
Parallelisation of BICG-STAB algorithm for�nite element omputationsBed�rih Soused��k1), Jaroslav Novotn�y2)1) Department of Mathematis,Faulty of Civil Engineering, Czeh Tehnial University,Th�akurova 7, 166 29 Praha 6sousedik�mat.fsv.vut.z2) Institute of Thermomehanis, Czeh Aademy of Sienes,Dolej�skova 5, 182 00 Praha 8novotny�bivoj.it.as.zAbstratWe desribe parallelization and implementation of BICG-STAB method forsystems of unsymmetri linear equations arising in �nite element disretization.Global matrix is not onstruted, we use element by element approah. All ele-ment matries together with adressing vetors are distributed among proessorsand read into memory. Then multipliation of element matries by a globalvetor is performed simultaneously on di�erent proessors. Two odes were de-veloped: using MPI library for distributed memory systems and using OpenMPfor shared memory systems. Good salability is demonstrated on an examplewith about 30000 unknowns.Keywords: linear algebra, iterative methods, BICG-STAB, parallelization,shared/distributed memory, OpenMP, MPI1 IntrodutionIn many areas of ontinuum mehanis of solids and uids (linear and non-linear)solution of large systems of linear equations is required. To ahieve reasonable timespan for solution of suh systems parallelization of orresponding solution proeduresis neessary. Matries onstruted using �nite element disretization are sparse, soit is onvenient to use modi�ations of solution tehniques and proedures.Parallel hardware and softwareWe distinguish between shared and distributed memory arhitetures of omputers.1. Shared memory (SMP - symmetrial multiproessing) - all proessors havethe same priority in aess to shared memory. It is not neessary to hangethe organisation of data storage. Shared variable programming model is based1

on the notion of threads. Di�erent threads an follow di�erent ows of ontrolthrough the same program, but ommuniate with eah other only via shareddata. Programming library: OpenMP.2. Distributed memory - programming is based on the notion of proesses (aproess is an instane of a running program, together with the program data).The parallelism is ahieved by having many proesses, whih ooperate on thesame task. Eah proess has aes only to its own data and proesses om-muniate eah other by sending and reeiving messages. Messages have to beprogrammed expliitely, so serial ode has usually to be ompletely rewrit-ten. Programming library: MPI (Message Passing Interfae), PVM (ParallelVirtual Mahine).Parallel librariesProgramming using OpenMP represents inserting diretives starting with a string!$OMP into soure ode. If we after linking OpenMP library run the ode, the odeis after reahing this diretive split into several threads running in parallel. Paralleltask ends when other diretive of the type !$OMP is inserted.It is always neessary to distinguish, whih variables are shared and whih needto be private. As threads exeute their instrutions asynhronously, it is neessary toinlude synhronization diretives to ensure that all instrutions our in the orretorder.When programming using MPI every proessors reads soure ode and depend-ing on the parameter MYID (rank of proessors from 0 to total number of proessorsNPROC-1) performs programme instrutions. All ommuniation (exhange of data,synhronization) is performed by alling library routines for message passing. Thesoure ode is usually written in FORTRAN or C, during ompilation are parallellibraries linked to it.2 BICG-STAB methodAlgorithm of BICG-STAB method without preonditioning for solution of a systemof linear equations Ax = b an be desribed as follows:x0 = 0 . . . initial guessr0 = b�Ax0r̂0 = r0�0 = � = !0 = 1 . . . variablesv0 = p0 = 0 . . . vetorsfor i = 1; 2; 3; :::�i = (r̂0; ri�1)� = �i�i�1 �!i�1 2

pi = ri�1 + �(pi�1 � !i�1vi�1)vi = Api� = �i(r̂0;vi)s = ri�1 � �vit = As!i = (t;s)(t;t)xi = xi�1 + �pi + !isif xi satis�es presribed auray, quitri = s� !itend3 Parallelization of BICG-STAB methodParallelizing of linear algebra algorithms means mainly parallelization of followingtasks:� Linear ombination of vetors� Dot produt� Multipliation of matrix by vetorFurther it is neessary in eah iteration to evaluate the auray of solution by masterproess. In this ase for synhronization purposes it is neessary to send to the otherproessors a diretive to quit the iteration loop. In the following we desribe methodsof parallelization and implementation of these tasks both for distribuuted and sharedmemory arhitetures using MPI and OpenMP libraries, respetively.Parallelization using MPISine MPI is a low level programming tool, it is neessary to programme not onlysynhronization diretives and sending of results, but also distribution of vetors andelement matries among proessors. We use following notation:NPROC ... number of proessorsMYID ... rank of proessor, MYID = 0...NPROC-1LSOL ... length of global vetor of solutionLSOL LOC ... length of loal vetor on a proessorLSOL LOCX ... maximum length of a loal vetorLengths of loal vetors an be omputed using the following relations:LSOL LOCX = (LSOL+NPROC-1) / NPROCLSOL LOC = MIN(LSOL-(MYID*LSOL LOCX), LSOL LOCX)3

