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ABSTRACT

The Balancing Domain Decomposition by Constraints (BDDC) method

by Dohrmann (2003) is the most advanced method from the Balancing fam-

ily of iterative substructuring methods by Mandel (1993) for the solution of

large systems of linear algebraic equations arising from discretizations of ellip-

tic boundary value problems. The method is closely related to FETI-DP by

Farhat et. al. (2001), and it is the same as other two methods proposed inde-

pendently by Fragakis and Papadrakakis (2003) and by Cros (2003).

Because these are two-level methods, solving the coarse problem exactly

becomes a bottleneck when the number of substructures becomes large. The

coarse problem in BDDC has the same structure as the original problem, so it

is straightforward to apply the BDDC method recursively to solve the coarse

problem only approximately. In the first part we formulate a new family of

abstract Multispace BDDC methods and give a condition number bound from

the abstract additive Schwarz preconditioning theory. The Multilevel BDDC is

then treated as a special case of the Multispace BDDC, and it is also shown that

the original, two-level, BDDC can be written as a multispace method.



In the second part we propose a method for adaptive selection of the coarse

space for the original two-level BDDC method. The method works by adding

coarse degrees of freedom constructed from eigenvectors associated with intersec-

tions of selected pairs of adjacent substructures. It is assumed that the starting

coarse degrees of freedom are already sufficient to prevent relative rigid body

motions in any selected pair of adjacent substructures. A heuristic indicator of

the condition number is developed and a minimal number of coarse degrees of

freedom is added to decrease the indicator under a given threshold.

In the third part we combine the advantages of both approaches to propose

a new method called Adaptive – Multilevel BDDC that preserves both parallel

scalability with increasing number of subdomains and very good convergence

properties. Performance of the method is illustrated by several numerical ex-

amples in two and three spatial dimensions.

This abstract accurately represents the content of the candidate’s thesis. I

recommend its publication.

Signed
Jan Mandel
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1. Introduction

A dramatic increase in availability of multicore, parallel computers over the

last few decades has motivated a progressive research in many areas, including

domain decomposition methods. Out of many possible interpretations of the

domain decomposition cf., e.g., monographs [74, 77] it will be in our context

understood as a separation of a physical domain into subdomains, called alter-

natively (with the same meaning) substructures. These methods then aim to

allow for an efficient and scalable solution of systems of linear equations arising

from discretizations of partial differential equations (PDEs), in particular by

finite element methods. In this thesis we will restrict our attention to elliptic

problems such as Laplace equation or problems of linear elasticity.

The important class of domain decomposition methods that we will focus on

is known as iterative substructuring. From the point of view of linear algebra, the

solution of a large problem is replaced by repeated solutions of a number of inde-

pendent subproblems, to be solved in parallel. The algorithms are formulated as

preconditioned Krylov iterative methods such as conjugate gradients (CG), or

GMRES. All these methods access the specific problem through only two sub-

routines, namely the system matrix-vector multiplication, and preconditioner

matrix-vector multiplication. There is often a pre-processing step consisting of

a transformation of variables before an iterative method is applied; in that case,

subroutines to pre-process the right-hand side and to recover the solution also

need to be provided.
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The following method components form the system and the preconditioner

presented to the iterative method:

• The solution space or, as we will see later, some larger space is split into

a number of subspaces, and independent problems to be solved in parallel

are set up in each one of them, and solved in each iteration.

• Correspondence between the subspaces and the solution space is estab-

lished to build a global solution from the local solutions.

• A global coarse problem with one or as few as possible variables per sub-

space is set up and then solved in each iteration to coordinate the solution

between all subspaces at once.

Careful splitting into subspaces and preconditioning in the subspaces are

needed for scalability with subdomain size. A coarse problem is necessary for

scalability with increasing number of subdomains, and hence, processors. We

now briefly review some domain decomposition methods important in the con-

text of the BDDC method – the main topic of this thesis. The comprehen-

sive overview of the field has been the subject of numerous monographs, e.g.,

[47, 74, 77, 81, 87, 91], cf., also the standard finite element monograph [5]. An

important role in the present development is also played by another thesis of

the author [79], where some of the most popular methods were formulated and

compared under so-called minimalist assumptions. This revealed that some of

the methods are closely related, equivalent or even the same. The theory has

been used in the final chapter to develop an adaptive method that significantly

improves convergence of two most advanced methods, BDDC and FETI-DP.
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We note that the basic idea of the adaptive method is the same in the two

theses. However, the implementation in [79] uses global spaces, projections,

and a change of variables to preserve sparsity of global operators, whereas the

formulation presented here builds explicitly all subspaces (including the coarse).

Perhaps the earliest primal domain decomposition methods were based on

the concept of substructuring. The domain is divided into non-overlapping sub-

structures, and there is one subspace formed by the degrees of freedom within

a substructure. The subspaces overlap in the degrees of freedom on substruc-

ture interfaces. The internal degrees of freedom in each substructure are then

eliminated; this alone results in a significant decrease of the condition number,

typically from O(h−2) to O(h−1). So even simple diagonal preconditioners and

no coarse problem result in good practical parallel methods [35]. The system

matrix-vector multiplication is implemented by solving an independent Dirich-

let problem in each substructure, which is the same as multiplication by the

Schur complement in each substructure. More sophisticated diagonal precondi-

tioners need to know the diagonal entries of the Schur complements, which are

not available, but can be estimated from the matrix-vector multiplication [11].

Asymptotically optimal (for small h) diagonal preconditioning of the problem

reduced to substructure interfaces, along with various coarse problems, were in-

troduced in pioneering theoretically oriented papers [2, 3, 19, 89]. The coarse

problems are constructed from piecewise linear or piecewise constant functions

on substructure scale. These methods have condition numbers that, for geomet-

rically regular problems, provably do not grow faster than log2 H
h

, where H is

the typical substructure size and h is the mesh step or element size.
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Methods preconditioning the system reduced to interfaces by a weighted sum

of inverses of the reduced substructure matrices [14, 15, 30] have become known

as Neumann-Neumann methods [20], because multiplication of a vector by the

inverse is the same as numerically solving the differential equations on both sides

of a substructure interface with the Neumann boundary conditions. A scalable

version of the Neumann-Neumann method requires a suitable coarse problem.

The Balancing Domain Decomposition (BDD) by Mandel [53] constructs the

coarse problem from the natural nullspace of the problem (constants for scalar

problems, rigid body modes for elasticity). The BDD has become quite popular,

because it can be formulated purely algebraically, requiring only substructure

matrix-vector multiplications and the substructure nullspace vectors. For ex-

ample, in application of BDD to mixed discretization of a flow problem [12],

the matrix-vector multiplications are provided by pressure to flux and flux to

pressure mappings on substructure interfaces. The BDD method and its theory

were further developed for problems with coefficient jumps [55, 57], and also for

plates and shells [48, 49].

Currently the most advanced version of the primal substructuring method is

the Balancing Domain Decomposition by Constraints (BDDC) by Dohrmann [17].

It uses (similarly to [49]) a coarse space defined by energy minimization on each

substructure separately, subject to given values of coarse degrees of freedom

(such as values at substructure corners or edge or face averages), which act

as constraints, but the BDDC method uses a careful additive approach: the

substructure spaces and the coarse space form an energy orthogonal decomposi-

tion of a space of vectors that are not continuous across substructure interfaces;
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the only approximation comes from enforcing the continuity across substructure

interfaces by averaging. This results in lower condition numbers and faster con-

vergence than other methods. The first proofs that BDDC is asymptotically

optimal (the condition number does not grow faster than log2 H
h

) were given by

Mandel, Dohrmann and Tezaur in [58, 59]. Unlike other primal substructuring

methods, BDDC requires only the substructure matrices.

