
Parallelisation of BICG-STAB algorithm for�nite element
omputationsBed�ri
h Soused��k1), Jaroslav Novotn�y2)1) Department of Mathemati
s,Fa
ulty of Civil Engineering, Cze
h Te
hni
al University,Th�akurova 7, 166 29 Praha 6sousedik�mat.fsv.
vut.
z2) Institute of Thermome
hani
s, Cze
h A
ademy of S
ien
es,Dolej�skova 5, 182 00 Praha 8novotny�bivoj.it.
as.
zAbstra
tWe des
ribe parallelization and implementation of BICG-STAB method forsystems of unsymmetri
 linear equations arising in �nite element dis
retization.Global matrix is not
onstru
ted, we use element by element approa
h. All ele-ment matri
es together with adressing ve
tors are distributed among pro
essorsand read into memory. Then multipli
ation of element matri
es by a globalve
tor is performed simultaneously on di�erent pro
essors. Two
odes were de-veloped: using MPI library for distributed memory systems and using OpenMPfor shared memory systems. Good s
alability is demonstrated on an examplewith about 30000 unknowns.Keywords: linear algebra, iterative methods, BICG-STAB, parallelization,shared/distributed memory, OpenMP, MPI1 Introdu
tionIn many areas of
ontinuum me
hani
s of solids and
uids (linear and non-linear)solution of large systems of linear equations is required. To a
hieve reasonable timespan for solution of su
h systems parallelization of
orresponding solution pro
eduresis ne
essary. Matri
es
onstru
ted using �nite element dis
retization are sparse, soit is
onvenient to use modi�
ations of solution te
hniques and pro
edures.Parallel hardware and softwareWe distinguish between shared and distributed memory ar
hite
tures of
omputers.1. Shared memory (SMP - symmetri
al multipro
essing) - all pro
essors havethe same priority in a

ess to shared memory. It is not ne
essary to
hangethe organisation of data storage. Shared variable programming model is based1

on the notion of threads. Di�erent threads
an follow di�erent
ows of
ontrolthrough the same program, but
ommuni
ate with ea
h other only via shareddata. Programming library: OpenMP.2. Distributed memory - programming is based on the notion of pro
esses (apro
ess is an instan
e of a running program, together with the program data).The parallelism is a
hieved by having many pro
esses, whi
h
ooperate on thesame task. Ea
h pro
ess has a

es only to its own data and pro
esses
om-muni
ate ea
h other by sending and re
eiving messages. Messages have to beprogrammed expli
itely, so serial
ode has usually to be
ompletely rewrit-ten. Programming library: MPI (Message Passing Interfa
e), PVM (ParallelVirtual Ma
hine).Parallel librariesProgramming using OpenMP represents inserting dire
tives starting with a string!$OMP into sour
e
ode. If we after linking OpenMP library run the
ode, the
odeis after rea
hing this dire
tive split into several threads running in parallel. Paralleltask ends when other dire
tive of the type !$OMP is inserted.It is always ne
essary to distinguish, whi
h variables are shared and whi
h needto be private. As threads exe
ute their instru
tions asyn
hronously, it is ne
essary toin
lude syn
hronization dire
tives to ensure that all instru
tions o

ur in the
orre
torder.When programming using MPI every pro
essors reads sour
e
ode and depend-ing on the parameter MYID (rank of pro
essors from 0 to total number of pro
essorsNPROC-1) performs programme instru
tions. All
ommuni
ation (ex
hange of data,syn
hronization) is performed by
alling library routines for message passing. Thesour
e
ode is usually written in FORTRAN or C, during
ompilation are parallellibraries linked to it.2 BICG-STAB methodAlgorithm of BICG-STAB method without pre
onditioning for solution of a systemof linear equations Ax = b
an be des
ribed as follows:x0 = 0 . . . initial guessr0 = b�Ax0r̂0 = r0�0 = � = !0 = 1 . . . variablesv0 = p0 = 0 . . . ve
torsfor i = 1; 2; 3; :::�i = (r̂0; ri�1)� = �i�i�1 �!i�1 2

pi = ri�1 + �(pi�1 � !i�1vi�1)vi = Api� = �i(r̂0;vi)s = ri�1 � �vit = As!i = (t;s)(t;t)xi = xi�1 + �pi + !isif xi satis�es pres
ribed a

ura
y, quitri = s� !itend3 Parallelization of BICG-STAB methodParallelizing of linear algebra algorithms means mainly parallelization of followingtasks:� Linear
ombination of ve
tors� Dot produ
t� Multipli
ation of matrix by ve
torFurther it is ne
essary in ea
h iteration to evaluate the a

