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SUMMARY 

 
This model was developed for the study of excitation-
contraction coupling for single cardiac cell. The basic 
assumptions are following: depolarization of cellular 
sarkolemma (membrane) rises inward calcium current Is 
, which rises the level of sarcoplasmatic calcium but also 
induces release of calcium from cisternal sarcoplasmic 
reticulum. These two basic sources increase the level of 
sarcoplasmic calcium so that calcium ions combine with 
regulatory protein troponin C and this enables 
combination of actin and myosin (i.e. crossbridge 
formation) and initiates contraction according to 
Huxley’s sliding filament theory. Properties of muscle 
are modelled by Hill (Maxwell) model. The simulation 
was done for both types of contraction: isometric and 
isotonic. Formation (disjunction) of crossbridge is 
supposed to be an active process utilizing energy. 

1. DYNAMICS OF INTRACELLULAR CALCIUM 
 
Theory of compartments commonly used in 
biocybernetics was used for the modelling of 
intracelullar calcium dynamics. Calcium is supposed to 
be in homogeneous concentraction in all compartments 
and so modellling of calcium dynamics by the first order 
ordinary differential equations (ODE) is possible. 
Constants k in these equations are called rate constants 
and are reciprocal values of respective time constants. 
For the development of dynamic equations we used 
similar assumptions used by Wong (1981), Michailova  
(1992):  

1. We did not include potassium and sodium 
currents in the model due to the fact that they 
do not affect directly development of tension. 

2. The inward current Is is supposed to be carried 
mainly by calcium ions. 

3. The reversal potential ER does not change 
appreciably, i.e. is considered to remain 
constant during the whole cycle of contraction. 

4. Na-Ca exchanger is not included in the model 
although the extrusion of Ca ions out of the cell 
is considered. 

 
1.1. Mathematical model 

 
Depolarization of cellular membrane causes raise of 
inward calcium current (primary calcium) across 
membrane into the cardiac cell. This increase rises the 
level of sarcoplasmic calcium and induces release of 
much greater amount of calcium from the cisternal 
sarcoplasmic reticulum (called secondary calcium). The 
calcium ions diffund to sarcomere –  contractile part of 
cardiac muscle cell. Ions associate with regulatory 
protein troponin C (TnC). TnC and another regulatory 
protein tropomyosin change conformation. Reaction 
places of actine filament are disclosed and actin-myosin 
combination can occur. A crossbridge can be formed. 
After dissociation of calcium ions from TnC the calcium 
ions are recirculated into the longitudinal sarcoplasmic 
reticulum (LSR).  

In the first part of this paper we begin with 
description of membrane depolarization, then we 
describe calcium flows between compartments and 
finally we describe association of calcium ions with 
TnC. The inward calcium current is described by 
equation 
 
                       IS = gs d(t) f(t) (E - ER)                      
 
gs denotes conductance of the sarcolemma to calcium 
ions varying with external calcium concentration Cao, ER 
is used for reversal membrane potential. Functions d(t), 
f(t) denote the time courses of activation and 
inactivation (respectively) of calcium channels.  
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                                 Fig.1. An artifitial action potential 
 

The dynamic equations describing accumulation of 
calcium ions in compartments according to Wong 
(1981) are following: 
 
dCasp/dt = k1(Cao-Casp) + k2IS +k7d∞Cam  

+  k5d∞CaCSR(Casp-Casp0)        
               - (k6+k3+k10f∞)(Casp-Casp0)    
dCaCSR/dt = - k5d∞CaCSR(Casp-Casp0)  

      + k4f∞ (CaLSR-CaLSR0) - k8d∞CaCSR    
                    - k9(CaCSR-CsCSR0)                           
dCaLSR/dt = (k3+k10f∞)(Casp-Casp0)                         

- k4f∞ (CaLSR-CaLSR0)                                          
dCam/dt = k6(Casp-Casp0) –  k7d∞Cam                                 
 

The association of calcium ions with troponin 
C was described in Michailova et al. (1992) by equation 
 
                dA/dt = konCasp(trop-A) –  koffA       
 

This equation in fact describes amount of 
disclosed actin sites that are able to react with myosin 
and to form crossbridges. Dynamics of intracelular ion 
flows was simulated under rhytmically applied action 
potential reconstructed by Michailova et al. (1992). 
                                                  

2. MODEL OF CONTRACTILITY 
 
Formation of crossbridge can be described by equations 

 
A denotes actin, M myosin, AM stands for a formed 
crossbridge, XP denotes high-energy phosphate 
molecule (ATP) and f, g denote rates of formation, 
dissociation (respectively) of a crossbridge.  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Mechanism of crossbridge formation, which was 
originally proposed by Huxley (1957), is discussed in 
Sousedík (2001). 
Functions f, g are given by relations 
 

     u < 0 f(u,t) = 0 g(u) = g2 
0 ≤ u ≤ 1 f(u,t) = A*(t)f1u g(u) = g1u 

1 < u f(u,t) = 0 g(u) = g1u 
 
u is relative distance between A and M (u = x/h),    A*(t) 
= A(t)/Amax is the activation function and f1, g1 ,g2 are 
given constants. 
Total amount of formed crossbridges is modelled by 
differential equation proposed by Huxley (1957) and 
further used by Wong (1971), Michailova et al.(1992).  
 
   ∂AM(u,t)/∂t = ( 1 - AM(u,t) ) f(u,t) –  AM(u,t) g(u)   
 
The analytical solution of this equation has following 
form:                                
-∞ < u < 0: 

 AMi,j = AM0i,jexp(-gj∆t) 
 0 ≤ u ≤ 1: 

 1 < u < ∞: 
                   AM i,j = AM0i,jexp(-gj∆t) 
 

In these equations AM0i,j denotes initial value of 
AM at the beginning of each time step ∆t. 