The dual substructuring methods enforce the continuity of the solution on

substructure interfaces by Lagrange multipliers; for the case of 2 substructures,

see [30]. In general, some substructure matrices will have a nontrivial nullspace,

and guaranteeing that all local problems have right-hand sides orthogonal to the

nullspace gives the original Finite Element Tearing and Interconnecting (FETI)

method by Farhat and Roux [26], later called FETI-1. Farhat, Mandel and

Roux have shown that resolving the nullspace acts as a natural coarse prob-

lem [25], but the original FETI method still had only a diagonal preconditioner,

with resulting lack of scalability. An asymptotically optimal preconditioner

involving a Dirichlet problem in each substructure and the first proof of the

polylogarithmic growth of the condition number were given in [66]. Further

developments of the FETI method include more complicated coarse spaces for

plates and shells [24, 22], which also proved to have polylogarithmic bound on

the condition number growth [68]. Currently the most advanced method is Fi-

nite Element Tearing and Interconnecting - Dual, Primal (FETI-DP) by Farhat

et al. [23, 21]. The method enforces continuity of the values of the solution

at substructure corners and, in 3D, of the values of face averages, cf. [23, 44],

by choosing those values as (primal) coarse degrees of freedom, and enforcing
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the equality of the rest of the degrees of freedom on substructure interfaces by

Lagrange multipliers. All original and coarse degrees of freedom are eliminated

(this involves setting up a coarse problem and solving it in every iteration) and

the remaining dual system in terms of the Lagrange multipliers is solved itera-

tively. Polylogarithmic condition number bounds for FETI-DP were first proved

by Mandel and Tezaur [67] and generalized to the case of coefficient jumps be-

tween substructures by Klawonn, Widlund and Dryja [43].

The FETI method is conceptually dual to the BDD. In the FETI method,

evaluation of the system matrix-vector multiplication involves solving a Neu-

mann problem on each substructure, and the preconditioner involves solving a

Dirichlet problem on each substructure. In the BDD, the role of the Dirichlet

and the Neumann problems is reversed. The rest of the algebra is somewhat dif-

ferent so the base methods are not dual in any exact sense. However, algebraic

relations between the mesh transfer operators in primal and dual methods were

proved by Rixen at al. [75] and Klawonn and Widlund [41] have reduced the

asymptotic analysis of BDD and FETI to essentially a single inequality. Fra-

gakis and Papadrakakis [29] then classified common components of BDD and

FETI type methods and observed numerically that the preconditioned operator

in one version [1] of the FETI method, with certain improvements to make it

more robust, has the same eigenvalues as the BDD method, and proposed several

primal methods derived from FETI class methods. Proof that the eigenvalues

of BDDC and FETI-DP are identical except for eigenvalue equal to one was

given by Mandel, Dohrmann and Tezaur [59]. These proofs were followed by

a surge of important simplified proofs, alternative frameworks, and extensions
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to various problems by the best analysts in the substructuring field and their

students and coworkers, e.g., [4, 6, 7] and [28, 40, 43, 52, 51, 69]. The most

popular methods were also analyzed by Mandel and Soused́ık under so-called

minimalist assumptions [62, 79, 80]. This setting allowed to show that in the

case of corner constraints only, methods identical to BDDC were independently

derived as primal versions of FETI-DP by Cros [13] and by Fragakis and Pa-

padrakakis [29]. The BDDC and, equivalently, FETI-DP are quite robust. It

can be proved that the condition number remains bounded even for large classes

of subdomains with rough interfaces in 2D [39, 90] as well as in many cases of

strong discontinuities of coefficients, including some configurations when the

discontinuities cross substructure boundaries [70, 71].

Solving the coarse problem exactly in the original BDDC method becomes

a bottleneck as the number of unknowns and, in particular, the number of

substructures gets too large. Since the coarse problem in BDDC, unlike in the

FETI-DP, has the same structure as the original problem, it is straightforward

to apply the method recursively to solve the coarse problem only approximately

[17]. The original, two-level, BDDC has been extended into three-levels by Tu

[83, 82, 85, 84] and into a general multilevel method by Mandel, Soused́ık and

Dohrmann [63, 64]. However, the abstract condition number bounds reveal

deteriorating convergence with increasing number of levels. We also note that

recently Tu extended BDDC into three-level methods for saddle point problems

[86], and with Kim for mortar discretizations [36]. Another research direction

includes applications of inexact substructure solvers in the BDDC methods [18,

52], and inexact coarse problem solvers in the FETI methods [33, 37, 38].
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Moreover, despite their robustness, the condition number of the BDDC and,

equivalently, FETI-DP does deteriorate in many situations of practical impor-

tance and an adaptive method is warranted. Enriching the coarse space so

that the iterations run in a subspace devoid of “difficult” modes has been a

long-standing trick in iterative substructuring methods and used, e.g., in the

development of BDD and FETI for plates from the base BDD and FETI meth-

ods [24, 48, 49, 68]. Methods that build a coarse space adaptively from lo-

cal eigenvalue calculations were also devised in a number of other contexts

[8, 27, 54, 56, 73]. Adaptive enrichment for BDDC and FETI-DP was pro-

posed by Mandel and Soused́ık in [60, 61], with the added coarse functions built

from eigenproblems based on adjacent pairs of substructures in 2D. However,

the adaptive method was formulated in terms of FETI-DP operators and it was

quite complicated. Later, the algorithm has been developed directly in terms of

BDDC operators and extended to 3D by Mandel, Soused́ık and Š́ıstek [65, 79],

resulting in a much simplified formulation and implementation. This implemen-

tation framework operates on global matrices, builds no explicit coarse problem,

and gets much of its parallelism through the direct solver used to solve an aux-

iliary decoupled system. To preserve sparsity, the authors used a variant of the

change of variables from [51], extended to an arbitrary number of constraints.

It has been shown on numerical examples that the heuristic eigenvalue-based

estimates work reasonably well and that the adaptive approach can result in the

concentration of computational work in a small troublesome part of the prob-

lem, which leads to a good convergence behavior at a small added cost. The

only requirement for the adaptive algorithm is that there is a sufficient num-
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ber of corner constraints to prevent rigid body motions between any pair of

adjacent substructures. This requirement has been recognized recently in other

contexts [9, 50], and in the context of BDDC by Burda et al. [10].

The main goal of this thesis is to combine the adaptive and multilevel ap-

proaches to the BDDC method in order to develop its variant that would preserve

parallel scalability with an increasing number of subdomains and also show ex-

cellent convergence properties. Some of the material has already been published.

This thesis is organized as follows. In Chapter 2 we establish the notation and

introduce problem settings and preliminaries. Following [63, 64], in Chapter 3

we formulate the Abstract Multispace BDDC. In Chapter 4 we then present

the Multilevel BDDC as a particular instance of the Multispace BDDC. We also

derive an abstract condition number bound. Chapter 5 is based on a series of pa-

pers by Mandel, Soused́ık and Š́ıstek [61, 65, 79, 78], except for Section 5.1 which

is new. We describe the adaptive selection of constraints in terms of BDDC op-

erators only ([65, 79]). However, the presented formulation includes an explicit

coarse space correction, outlined for 2D in [78], which allows for a multilevel

extension of the adaptive algorithm. Chapter 6 is new and contains the main

result of this thesis. We combine the adaptive and multilevel approaches and

formulate the new method called Adaptive – Multilevel BDDC which allows for

the adaptive selection of constraints on each decomposition level. Numerical

experiments are presented in Chapter 7. It appears that the adaptive algorithm

is able to effectively detect troublesome parts on each decomposition level and

decrease the number of iterations at a small added cost. Finally, Chapter 8

contains the summary and concluding remarks.
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The Multispace and Multilevel BDDC (Chapters 3–4) resulted from a joint

research with Jan Mandel and Clark R. Dohrmann. The first idea of the adaptive

algorithm (Chapter 5) can be traced back to a joint paper with Jan Mandel [61].