ura
y of solution by masterpro
ess. In this
ase for syn
hronization purposes it is ne
essary to send to the otherpro
essors a dire
tive to quit the iteration loop. In the following we des
ribe methodsof parallelization and implementation of these tasks both for distribuuted and sharedmemory ar
hite
tures using MPI and OpenMP libraries, respe
tively.Parallelization using MPISin
e MPI is a low level programming tool, it is ne
essary to programme not onlysyn
hronization dire
tives and sending of results, but also distribution of ve
tors andelement matri
es among pro
essors. We use following notation:NPROC ... number of pro
essorsMYID ... rank of pro
essor, MYID = 0...NPROC-1LSOL ... length of global ve
tor of solutionLSOL LOC ... length of lo
al ve
tor on a pro
essorLSOL LOCX ... maximum length of a lo
al ve
torLengths of lo
al ve
tors
an be
omputed using the following relations:LSOL LOCX = (LSOL+NPROC-1) / NPROCLSOL LOC = MIN(LSOL-(MYID*LSOL LOCX), LSOL LOCX)3

a) parallel linear
ombination of two ve
torsC distribution of ve
tors A(LSOL) a B(LSOL) among pro
essorsC into lo
al ve
tors A_lo
(LSOL_LOCX) B_lo
(LSOL_LOCX)
all MPI_SCATTER(A,LSOL_LOCX,MPI_DOUBLE_PRECISION,A_lo
,1 LSOL_LOCX,MPI_DOUBLE_PRECISION,0,2 MPI_COMM_WORLD,IERROR)C
all MPI_SCATTER(B,LSOL_LOCX,MPI_DOUBLE_PRECISION,B_lo
,1 LSOL_LOCX,MPI_DOUBLE_PRECISION,0,2 MPI_COMM_WORLD,IERROR)CC
al
ulation of linear
ombination of A and B in lo
al arraysDO 1000 i = 1,N_lo
C_lo
(i) = alpha*A_lo
(i) + beta*B_lo
(i)1000 ENDDO

Figure 1: Parallel linear
ombination of two ve
tors
4

b) parallel dot produ
t, result re
eived by all pro
essors
all MPI_SCATTER(A,LSOL_LOCX,MPI_DOUBLE_PRECISION,A_lo
,1 LSOL_LOCX,MPI_DOUBLE_PRECISION,0,2 MPI_COMM_WORLD,IERROR)
all MPI_SCATTER(B,LSOL_LOCX,MPI_DOUBLE_PRECISION,B_lo
,1 LSOL_LOCX,MPI_DOUBLE_PRECISION,0,2 MPI_COMM_WORLD,IERROR)CC dot produ
ts in lo
al arrays
all s
alp(A_lo
, B_lo
, LSOL_LOC, s
_lo
)C
all MPI_ALLREDUCE(s
_lo
,s
,1,MPI_DOUBLE_PRECISION,1 MPI_SUM,MPI_COMM_WORLD,IERROR)

Figure 2: Parallel dot produ
t
) Parallelization of multipli
ation of matrix A by ve
tor uWe do not
onstru
t the global matrix. Before entering the BICG-STAB algo-rithm the program reads from the disk all element matri
es and
orrespondingarray of adresses ILVGV - Inde
es of Lo
al Variables in Global Ve
tor.A = NELEMXielem=1 AielemWe will use the following variables: 5

Figure 3: S
heme of matrix-ve
tor multipli
ationNEL LOC ... number of elements distributed to given pro
essorNEL LOCX ... maximum number of elements per pro
essorFor
omputation of number of element matri
es on MYID-th pro
essor:NEL LOCX = (NELEM + NPROC - 1)/NPROCNEL LOC = MIN(NELEM - MYID*NEL LOCX, NEL LOCX)If the global ve
tor u is available on MYID = 0, it is ne
essary to distribute its
opyusing broad
ast dire
tive to every pro
essor:C sending of global ve
tor u to all pro
essors
all MPI_BCAST(u,LSOL,MPI_DOUBLE_PRECISION,0,1 MPI_COMM_WORLD,IERROR)C CALL RZERO(Au,LSOL)CCC multipli
ation of element matri
es by ve
tor u, result in Au_pDO 1200 IE_LOC = 1, NEL_LOCNEVAB = INEVA_LOC(IE_LOC)CALL MULTMV(ILVGV_LOC((IE_LOC-1)*NEVAX+1),NEVAB,1 ELM_LOC((IE_LOC-1)*LELMX+1),LELMX,u,Au_p,LSOL)1200 ENDDOCC redu
tion (adding) of ve
tors Au_p(LSOL) from all pro
essors,C resulting global ve
tor is Au(LSOL)CALL MPI_REDUCE(Au_p,ELMu,LSOL,MPI_DOUBLE_PRECISION,MPI_SUM,0,1 MPI_COMM_WORLD,IERROR)6