a) parallel linear ombination of two vetorsC distribution of vetors A(LSOL) a B(LSOL) among proessorsC into loal vetors A_lo(LSOL_LOCX) B_lo(LSOL_LOCX)all MPI_SCATTER(A,LSOL_LOCX,MPI_DOUBLE_PRECISION,A_lo,1 LSOL_LOCX,MPI_DOUBLE_PRECISION,0,2 MPI_COMM_WORLD,IERROR)C all MPI_SCATTER(B,LSOL_LOCX,MPI_DOUBLE_PRECISION,B_lo,1 LSOL_LOCX,MPI_DOUBLE_PRECISION,0,2 MPI_COMM_WORLD,IERROR)CC alulation of linear ombination of A and B in loal arraysDO 1000 i = 1,N_loC_lo(i) = alpha*A_lo(i) + beta*B_lo(i)1000 ENDDO

Figure 1: Parallel linear ombination of two vetors
4

b) parallel dot produt, result reeived by all proessorsall MPI_SCATTER(A,LSOL_LOCX,MPI_DOUBLE_PRECISION,A_lo,1 LSOL_LOCX,MPI_DOUBLE_PRECISION,0,2 MPI_COMM_WORLD,IERROR)all MPI_SCATTER(B,LSOL_LOCX,MPI_DOUBLE_PRECISION,B_lo,1 LSOL_LOCX,MPI_DOUBLE_PRECISION,0,2 MPI_COMM_WORLD,IERROR)CC dot produts in loal arraysall salp(A_lo, B_lo, LSOL_LOC, s_lo)C all MPI_ALLREDUCE(s_lo,s,1,MPI_DOUBLE_PRECISION,1 MPI_SUM,MPI_COMM_WORLD,IERROR)

Figure 2: Parallel dot produt) Parallelization of multipliation of matrix A by vetor uWe do not onstrut the global matrix. Before entering the BICG-STAB algo-rithm the program reads from the disk all element matries and orrespondingarray of adresses ILVGV - Indees of Loal Variables in Global Vetor.A = NELEMXielem=1 AielemWe will use the following variables: 5

Figure 3: Sheme of matrix-vetor multipliationNEL LOC ... number of elements distributed to given proessorNEL LOCX ... maximum number of elements per proessorFor omputation of number of element matries on MYID-th proessor:NEL LOCX = (NELEM + NPROC - 1)/NPROCNEL LOC = MIN(NELEM - MYID*NEL LOCX, NEL LOCX)If the global vetor u is available on MYID = 0, it is neessary to distribute its opyusing broadast diretive to every proessor:C sending of global vetor u to all proessorsall MPI_BCAST(u,LSOL,MPI_DOUBLE_PRECISION,0,1 MPI_COMM_WORLD,IERROR)C CALL RZERO(Au,LSOL)CCC multipliation of element matries by vetor u, result in Au_pDO 1200 IE_LOC = 1, NEL_LOCNEVAB = INEVA_LOC(IE_LOC)CALL MULTMV(ILVGV_LOC((IE_LOC-1)*NEVAX+1),NEVAB,1 ELM_LOC((IE_LOC-1)*LELMX+1),LELMX,u,Au_p,LSOL)1200 ENDDOCC redution (adding) of vetors Au_p(LSOL) from all proessors,C resulting global vetor is Au(LSOL)CALL MPI_REDUCE(Au_p,ELMu,LSOL,MPI_DOUBLE_PRECISION,MPI_SUM,0,1 MPI_COMM_WORLD,IERROR)6

Figure 4: Parallel multipliation of matrix A by vetor uIn the ase that we have already omputed in parallel linear ombination of vetors,vetor u is available loally distributed, it is neessary to gather this loal vetorsinto the global vetor:C olleting (gathering) of global vetor u from loal vetorsall MPI_ALLGATHER(u_lo, LSOL_LOCX, MPI_DOUBLE_PRECISION,1 u,LSOL_LOCX,MPI_DOUBLE_PRECISION,2 MPI_COMM_WORLD,IERROR)CC iniialization of vetor Au_pCALL RZERO(Au_p,LSOL)CC multipliation of element matries by vetor u, result in Au_pDO 1200 IE_LOC = 1, NEL_LOCNEVAB = INEVA_LOC(IE_LOC)CALL MULTMV(ILVGV_LOC((IE_LOC-1)*NEVAX+1),NEVAB,1 ELM_LOC((IE_LOC-1)*LELMX+1),LELMX,u,Au_p,LSOL)1200 ENDDOC 7