Its extension into 3D was originally published in the author’s first thesis [79].

However, this work contains the first publication of this formulation with an

explicit coarse space, along with a preconditioner for LOBPCG (Section 5.1).

The main result of the thesis, the Adaptive–Multilevel BDDC algorithm is also

an original contribution of the author; and only a 2D outline of the algorithm

has been recently submitted in the conference proceedings [78]. The 3D version

of the algorithm appears here for the first time.
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2. Problem Setting and Preliminaries

We wish to solve an abstract linear problem

u ∈ X : a(u, v) = 〈fX , v〉 , ∀v ∈ X, (2.1)

where X is a finite dimensional linear space, a (·, ·) is a symmetric positive

definite bilinear form defined on X, fX ∈ X ′ is the right-hand side with X ′

denoting the dual space of X, and 〈·, ·〉 is the duality pairing. The form a (·, ·)

is also called the energy inner product, the value of the quadratic form a (u, u)

is called the energy of u, and the norm ‖u‖a = [a (u, u)]1/2 is called the energy

norm. The operator AX : X 7→ X ′ associated with a is defined by

a(u, v) = 〈AXu, v〉 , ∀u, v ∈ X,

and (2.1) can be equivalently written as a system of linear algebraic equations

AXu = fX ,

which we would like to solve by a preconditioned conjugate gradient method.

Here, a preconditioner is a mapping B : X ′ → X and we will look for

preconditioners such that 〈r, Br〉 is also symmetric and positive definite on X ′.

In iteration k the method computes the residual

r(k) = AXu
(k) − fX ∈ X ′,

and the preconditioner computes the increment to the approximate solution u(k)

as a linear combination of the preconditioned residual Br(k) ∈ X with precon-

ditioned residuals in earlier iterations.
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It is well known that BAX : X → X has only real positive eigenvalues, and

convergence of the preconditioned conjugate gradients method can be estab-

lished from the eigenvalues λ of the preconditioned operator BAX ; the condition

number

κ =
λmax(BAX)

λmin(BAX)
,

gives a well-known bound on the error reduction, cf. e.g. [31],

∥∥e(k)
∥∥
K
≤ 2

(√
κ− 1√
κ+ 1

)k ∥∥e(0)
∥∥
K
,

where e(k) = u(k) − u is the error of the solution in iteration k.

2.1 Additive Schwarz preconditioners

Because of their importance in the forthcoming development, we briefly

review the theory of abstract additive Schwarz preconditioners. Such a precon-

ditioner is specified by a decomposition of the solution space X into subspaces,

X = X1 + ...+XM , (2.2)

and by symmetric positive definite bilinear forms bi on Xi. The preconditioner

is a linear operator

B : X ′ → X, B : r 7→ u,

defined by solving the following variational problems on the subspaces and

adding the results:

B : r 7→ u =
M∑
k=1

uk, uk ∈ Xk : bk(uk, yk) = 〈r, yk〉 , ∀yk ∈ Xk. (2.3)
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Theorem 2.1 (Dryja and Widlund [20]) If there exist constants C0, ω, and

a symmetric matrix E = (eij)
M
i,j=1 such that

∀u ∈ X ∃uk ∈ Xk, k = 1, . . . ,M : u =
M∑
k=1

uk,

M∑
k=1

‖uk‖2
bk
≤ C0 ‖u‖2

a (2.4)

∀k = 1, . . . ,M ∀uk ∈ Xk : ‖uk‖2
a ≤ ω ‖uk‖2

bk
(2.5)

∀uk ∈ Xk, k = 1, . . . ,M : a(ui, uj) ≤ eij ‖ui‖a ‖uj‖a (2.6)

then

κ =
λmax(BAX)

λmin(BAX)
≤ C0ωρ(E).

This theorem with proof can be found in Dryja and Widlund [20, Theo-

rem 1], or in the monograph by Toselli and Widlund [81, Theorem 2.7].

Remark 2.2 Because ρ(E) ≤ ‖E‖∞ and we can choose eij = 1 if Xi∩Xj 6= {0},

eij = 0 otherwise, we have the easy estimate

ρ(E) ≤ max
i=1,...,M

|{j ∈ {1, . . . ,M} : Xi ∩Xj 6= {0}}| ≤M. (2.7)

In the case when M = 1, the preconditioner simplifies to

r 7−→ u ∈ X : b(u, v) = 〈r, v〉 , ∀v ∈ X,

and Theorem 2.1 reduces to the statement that if

1

ω
‖u‖2

a ≤ ‖u‖
2
b ≤ C0 ‖u‖2

a ∀u ∈ X, (2.8)

then κ ≤ ωC0.
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2.2 Abstract variational BDDC preconditioner

Next, we present the original BDDC preconditioner in a particularly simple

form originally formulated in [61] which has been inspired by a view of the

Neumann-Neumann methods, going back once more to Dryja and Widlund [20].

Suppose that the bilinear form a is defined and symmetric positive semidef-

inite on a larger space W ⊃ X. The abstract version of the original BDDC

preconditioner [17, 58] is characterized by a selection of an intermediate space V ,

X ⊂ V ⊂ W. (2.9)

Assumption 2.3 The form a (·, ·) is positive definite on V .

Algorithm 2.4 (Abstract BDDC) Given the space V and a projection Q,

such that a (·, ·) is positive definite on V , and

X ⊂ V, Q : V → X,

define the preconditioner B : r ∈ X ′ 7−→ u ∈ X by

B : r 7−→ u = Qv, v ∈ V : a (v, z) = 〈r,Qz〉 , ∀z ∈ V. (2.10)

This formulation is remarkably simple, involving only the bilinear form a,

the space V , and the projection Q. We note that in typical substructuring

applications the spacesW andX are given, and the space V and the projectionQ

are to be chosen.
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At this point we would like to premise that the main goal of this dissertation

is to address several different ways of selecting V and Q. But before proceeding

any further, let us recall the abstract condition number bound of the original

two-level BDDC method, cf. also [61, Theorem 2].

Theorem 2.5 Let Q be a projection onto X, let us define a space VM by

VM =
{
v ∈ V : ∀z ∈ V : Qv = Qz =⇒ ‖v‖2

a ≤ ‖z‖
2
a

}
,

and let ω be a minimal constant such that

∀v ∈ VM : ‖Qv‖2
a ≤ ω ‖v‖2

a .

Then the preconditioner from Algorithm 2.4 satisfies

κ ≤ ω = sup
v∈V

‖Qv‖2
a

‖v‖2
a

. (2.11)

Proof. Define an operator G : X → VM by

G : u 7→ v,
1

2
a (v, v)→ min, s.t. v ∈ VM, u = Qv. (2.12)

Since a is positive definite on VM, the operator G is well defined. Define the

bilinear form b on X by b(u, v) = a (Gu,Gv). Now let u and v be as in (2.10).

Since v is the solution of

1

2
a (v, v)− 〈r,Qv〉 → min, s.t. v ∈ VM,

it follows that u is the solution of

u ∈ X : b(u, x) = 〈r, x〉 , ∀x ∈ X. (2.13)
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It remains to compare ‖u‖2
a and ‖u‖2

b . Let u ∈ X and define v = Gu. Then,

from the minimization property (2.12) and the fact that Qu = u ∈ X ⊂ VM, it

follows that

‖u‖2
b = ‖v‖2

a ≤ ‖u‖
2
a .

On the other hand,

‖u‖2
a = ‖Qv‖2

a ≤ ω ‖v‖2
a = ω0 ‖u‖2

b ,

which concludes the proof.
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3. Abstract Multispace BDDC

We will derive the abstract Multispace BDDC preconditioner from the ab-

stract additive Schwarz theory. However, unlike in this theory, we will decom-

pose some space between X and W rather than X. Suppose again that the

bilinear form a is defined and symmetric positive semidefinite on a larger space

W ⊃ X. In the design of the multispace preconditioner, we choose spaces Vk,

k = 1, . . . ,M , such that

X ⊂
M∑
k=1

Vk ⊂ W, (3.1)

so this can also be viewed as replacing the space V in (2.9) by a sum
∑M

k=1 Vk.