Energetic requirements are modelled by 
relation 
             
             EATP = 1/T ∫ ∫ g(u) AM(u,t) du dt 
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       Fig. 2. Calcium current Is across membrane. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   Fig. 4. Amounts Cam, Casp [M]. 
 
 
2.1. Modelling of muscle properties 
 
Muscle properties are modelled using Hill (Maxwell) 
three-component model with tensions of its components 
given by relations 
 
                          PPE = P0 (exp (kpLPE) –  1 
                          PSE = PL (exp (ksLSE) - 1)         
                          PCE = ∫ km AM u du      
 
PE...parallel-elastic element, SE...series-elastic element,  
CE...contractile element.  

Stiffness of CE element is given by 
instantaneous stiffness of all formed crossbridges 
 
                          KCE = ∫ km AM du                                                                                                      
 
Total muscle tension 
 
                          P = PPE + PSE                                                                       

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
      
 
 
 
 Fig. 3. Amounts CaCSR, CaLSR [M]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  Fig. 5. Amount of disclosed actin sites A [M]. 

 
 

2.2. Isometric contraction 
 
Each contraction begins with isometric part. During this 
type of contraction muscle develops tension but does not 
change its total length. Shortening of CE element equals 
lenghtening of SE element 
 
                                   ∆LCE = ∆LSE                                                                      

 
Hence force balance must be satisfied 
 
                               P CE = PSE 
 
Expanding relations for tension in Taylor series 

with neglecting terms of second and higher orders 
(where K=dP/d∆L denotes instantaneous stiffness) and 
substituting into the equation of force balance we finally 
receive a nonlinear equation for shortening (lenghtening) 
SE (CE) elements, respectively. 
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          Fig. 6. Tension P during isometric contraction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            Fig. 8. Tension P during isotonic contraction. 
 
 
This equation has form  
 
                PCE  –   PL(exp(ksLSE)-1) - ∆LKCE         

                    - ∆Lks(PL(exp(ksLSE)-1)+PL)  =  0                    
 

By numerical solution of this equation we compute 
∆L and substituting back we finally compute the total 
muscle tension.  
 
2.3. Isotonic contraction 
 
Isotonic part of contraction follows isometric phase. At 
the moment when total muscle tension reaches  
 
                                  P M = PL + PA     
 
(PL...preload, PA...afterload),  
isotonic phase of contraction begins.  

Total muscle tension remains constant while 
the total muscle legth shortens. The equation of balance 
has form         

                  PPE + PSE –  PM = 0                                                              
. 
 

 
 
 
 
 
                    
 
 
 
 
 
 
 
         
      Fig. 7. Energy requirements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Muscle shortening during isotonic contraction. 
 
 
Elements PE, CE are shortening while element SE is 
further lenghtening, hence 
 
                       - ∆LPE = - ∆LCE + ∆LSE                                                         
or 
                           ∆LCE = ∆LPE + ∆LSE 
 
Rearranging and combination of previous relations 
yields to 
 
                     ∆LPE (KSE + KPE) = KSE ∆LCE                                                 
 
After final rearrangement we obtain relation for muscle 
shortening 
 
                       ∆LPE = ∆LCE /(1 + KPE/KSE)                                                
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2.4. Choice of numerical constants  
 
Computer code solving this procedure was developed in 
simulation environment Matlab. The system was solved 
with initial conditions in t=0: AM(u,0)=0, 
PSE(0)=0,PCE(0)=0. AM0i,j is the initial amount of AMi,j 
at a certain time step ti and position uj and is given by 
the final value of AMi-1,j of previous time step with 
correction ∆LCE, because it is necessary to consider 
shortening of sarcomere (CE). 

For the derivation of constants characterizing 
mechanical parameters of the muscle we used similar 
assumptions as Panerai (1980): 

1. Muscle resting tension is approximately zero 
when muscle length is reduced by 25 % of its 
resting length Lmax. 

2. At peak isometric tension, sarcomere 
shortening amounts to 8 % of Lmax. 

3. Preload at L = Lmax is 12 % of peak isometric 
tension. 

4. Detailed analysis of experimental data in 
cardiac musle resulted in ks = kp. 

 
First we simulated only isometric contraction during 
whole period of hearth muscle revolution. Then we 
simulated bisotonic contraction. The total muscle 
tensions and the total muscle shortening during isotonic 
contraction are on the figures on previous page 
 

3. DISCUSSION 
 
In the paper we showed excitation-contraction coupling 
for single cardiac cell. In the first part of model we 
simulated calcium ions flows, binding of calcium ions 
on the troponin C and disclosing of active sites of actin. 
Proposed model is a combination of Wong’s model 
(1981) with the extension published by Michailova et. al 
(1992). The influence of mitochondria is considered in 
this model. Relative amount of dislosed actin sites is 
input into the second part of model. In this part we 
described formation of a crossbridge based on the work 
of Huxley (1957), computation of total amount of 
crossbridges and total muscle tension. We derived the 
constants characterizing mechanical Hill (Maxwell) 
model of contractile apparatus for single cardiac cell 
according to assumptions published in Panerai (1980). 
Finally we combined the model of calcium ions 
dynamics with mechanical model of muscle and 
simulated isometric and isotonic type of contraction. We 
confirmed basic qualitative facts observed in live tissues 
in vivo, but for detailed quantitative analysis it would be 
necessary to model longer muscle fibre in order to 
compare the results of our model with results obtained 
experimentally. Because of complicated structure of 
cardiac muscle (fibres are not oriented in one direction, 
cross each other etc.) we did not solve yet the global 
structure of hearth tissue. 
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