C redution (adding) of vetors Au_p(LSOL) from all proessors,C resulting global vetor is Au(LSOL)CALL MPI_REDUCE(Au_p,Au,LSOL,MPI_DOUBLE_PRECISION,MPI_SUM,0,1 MPI_COMM_WORLD,IERROR)Parallelization using OpenMPa) parallel linear ombination of two vetors!$OMP PARALLEL DODO 1020 i = 1, nC C(i) = alpha*A(I) + beta*B(I)C1020 ENDDO!$OMP END PARALLEL DOb) parallel dot produt, result reeived by all proessorss = 0.!$OMP PARALLEL DO REDUCTION(+:s)DO 1000 i = 1,ns = s + A(i)*B(i)1000 ENDDO!$OMP END PARALLEL DOC psalp = s) Parallelization of multipliation of matrix A by vetor u!$omp parallel do private(NEVAB)!$omp+shared(ILVGV,INEVA,ELM,LELMX,NELEM,NEVAX,u,LSOL,Au)DO 1200 IE = 1, NELEMC NEVAB = INEVA(IE)C alling of routine for multipliation of element matrixC by a global vetor uCALL MULTMV(ILVGV((IE-1)*NEVAX+1),NEVAB,1 ELM((IE-1)*LELMX+1),LELMX,u,Au,LSOL)1200 ENDDO!$omp end parallel do 8

4 Numerial resultsOur implementation of the BICG-STAB method was tested on a quite large systemof equations whih arises using disretization of linear elastiity problem by �niteelements. Prism of dimensions 2 x 1 x 1 m was loaded by volumetri load, materialproperties were E = 2:1011 MPa, � = 0:3. Finite element mesh onsisted of 2000isoparametri hexahedrons, with 20 nodes (60 unknowns) per element and totally of9581 nodes. Resulting system of equations represented 28743 unknowns.For benhmarking we used two parallel servers:� DEC ES40 with 4 CPUs Alpha EV6 / 500MHz� Sun Fire E15k with 52 CPUs Ultraspar III / 900 MHzWall time of frontal solver was 5 min 20 se on 1 proessor on the DEC server.Wall time of the BICG-STAB proedure runs using MPI and OpenMP on di�erentnumber of proessors is given in the following table and graph:Using MPI library: No. of CPUs DEC time Sun time1 3 min 22 s 9 min 28 s2 2 min 06 s 4 min 39 s4 1 min 25 s 2 min 06 s8 40.5 s16 25.8 s32 17.2 s

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35

tim
e[

se
c]

NPROC

Sun Fire E15K
DEC ES40

Figure 5: Salability using MPI implementation
9

Using OpenMP library:No. of CPUs DEC time Sun time1 8 min 27 s2 4 min 15 s4 1 min 51 s8 20.0 s16 8.5 s

0

50

100

150

200

250

300

350

400

450

500

550

0 2 4 6 8 10 12 14 16

tim
e[

se
c]

NPROC

Sun Fire E15K

Figure 6: Salability using OpenMP implementationTo ahieve relative error of residual of 1.E-07, 572 iterations of the BICG-STABalgorithm were neessary. Also 120 MB RAM memory and about 70 MB of diskspae were needed.5 ConlusionsWe parallelized the BICG-STAB method using both MPI and OpenMP libraries.Numerial results on a test problem from elastiity showed very good salability. Forthe improvement of onvergene rates implementation of appropriate preonditioningand its parallelization will be neessary.Aknowledgement: The authors would like to aknowledge the support of grant GAAV A2120201, researh projet K1019101, and the European Commission throughgrant number HPRI-CT-1999-00026 (the TRACS Programme at EPCC Edinburgh).
10

Referenes[1℄ Paheo, P.: Parallel programming with MPI. Morgan Kaufmann Publishers,San Franiso 1997.[2℄ Saad, Y.: Iterative methods for sparse linear systems. PWS Publishing ompany,Boston 1996.[3℄ Van Der Vorst, H. A.: BI-CGSTAB: A fast and smoothly onverging variantof BI-CG for the solution of nonsymmetri linear systems. SIAM J. Si. Stat.Comput., 1992, Vol. 13, No. 2, pp. 631{644.

11