We do not wish to relate the two choices of the intermediate space at this point.

Assumption 3.1 The form a (·, ·) is positive definite on each Vk separately.

Algorithm 3.2 (Abstract Multispace BDDC) Given spaces Vk and linear

operators Qk, k = 1, . . . ,M such that a (·, ·) is positive definite on each space Vk,

and

X ⊂
M∑
k=1

Vk, Qk : Vk → X,

define the preconditioner B : r ∈ X ′ 7−→ u ∈ X by

B : r 7→ u =
M∑
k=1

Qkvk, vk ∈ Vk : a (vk, zk) = 〈r,Qkzk〉 , ∀zk ∈ Vk. (3.2)

We first formulate the condition number bound in the full strength allowed

by the proof. We then find the bound used for the Multilevel BDDC as a

corollary.
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Theorem 3.3 Define for all k = 1, . . . ,M the spaces VMk by

VMk =
{
vk ∈ Vk : ∀zk ∈ Vk : Qkvk = Qkzk =⇒ ‖vk‖2

a ≤ ‖zk‖
2
a

}
.

If there exist constants C0, ω, and a symmetric matrix E = (eij)
M
i,j=1, such that

∀u ∈ X ∃vk ∈ Vk, k = 1, . . . ,M : u =
M∑
k=1

Qkvk,
M∑
k=1

‖vk‖2
a ≤ C0 ‖u‖2

a (3.3)

∀k = 1, . . . ,M ∀vk ∈ VMk : ‖Qkvk‖2
a ≤ ω ‖vk‖2

a (3.4)

∀zk ∈ QkVk, k = 1, . . . ,M : a (zi, zj) ≤ eij ‖zi‖a ‖zj‖a , (3.5)

then the preconditioner from Algorithm 3.2 satisfies

κ =
λmax(BAX)

λmin(BAX)
≤ C0ωρ(E).

Proof. We interpret the Multispace BDDC preconditioner as an abstract ad-

ditive Schwarz method. So the essential idea of the proof is to map the assump-

tions of the abstract additive Schwarz estimate from the decomposition (2.2) of

the space X to the decomposition (3.1). Define the spaces

Xk = QkVk.

We will show that the preconditioner (3.2) satisfies (2.3), where bk is defined by

bk(uk, yk) = a (Gkx,Gkz) , x, z ∈ X, uk = QkGkx, yk = QkGkz (3.6)

with the operators Gk : X → VMk defined by

Gk : u 7→ vk,
1

2
a (vk, vk)→ min, s.t. vk ∈ VMk , u =

M∑
k=1

Qkvk. (3.7)

First, from the definition of operators Gk, spaces Xk, and because a is positive

definite on Vk by Assumption (3.1), it follows that Gkx and Gkz in (3.6) exist
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and are unique, so bk is defined correctly. To prove (2.3), let vk be as in (3.2)

and note that vk is the solution of

1

2
a (vk, vk)− 〈r,Qkvk〉 → min, vk ∈ Vk.

Consequently, the preconditioner (3.2) is an abstract additive Schwarz method

and we only need to verify the inequalities (2.4)–(2.6). To prove (2.4), let u ∈ X.

Then, with vk from the assumption (3.3) and with uk = QkGkvk as in (3.6), it

follows that

u =
M∑
k=1

uk,
M∑
k=1

‖uk‖2
bk

=
M∑
k=1

‖vk‖2
a ≤ C0 ‖u‖2

a .

Next, let uk ∈ Xk. From the definitions of Xk and VMk , it follows that there

exist unique vk ∈ VMk such that uk = Qkvk. Using the assumption (3.4) and the

definition of bk in (3.6), we get

‖uk‖2
a = ‖Qkvk‖2

a ≤ ω ‖vk‖2
a = ω ‖uk‖2

bk
,

which gives (2.5). Finally, (3.5) is the same as (2.6).

The next Corollary was given without proof in [63, Lemma 1]. This is the

special case of Theorem 3.3 that will actually be used. In the case when M = 1,

this result was proved in [61].

Corollary 3.4 Assume that the subspaces Vk are energy orthogonal, the opera-

tors Qk are projections, a (·, ·) is positive definite on each space Vk, and

∀u ∈ X :

[
u =

M∑
k=1

vk, vk ∈ Vk

]
=⇒ u =

M∑
k=1

Qkvk. (3.8)

Then the abstract Multispace BDDC preconditioner from Algorithm 3.2 satisfies

κ =
λmax(BAX)

λmin(BAX)
≤ ω = max

k
sup
vk∈Vk

‖Qkvk‖2
a

‖vk‖2
a

. (3.9)
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Proof. We only need to verify the assumptions of Theorem 3.3. Let u ∈ X

and choose vk as the energy orthogonal projections of u on Vk. First, since the

spaces Vk are energy orthogonal, u =
∑
vk, Qk are projections, and from (3.8)

u =
∑
Qkvk, we get that ‖u‖2

a =
∑
‖vk‖2

a which proves (3.3) with C0 = 1. Next,

the assumption (3.4) becomes the definition of the optimal ω in (3.9). Finally,

(3.5) with E = I follows from the orthogonality of subspaces Vk.

Remark 3.5 The assumption (3.8) can be written as

M∑
k=1

QkPk

∣∣∣∣∣
X

= I,

where Pk is the a-orthogonal projection from
⊕M

j=1 Vj onto Vk. Hence, the prop-

erty (3.8) is a type of decomposition of unity. In the case when M = 1, (3.8)

means that the projection Q1 is onto X.

3.1 Finite element setting

Let Ω be a bounded domain in Rd, d = 2 or 3, decomposed into N nonover-

lapping subdomains Ωs, s = 1, ..., N , which form a conforming triangulation of

the domain Ω. Subdomains will be also called substructures. Each substructure

is a union of Lagrangian P1 or Q1 finite elements with characteristic mesh size h,

and the nodes of the finite elements between substructures coincide. The nodes

contained in the intersection of at least two substructures are called boundary

nodes. The union of all boundary nodes is called the interface Γ. The interface Γ

is a union of three different types of open sets: faces, edges, and vertices. The

substructure vertices will also be called corners. For the case of regular sub-

structures, such as cubes or tetrahedrons, we can use the standard geometric

definition of faces, edges, and vertices; cf., e.g., [42] for a more general definition.
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Here, we find it more convenient to use the notation of abstract linear spaces

and linear operators between them instead of the space Rn and matrices. The

results can be easily converted to matrix language by choosing a finite element

basis. The space of the finite element functions on Ω will be denoted as U . Let

W s be the space of finite element functions on substructure Ωs, such that all of

their degrees of freedom on ∂Ωs ∩ ∂Ω are zero. Let

W = W 1 × · · · ×WN ,

and consider a bilinear form a (·, ·) arising from the second-order elliptic problem

such as Poisson equation or a problem of linear elasticity.

