.0 2.9 17

Table 2
BDDC results for plane elasticity on a square with one jagged edge. The Lamé
coefficients are λ = 1 and µ = 2. H/h is the number of elements per substructure
in one direction, Ndof the number of degrees of freedom in the problem, τ the
condition number tolerance as in Theorem 11, Nc the number of coarse degrees of
freedom, ω̃ the apriori condition number indicator from (34), κ the approximate
condition number computed from the Lanczos sequence in conjugate gradients, and
it the number of BDDC iterations for relative residual tolerance 10−8.
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H/h Ndof τ Nc ω̃ κ it

4 578 42 284.7 208.4 65

10 68 8.2 8.6 28

5 89 5.0 4.6 22

3 114 2.9 2.6 16

16 8450 42 1012.0 1010.0 157

10 87 9.9 9.6 29

5 94 4.9 4.4 22

3 126 3.0 2.9 19

64 132098 42 6909.8 1470.9 15

10 183 9.8 9.7 37

5 213 5.0 4.9 26

3 274 3.0 3.0 20

Table 3
BDDC results for almost incompressible plane elasticity on a square with one jagged
edge. The Lamé coefficients are λ = 1000 and µ = 2. The headings are same as in
Table 2.

H/h Ndof τ Nc ω̃ κ it

4 578 42 2743.9 1875.04 158

10 118 4.6 3.5 17

5 118 4.6 3.5 17

3 120 2.9 2.7 16

16 8450 42 9483.5 9389.9 113

10 97 9.6 10.1 33

5 120 5.0 5.0 24

3 280 3.0 2.9 18

64 132098 42 29680.6 NA ∞
10 218 9.8 9.6 40

5 269 4.9 4.2 25

3 313 3.0 2.9 18

Table 4
BDDC results for almost incompressible plane elasticity on a square with one jagged
edge. The Lamé coefficients are λ = 10000 and µ = 2. The headings are same as in
Table 2.
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