Figure 4: Parallel multipli
ation of matrix A by ve
tor uIn the
ase that we have already
omputed in parallel linear
ombination of ve
tors,ve
tor u is available lo
ally distributed, it is ne
essary to gather this lo
al ve
torsinto the global ve
tor:C
olle
ting (gathering) of global ve
tor u from lo
al ve
tors
all MPI_ALLGATHER(u_lo
, LSOL_LOCX, MPI_DOUBLE_PRECISION,1 u,LSOL_LOCX,MPI_DOUBLE_PRECISION,2 MPI_COMM_WORLD,IERROR)CC ini
ialization of ve
tor Au_pCALL RZERO(Au_p,LSOL)CC multipli
ation of element matri
es by ve
tor u, result in Au_pDO 1200 IE_LOC = 1, NEL_LOCNEVAB = INEVA_LOC(IE_LOC)CALL MULTMV(ILVGV_LOC((IE_LOC-1)*NEVAX+1),NEVAB,1 ELM_LOC((IE_LOC-1)*LELMX+1),LELMX,u,Au_p,LSOL)1200 ENDDOC 7

C redu
tion (adding) of ve
tors Au_p(LSOL) from all pro
essors,C resulting global ve
tor is Au(LSOL)CALL MPI_REDUCE(Au_p,Au,LSOL,MPI_DOUBLE_PRECISION,MPI_SUM,0,1 MPI_COMM_WORLD,IERROR)Parallelization using OpenMPa) parallel linear
ombination of two ve
tors!$OMP PARALLEL DODO 1020 i = 1, nC C(i) = alpha*A(I) + beta*B(I)C1020 ENDDO!$OMP END PARALLEL DOb) parallel dot produ
t, result re
eived by all pro
essorss
 = 0.!$OMP PARALLEL DO REDUCTION(+:s
)DO 1000 i = 1,ns
 = s
 + A(i)*B(i)1000 ENDDO!$OMP END PARALLEL DOC ps
alp = s

) Parallelization of multipli
ation of matrix A by ve
tor u!$omp parallel do private(NEVAB)!$omp+shared(ILVGV,INEVA,ELM,LELMX,NELEM,NEVAX,u,LSOL,Au)DO 1200 IE = 1, NELEMC NEVAB = INEVA(IE)C
alling of routine for multipli
ation of element matrixC by a global ve
tor uCALL MULTMV(ILVGV((IE-1)*NEVAX+1),NEVAB,1 ELM((IE-1)*LELMX+1),LELMX,u,Au,LSOL)1200 ENDDO!$omp end parallel do 8

4 Numeri
al resultsOur implementation of the BICG-STAB method was tested on a quite large systemof equations whi
h arises using dis
retization of linear elasti
ity problem by �niteelements. Prism of dimensions 2 x 1 x 1 m was loaded by volumetri
 load, materialproperties were E = 2:1011 MPa, � = 0:3. Finite element mesh
onsisted of 2000isoparametri
 hexahedrons, with 20 nodes (60 unknowns) per element and totally of9581 nodes. Resulting system of equations represented 28743 unknowns.For ben
hmarking we used two parallel servers:� DEC ES40 with 4 CPUs Alpha EV6 / 500MHz� Sun Fire E15k with 52 CPUs Ultraspar
 III / 900 MHzWall time of frontal solver was 5 min 20 se
 on 1 pro
essor on the DEC server.Wall time of the BICG-STAB pro
edure runs using MPI and OpenMP on di�erentnumber of pro
essors is given in the following table and graph:Using MPI library: No. of CPUs DEC time Sun time1 3 min 22 s 9 min 28 s2 2 min 06 s 4 min 39 s4 1 min 25 s 2 min 06 s8 40.5 s16 25.8 s32 17.2 s

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35

tim
e[

se
c]

NPROC

Sun Fire E15K
DEC ES40

Figure 5: S
alability using MPI implementation
9

Using OpenMP library:No. of CPUs DEC time Sun time1 8 min 27 s2 4 min 15 s4 1 min 51 s8 20.0 s16 8.5 s

0

50

100

150

200

250

300

350

400

450

500

550

0 2 4 6 8 10 12 14 16

tim
e[

se
c]

NPROC

Sun Fire E15K

Figure 6: S
alability using OpenMP implementationTo a
hieve relative error of residual of 1.E-07, 572 iterations of the BICG-STABalgorithm were ne
essary. Also 120 MB RAM memory and about 70 MB of diskspa
e were needed.5 Con
lusionsWe parallelized the BICG-STAB method using both MPI and OpenMP libraries.Numeri
al results on a test problem from elasti
ity showed very good s
alability. Forthe improvement of
onvergen
e rates implementation of appropriate pre
onditioningand its parallelization will be ne
essary.A
knowledgement: The authors would like to a
knowledge the support of grant GAAV A2120201, resear
h proje
t K1019101, and the European Commission throughgrant number HPRI-CT-1999-00026 (the TRACS Programme at EPCC Edinburgh).
10

Referen
es[1℄ Pa
he
o, P.: Parallel programming with MPI. Morgan Kaufmann Publishers,San Fran
is
o 1997.[2℄ Saad, Y.: Iterative methods for sparse linear systems. PWS Publishing
ompany,Boston 1996.[3℄ Van Der Vorst, H. A.: BI-CGSTAB: A fast and smoothly
onverging variantof BI-CG for the solution of nonsymmetri
 linear systems. SIAM J. S
i. Stat.Comput., 1992, Vol. 13, No. 2, pp. 631{644.

11