Now U ⊂ W is the subspace of all functions from W that are continuous

across the substructure interfaces. We are interested in the solution of the

problem (2.1) with X = U ,

u ∈ U : a(u, v) = 〈f, v〉 , ∀v ∈ U, (3.10)

where the bilinear form a is associated on the space U with the system

operator A, defined by

A : U 7→ U ′, a(u, v) = 〈Au, v〉 for all u, v ∈ U, (3.11)

and f ∈ U ′ is the right-hand side. Hence, (3.10) is equivalent to

Au = f. (3.12)

Define UI ⊂ U as the subspace of functions that are zero on the interface

Γ, i.e., the “interior” functions. Denote by P the energy orthogonal projection

from W onto UI ,

P : w ∈ W 7−→ vI ∈ UI : a (vI , zI) = a (w, zI) , ∀zI ∈ UI .
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Functions from (I − P )W , i.e., from the nullspace of P, are called discrete har-

monic; these functions are a-orthogonal to UI and energy minimal with respect

to increments in UI . Next, let Ŵ be the space of all discrete harmonic functions

that are continuous across substructure boundaries, that is

Ŵ = (I − P )U. (3.13)

In particular,

U = UI ⊕ Ŵ , UI ⊥a Ŵ . (3.14)

A common approach in substructuring is to reduce the problem to the inter-

face. Problem (3.10) is equivalent to two independent problems on the energy

orthogonal subspaces UI and Ŵ , and the solution u satisfies u = uI + û, where

uI ∈ UI : a(uI , vI) = 〈f, vI〉 , ∀vI ∈ UI , (3.15)

û ∈ Ŵ : a(û, v̂) = 〈f, v̂〉 , ∀v̂ ∈ Ŵ . (3.16)

The solution of the interior problem (3.15) decomposes into independent prob-

lems, one for each substructure. The reduced problem (3.16) is then solved

by preconditioned conjugate gradients. The reduced problem (3.16) is usually

written equivalently as

û ∈ Ŵ : s(û, v̂) = 〈g, v̂〉 , ∀v̂ ∈ Ŵ ,

where s is the form a restricted on the subspace Ŵ , and g is the reduced right-

hand side, i.e., the functional f restricted to the space Ŵ . The reduced right-

hand side g is usually written as

〈g, v̂〉 = 〈f, v̂〉 − a(uI , v̂), ∀v̂ ∈ Ŵ , (3.17)
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because a(uI , v̂) = 0 by (3.14). In the implementation, the process of passing to

the reduced problem becomes the elimination of the internal degrees of freedom

of the substructures, also known as static condensation. The matrix of the

reduced bilinear form s in the basis defined by interface degrees of freedom

becomes the Schur complement S, and (3.17) becomes the reduced right-hand

side. For details on the matrix formulation, see, e.g., [77, Sec. 4.6] or [81, Sec.

4.3].

The BDDC method is a two-level preconditioner characterized by the se-

lection of certain coarse degrees of freedom, such as values at the corners and

averages over edges or faces of substructures. Define W̃ ⊂ W as the subspace

of all functions such that the values of any coarse degrees of freedom have a

common value for all relevant substructures and vanish on ∂Ω, and W̃∆ ⊂ W̃ as

the subspace of all functions such that their coarse degrees of freedom vanish.

Next, define W̃Π as the subspace of all functions such that their coarse degrees

of freedom between adjacent substructures coincide, and such that their energy

is minimal. Clearly, functions in W̃Π are uniquely determined by the values of

their coarse degrees of freedom, and

W̃∆ ⊥a W̃Π, and W̃ = W̃∆ ⊕ W̃Π. (3.18)

We assume that

a is positive definite on W̃ . (3.19)

This will be the case when a is positive definite on the space U , for which

problem (2.1) is posed, and there are sufficiently many coarse degrees of freedom.

We further assume that the coarse degrees of freedom are zero on all functions
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from UI , that is,

UI ⊂ W̃∆. (3.20)

In other words, the coarse degrees of freedom depend on the values on substruc-

ture boundaries only. From (3.18) and (3.20), it follows that the functions in

W̃Π are discrete harmonic, that is,

W̃Π = (I − P ) W̃Π. (3.21)

Next, let E be a projection from W̃ onto U , defined by taking some weighted

average on substructure interfaces. That is, we assume that

E : W̃ → U, EU = U, E2 = E. (3.22)

Since a projection is the identity on its range, it follows that E does not change

the interior degrees of freedom,

EUI = UI , (3.23)

since UI ⊂ U . Finally, we show that the operator (I − P )E is a projection.

From (3.23) it follows that E does not change interior degrees of freedom, so

EP = P . Then, using the fact that I − P and E are projections, we get

[(I − P )E]2 = (I − P )E (I − P )E

= (I − P ) (E − P )E (3.24)

= (I − P ) (I − P )E = (I − P )E.

Remark 3.6 In [59, 61], the whole analysis was done in spaces of discrete

harmonic functions after eliminating UI , and the space Ŵ was the solution space.
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In particular, W̃ consisted of discrete harmonic functions only, while the same

space here would be (I − P )W̃ . In our context, the decomposition of this space

used in [59, 61] would be written as

(I − P )W̃ = (I − P )W̃∆ ⊕ W̃Π, (I − P )W̃∆ ⊥a W̃Π. (3.25)

In the next section, the space X will be either U or Ŵ .

3.2 Two-level BDDC as Multispace BDDC

We show several different ways the original two-level BDDC algorithm can

be interpreted as multispace BDDC. We first consider BDDC applied to the

reduced problem (3.16), that is, (2.1) with X = Ŵ . This was the formulation

considered in [59]. Define the space of discrete harmonic functions with coarse

degrees of freedom coinciding across the interface

W̃Γ = (I − P ) W̃ .

Because we work in the space of discrete harmonic functions and the output of

the averaging operator E is not discrete harmonic, denote

EΓ = (I − P )E. (3.26)

In an implementation, discrete harmonic functions are represented by the

values of their degrees of freedom on substructure interfaces, cf., e.g. [81]; hence,

the definition (3.26) serves formal purposes only, so that everything can be

written in terms of discrete harmonic functions without passing to the matrix

formulation.
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Algorithm 3.7 ([61], BDDC on the reduced problem) Define the precon-

ditioner r ∈ Ŵ ′ 7−→ u ∈ Ŵ by

u = EΓwΓ, wΓ ∈ W̃Γ : a (wΓ, zΓ) = 〈r, EΓzΓ〉 , ∀zΓ ∈ W̃Γ. (3.27)

Proposition 3.8 ([61]) The BDDC preconditioner on the reduced problem in

Algorithm 3.7 is the abstract Multispace BDDC from Algorithm 3.2 with M = 1

and the space and operator given by

X = Ŵ , V1 = W̃Γ, Q1 = EΓ. (3.28)

Also, the assumptions of Corollary 3.4 are satisfied.

Proof. We only need to note that the bilinear form a(·, ·) is positive definite

on W̃Γ ⊂ W̃ by (3.19), and the operator EΓ defined by (3.26) is a projection

by (3.24). The projection EΓ is onto Ŵ because E is onto U by (3.22), and

I − P maps U onto Ŵ by the definition of Ŵ in (3.13).

Using the decomposition (3.25), we can split the solution in the space W̃Γ

into the independent solution of two subproblems: mutually independent prob-

lems on substructures as the solution in the space W̃Γ∆ = (I − P )W̃∆, and a

solution of the global coarse problem in the space W̃Π. The space W̃Γ has the

same decomposition as in (3.25), i.e.,

W̃Γ = W̃Γ∆ ⊕ W̃Π, and W̃Γ∆ ⊥a W̃Π, (3.29)

and Algorithm 3.7 can be rewritten as follows.
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Algorithm 3.9 ([59], BDDC on the reduced problem) Define the precon-

ditioner r ∈ Ŵ ′ 7−→ u ∈ Ŵ by u = EΓ (wΓ∆ + wΠ), where

wΓ∆ ∈ W̃Γ∆ : a (wΓ∆, zΓ∆) = 〈r, EΓzΓ∆〉 , ∀zΓ∆ ∈ W̃Γ∆, (3.30)

wΠ ∈ W̃Π : a (wΠ, zΓΠ) = 〈r, EΓzΓΠ〉 , ∀zΓΠ ∈ W̃Π. (3.31)

Proposition 3.10 The BDDC preconditioner on the reduced problem in Algo-

rithm 3.9 is the abstract Multispace BDDC from Algorithm 3.2 with M = 2 and

the spaces and operators given by

X = Ŵ , V1 = W̃Γ∆, V2 = W̃Π, Q1 = Q2 = EΓ. (3.32)

Also, the assumptions of Corollary 3.4 are satisfied.

Proof. Let r ∈ Ŵ ′. Define the vectors vi, i = 1, 2 in Multispace BDDC

by (3.2) with Vi and Qi given by (3.32). Let u, wΓ∆, wΠ be the quantities in

Algorithm 3.9, defined by (3.30)-(3.31). Using the decomposition (3.29), any

wΓ ∈ W̃Γ can be written uniquely as wΓ = wΓ∆+wΠ for some wΓ∆ and wΠ

corresponding to (3.2) as v1 = wΓ∆ and v2 = wΠ, and u = EΓ (wΓ∆ + wΠ).

To verify the assumptions of Corollary 3.4, note that the decomposition

(3.29) is a−orthogonal, a(·, ·) is positive definite on both W̃Γ∆ and W̃Π as sub-

spaces of W̃Γ by (3.19), and EΓ is a projection by (3.24).

Next, we present a BDDC formulation on the space U with explicit treat-

ment of interior functions in the space UI as in [17, 58], i.e., in the way the

BDDC algorithm was originally formulated.
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Algorithm 3.11 ([17, 58], original BDDC) Define the preconditioner r ∈

U ′ 7−→ u ∈ U as follows. Compute the interior pre-correction

uI ∈ UI : a (uI , zI) = 〈r, zI〉 , ∀zI ∈ UI . (3.33)

Set up the updated residual

rB ∈ U ′, 〈rB, v〉 = 〈r, v〉 − a (uI , v) , ∀v ∈ U. (3.34)

Compute the substructure correction

u∆ = Ew∆, w∆ ∈ W̃∆ : a (w∆, z∆) = 〈rB, Ez∆〉 , ∀z∆ ∈ W̃∆. (3.35)

Compute the coarse correction

uΠ = EwΠ, wΠ ∈ W̃Π : a (wΠ, zΠ) = 〈rB, EzΠ〉 , ∀zΠ ∈ W̃Π. (3.36)

Add the corrections

uB = u∆ + uΠ.

Compute the interior post-correction

vI ∈ UI : a (vI , zI) = a (uB, zI) , ∀zI ∈ UI . (3.37)

Apply the combined corrections

u = uB − vI + uI . (3.38)

The interior corrections (3.33) and (3.37) decompose into independent

Dirichlet problems, one for each substructure. The substructure correction (3.35)

decomposes into independent constrained Neumann problems, one for each sub-

structure. Thus, the evaluation of the preconditioner requires three problems to
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be solved in each substructure, plus solution of the coarse problem (3.36). In

addition, the substructure corrections can be solved in parallel with the coarse

problem.

Remark 3.12 As it is well known [17], the first interior correction (3.33) can be

omitted in the implementation by starting the iterations from an initial solution

such that the residual in the interior of the substructures is zero,

a (u, zI)− 〈fX , zI〉 = 0, ∀zI ∈ UI ,

i.e., such that the error is discrete harmonic. Then the output of the precondi-

tioner is discrete harmonic and thus the errors in all the CG iterations (which are

linear combinations of the original error and outputs from the preconditioner)

are also discrete harmonic by induction.

The following proposition will be the starting point for the multilevel case.

Proposition 3.13 The original BDDC preconditioner in Algorithm 3.11 is the

abstract Multispace BDDC from Algorithm 3.2 with M = 3 and the spaces and

operators given by

X = U, V1 = UI , V2 = (I − P )W̃∆, V3 = W̃Π, (3.39)

Q1 = I, Q2 = Q3 = (I − P )E, (3.40)

and the assumptions of Corollary 3.4 are satisfied.

Proof. Let r ∈ U ′. Define the vectors vi, i = 1, 2, 3, in Multispace BDDC

by (3.2) with the spaces Vi given by (3.39) and with the operators Qi given
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by (3.40). Let uI , rB, w∆, wΠ, uB, vI , and u be the quantities in Algorithm 3.11,

defined by (3.33)-(3.38).

First, with V1 = UI , the definition of v1 in (3.2) with k = 1 is identical to

the definition of uI in (3.33), so uI = v1.

Next, consider w∆ ∈ W̃∆ defined in (3.35). We show that w∆ satisfies (3.2)

with k = 2, i.e., v2 = w∆. So, let z∆ ∈ W̃∆ be arbitrary. From (3.35) and (3.34),

a (w∆, z∆) = 〈rB, Ez∆〉 = 〈r, Ez∆〉 − a (uI , Ez∆) . (3.41)

Now from the definition of uI by (3.33) and the fact that PEz∆ ∈ UI , we get

〈r, PEz∆〉 − a (uI , PEz∆) = 0, (3.42)

and subtracting (3.42) from (3.41) gives

a (w∆, z∆) = 〈r, (I − P )Ez∆〉 − a (uI , (I − P )Ez∆)

= 〈r, (I − P )Ez∆〉 ,

because a (uI , (I − P )Ez∆) = 0 by orthogonality. To verify (3.2), it is enough

to show that Pw∆ = 0; then w∆ ∈ (I −P )W̃∆ = V2. Since P is an a-orthogonal

projection, it holds that

a (Pw∆, Pw∆) = a (w∆, Pw∆) = 〈rB, EPw∆〉 = 0, (3.43)

where we have used EUI ⊂ UI following the assumption (3.23) and the equality

〈rB, zI〉 = 〈r, zI〉 − a (uI , zI) = 0,

for any zI ∈ UI , which follows from (3.34) and (3.33). Since a is positive definite

on W̃ ⊃ UI by assumption (3.19), it follows from (3.43) that Pw∆ = 0.
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In exactly the same way, from (3.36) – (3.38), we get that if wΠ ∈ W̃Π is

defined by (3.36), then v3 = wΠ satisfies (3.2) with k = 3. (The proof that

PwΠ = 0 can be simplified but there is nothing wrong with proceeding exactly

as for w∆.)

Finally, from (3.37), vI = P (Ew∆ + EwΠ), so

u = uI + (uB − vI)

= uI + (I − P )Ew∆ + (I − P )EwΠ

= Q1v1 +Q2v2 +Q3v3.

It remains to verify the assumptions of Corollary 3.4.

First, the spaces W̃Π and W̃∆ are a-orthogonal by (3.18) and, from (3.20),

(I − P ) W̃∆ ⊂ W̃∆,

thus (I − P ) W̃∆ ⊥a W̃Π. Clearly, (I − P ) W̃∆ ⊥a UI . Since W̃Π consists of dis-

crete harmonic functions from (3.21), so W̃Π ⊥a UI , it follows that the spaces Vi,

i = 1, 2, 3, given by (3.39), are a-orthogonal.

Next, (I − P )E is a projection by (3.24), and so are the operators Qi

from (3.40).

It remains to prove the decomposition of unity (3.8). Let

u′ = uI + w∆ + wΠ ∈ U, uI ∈ UI , w∆ ∈ (I − P ) W̃∆, wΠ ∈ W̃Π, (3.44)

and let

v = uI + (I − P )Ew∆ + (I − P )EwΠ.
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From (3.44), w∆ +wΠ ∈ U since u′ ∈ U and uI ∈ UI ⊂ U . Then E (w∆ + wΠ) =

w∆ + wΠ by (3.22), so

v = uI + (I − P )E (w∆ + wΠ)

= uI + (I − P ) (w∆ + wΠ)

= uI + w∆ + wΠ = u′,

because both w∆ and wΠ are discrete harmonic.

The next theorem shows an equivalence of the three algorithms introduced

above.

Theorem 3.14 The eigenvalues of the preconditioned operators from Algo-

rithm 3.7, and Algorithm 3.9 are exactly the same. They are also the same

as the eigenvalues from Algorithm 3.11, except possibly for multiplicity of the

eigenvalue equal to one.

Proof. From the decomposition (3.29), we can write any w ∈ W̃Γ uniquely as

w = w∆+wΠ for some w∆ ∈ W̃Γ∆ and wΠ ∈ W̃Π, so the preconditioned operators

from Algorithms 3.7 and 3.9 are spectrally equivalent and we need only to show

their spectral equivalence to the preconditioned operator from Algorithm 3.11.

First, we note that the operator A : U 7→ U ′ defined by (3.11), and given in the

block form as

A =

AII AIΓ

AΓI AΓΓ

 ,
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with blocks

AII : UI → U ′I , AIΓ : UI → Ŵ ′,

AΓI : Ŵ → U ′I , AΓΓ : Ŵ → Ŵ ′,

is block diagonal and AΓI = AIΓ = 0 for any u ∈ U , written as u = uI + ŵ,

because UI ⊥a Ŵ . Next, we note that the block AΓΓ : Ŵ ′ → Ŵ is the Schur

complement operator corresponding to the form s. Finally, since the block

AII is used only in the preprocessing step, the preconditioned operator from

Algorithms 3.7 and 3.9 is simply MΓΓAΓΓ : r ∈ Ŵ ′ → u ∈ Ŵ .

Let us now turn to Algorithm 3.11. Let the residual r ∈ U be written as

r = rI + rΓ, where rI ∈ U ′I and rΓ ∈ Ŵ ′. Taking rΓ = 0, we get r = rI , and it

follows that rB = uB = vI = 0, so u = uI . On the other hand, taking r = rΓ

gives uI = 0, rB = rΓ, vI = PuB and finally u = (I − P )E(w∆ +wΠ), so u ∈ Ŵ .

This shows that the off-diagonal blocks of the preconditioner M are zero, and

therefore it is block diagonal

M =

MII 0

0 MΓΓ

 .
Next, let us take u = uI , and consider rΓ = 0. The algorithm returns rB = uB =

vI = 0, and finally u = uI . This means that MIIAIIuI = uI , so MII = A−1
II .

The operator A : U → U ′, and the block preconditioned operator MA : r ∈

U ′ → u ∈ U from Algorithm 3.11 can be written, respectively, as

A =

AII 0

0 AΓΓ

 , MA =

I 0

0MΓΓAΓΓ

 ,
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where the right lower block MΓΓAΓΓ : r ∈ Ŵ ′ → u ∈ Ŵ is exactly the same as

the preconditioned operator from Algorithms 3.7 and 3.9.

The BDDC condition number estimate is well known from [58]. Following

Theorem 3.14 and Corollary 3.4, we only need to estimate ‖(I − P )Ew‖a on W̃ .

Theorem 3.15 ([58]) The condition number of the original BDDC algorithm

satisfies κ ≤ ω, where

ω = sup
w∈W̃

‖(I − P )Ew‖2
a

‖w‖2
a

. (3.45)

Remark 3.16 In [58], the theorem was formulated by taking the supremum over

the space of discrete harmonic functions (I − P )W̃ . However, the supremum

remains the same by taking the larger space W̃ ⊃ (I − P )W̃ , since

‖(I − P )Ew‖2
a

‖w‖2
a

≤ ‖(I − P )E (I − P )w‖2
a

‖(I − P )w‖2
a

from E (I − P ) = E, which follows from (3.23), and from ‖w‖a ≥ ‖(I − P )w‖a,

which follows from the a-orthogonality of the projection P .

Before proceeding into the Multilevel BDDC section, let us write concisely

the spaces and operators involved in the two-level preconditioner as

UI

P
←
⊂ U

E
←
⊂ W̃∆ ⊕ W̃Π = W̃ ⊂ W.

We are now ready to extend this decomposition into the multilevel case.
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Figure 3.1: An example of a domain decomposition for the two-level (top)
and the three-level (bottom) BDDC methods.
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4. Multilevel BDDC

In this chapter, we generalize the two-level BDDC preconditioner to multiple

levels, using the abstract Multispace BDDC framework from Algorithm 3.2. The

substructuring components from Section 3.2 will be denoted by an additional

subscript 1, as Ωs
1, s = 1, . . . N1, etc., and called level 1. The level 1 coarse

problem (3.36) will be called the level 2 problem. It has the same finite element

structure as the original problem (2.1) on level 1, so we put U2 = W̃Π1. Level 1

substructures are level 2 elements and level 1 coarse degrees of freedom are level 2

degrees of freedom. Repeating this process recursively, level i− 1 substructures

become level i elements, and the level i substructures are agglomerates of level i

elements. Level i substructures are denoted by Ωs
i , s = 1, . . . , Ni, and they are

assumed to form a conforming triangulation with a characteristic substructure

size Hi. For convenience, we denote by Ωs
0 the original finite elements and put

H0 = h. The interface Γi on level i is defined as the union of all level i boundary

nodes, i.e., nodes shared by at least two level i substructures, and we note

that Γi ⊂ Γi−1. Level i − 1 coarse degrees of freedom become level i degrees

of freedom. The shape functions on level i are determined by minimization

of energy with respect to level i − 1 shape functions, subject to the value of

exactly one level i degree of freedom being one and the other level i degrees of

freedom being zero. The minimization is done on each level i element (level i−1

substructure) separately, so the values of level i − 1 degrees of freedom are in

general discontinuous between level i − 1 substructures, and only the values of
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level i degrees of freedom between neighboring level i elements coincide. For an

example of a decomposition for two and a three-level method, see Figure 3.2.

The development of the spaces on level i now parallels the finite element

setting in Section 3.1. Denote Ui = W̃Πi−1. Let W s
i be the space of functions on

the substructure Ωs
i , such that all of their degrees of freedom on ∂Ωs

i ∩ ∂Ω are

zero, and let

Wi = W 1
i × · · · ×W

Ni
i .

Then Ui ⊂ Wi is the subspace of all functions from W that are continuous

across the interfaces Γi. Define UIi ⊂ Ui as the subspace of functions that are

zero on Γi, i.e., the functions “interior” to the level i substructures. Denote by

Pi the energy orthogonal projection from Wi onto UIi,

Pi : wi ∈ Wi 7−→ vIi ∈ UIi : a (vIi, zIi) = a (wi, zIi) , ∀zIi ∈ UIi.

Functions from (I − Pi)Wi, i.e., from the nullspace of Pi, are called discrete

harmonic on level i; these functions are a-orthogonal to UIi and energy minimal

with respect to increments in UIi. Denote by Ŵi ⊂ Ui the subspace of discrete

harmonic functions on level i, that is

Ŵi = (I − Pi)Ui. (4.1)

In particular, UIi ⊥a Ŵi. Define W̃i ⊂ Wi as the subspace of all functions such

that the values of any coarse degrees of freedom on level i have a common value

for all relevant level i substructures and vanish on ∂Ωs
i ∩ ∂Ω, and W̃∆i ⊂ Wi as

the subspace of all functions such that their level i coarse degrees of freedom

vanish. Define W̃Πi as the subspace of all functions such that their level i coarse
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degrees of freedom between adjacent substructures coincide, and such that their

energy is minimal. Clearly, functions in W̃Πi are uniquely determined by the

values of their level i coarse degrees of freedom, and

W̃∆i ⊥a W̃Πi, W̃i = W̃∆i ⊕ W̃Πi. (4.2)

We assume that the level i coarse degrees of freedom are zero on all functions

from UIi, that is,

UIi ⊂ W̃∆i. (4.3)

In other words, level i coarse degrees of freedom depend on the values on level i

substructure boundaries only. From (4.2) and (4.3), it follows that the functions

in W̃Πi are discrete harmonic on level i, that is

W̃Πi = (I − Pi) W̃Πi. (4.4)

Let E be a projection from W̃i onto Ui, defined by taking some weighted average

on Γi

Ei : W̃i → Ui, EiUIi = UIi, E2
i = Ei.

Since projection is the identity on its range, Ei does not change the level i

interior degrees of freedom, in particular

EiUIi = UIi. (4.5)

The hierarchy of spaces and operators is shown concisely in Figure 4.1.

The Multilevel BDDC method is defined recursively [17, 63, 64] by solving

the coarse problem on level i only approximately, by one application of the

preconditioner on level i + 1. Eventually, at the top level L − 1, the coarse
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U = W̃Π0

q

UI1

P1
←
⊂ U1

E1
←
⊂ W̃Π1 ⊕ W̃∆1 = W̃1 ⊂ W1

q

UI2

P2
←
⊂ U2

E2
←
⊂ W̃Π2 ⊕ W̃∆2 = W̃2 ⊂ W2

↓I2 q

Ũ2
...

q

UI,L−1

PL−1
←
⊂ UL−1

EL−1
←
⊂ W̃ΠL−1 ⊕ W̃∆L−1 = W̃L−1 ⊂WL−1

↓IL−1 q

ŨL−1 UL

↓IL

ŨL

Figure 4.1: Spaces, embeddings and projections in the Multilevel BDDC.
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problem, which is the level L problem, is solved exactly. We need a more formal

description of the method here, which is provided by the following algorithm.

Algorithm 4.1 (Multilevel BDDC) Define the preconditioner r1 ∈ U ′1 7−→

u1 ∈ U1 as follows:

for i = 1, . . . , L− 1,

Compute interior pre-correction on level i,

uIi ∈ UIi : a (uIi, zIi) = 〈ri, zIi〉 , ∀zIi ∈ UIi. (4.6)

Get an updated residual on level i,

rBi ∈ Ui, 〈rBi, vi〉 = 〈ri, vi〉 − a (uIi, vi) , ∀vi ∈ Ui. (4.7)

Find the substructure correction on level i:

w∆i ∈ W∆i : a (w∆i, z∆i) = 〈rBi, Eiz∆i〉 , ∀z∆i ∈ W∆i. (4.8)

Formulate the coarse problem on level i,

wΠi ∈ WΠi : a (wΠi, zΠi) = 〈rBi, EizΠi〉 , ∀zΠi ∈ WΠi, (4.9)

If i = L− 1, solve the coarse problem directly and set uL = wΠL−1,

otherwise set up the right-hand side for level i+ 1,

ri+1 ∈ W̃ ′
Πi, 〈ri+1, zi+1〉 = 〈rBi, Eizi+1〉 , ∀zi+1 ∈ W̃Πi = Ui+1, (4.10)

end.
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for i = L− 1, . . . , 1,

Average the approximate corrections on substructure interfaces on level i,

uBi = Ei (w∆i + ui+1) . (4.11)

Compute the interior post-correction on level i,

vIi ∈ UIi : a (vIi, zIi) = a (uBi, zIi) , ∀zIi ∈ UIi. (4.12)

Apply the combined corrections,

ui = uIi + uBi − vIi. (4.13)

end.

We can now show that the Multilevel BDDC can be cast as the Multi-

space BDDC on energy orthogonal spaces, using the hierarchy of spaces from

Figure 4.1.

Lemma 4.2 The Multilevel BDDC preconditioner in Algorithm 4.1 is the ab-

stract Multispace BDDC preconditioner from Algorithm 3.2 with M = 2L − 1,

and the spaces and operators

X = U1, V1 = UI1, V2 = (I − P1)W̃∆1, V3 = UI2,

V4 = (I − P2)W̃∆2, V5 = UI3, . . . (4.14)

V2L−4 = (I − PL−2)W̃∆L−2, V2L−3 = UIL−1,

V2L−2 = (I − PL−1)W̃∆L−1, V2L−1 = W̃ΠL−1,
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Q1 = I, Q2 = Q3 = (I − P1)E1,

Q4 = Q5 = (I − P1)E1 (I − P2)E2, . . . (4.15)

Q2L−4 = Q2L−3 = (I − P1)E1 · · · (I − PL−2)EL−2,

Q2L−2 = Q2L−1 = (I − P1)E1 · · · (I − PL−1)EL−1,

and the assumptions of Corollary 3.4 are satisfied.

Proof. Let r1 ∈ U ′1. Define the vectors vk, k = 1, . . . , 2L − 1 by (3.2) with

the spaces and operators given by (4.14)-(4.15), and let uIi, rBi, w∆i, wΠi, ri+1,

uBi, vIi, and ui be the quantities in Algorithm 4.1, defined by (4.6)-(4.13).

First, with V1 = UI1, the definition of v1 in (3.2) is (4.6) with i = 1 and

uI1 = v1. We show that in general, for level i = 1, . . . , L−1, and space k = 2i−1,

we get (3.2) with Vk = UIi, so that vk = uIi and in particular v2L−3 = uIL−1.

So, let zIi ∈ UIi, i = 2, . . . , L − 1, be arbitrary. From (4.6) using (4.10) and

(4.7),

a(uIi, zIi) = 〈ri, zIi〉 = 〈rBi−1, Ei−1zIi〉 = (4.16)

= 〈ri−1, Ei−1zIi〉 − a (uIi−1, Ei−1zIi) .

Since from (4.6), using the fact that Pi−1Ei−1zIi ∈ UIi−1, it follows that

〈ri−1, Pi−1Ei−1zIi〉 − a (uIi−1, Pi−1Ei−1zIi) = 0,

we get from (4.16),

a(uIi, zIi) = 〈ri−1, (I − Pi−1)Ei−1zIi〉 − a (uIi−1, (I − Pi−1)Ei−1zIi) ,

and because a (uIi−1, (I − Pi−1)Ei−1zIi) = 0 by orthogonality, we obtain

a(uIi, zIi) = 〈ri−1, (I − Pi−1)Ei−1zIi〉 .
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Repeating this process recursively using (4.16), we finally get

a(uIi, zIi) = 〈ri−1, (I − Pi−1)Ei−1zIi〉 = ...

= 〈r1, (I − P1)E1 · · · (I − Pi−1)Ei−1zIi〉 .

Next, consider w∆i ∈ W̃∆i defined by (4.8). We show that for i = 1, . . . , L−1,

and k = 2i, we get (3.2) with Vk = W̃∆i, so that vk = w∆i, and in particular

v2L−2 = w∆L−1. So, let z∆i ∈ W̃∆i be arbitrary. From (4.8) using (4.7),

a (w∆i, z∆i) = 〈rBi, Eiz∆i〉 = 〈ri, Eiz∆i〉 − a (uIi, Eiz∆i) . (4.17)

From the definition of uIi by (4.6) and since PiEiz∆i ∈ UIi it follows that

〈ri, PiEiz∆i〉 − a (uIi, PiEiz∆i) = 0,

so (4.17) gives

a (w∆i, z∆i) = 〈ri, (I − Pi)Eiz∆i〉 − a (uIi, (I − Pi)Eiz∆i) .

Next, because a (uIi, (I − Pi)Eiz∆i) = 0 by orthogonality, and using (4.10),

a (w∆i, z∆i) = 〈ri, (I − Pi)Eiz∆i〉 = 〈rBi−1, Ei−1 (I − Pi)Eiz∆i〉 .

Repeating this process recursively, we finally get

a (w∆i, z∆i) = 〈ri, (I − Pi)Eiz∆i〉 = . . .

= 〈r1, (I − P1)E1 · · · (I − Pi)Eiz∆i〉 .

To verify (3.2), it remains to show that Piw∆i = 0; then w∆i ∈ (I−Pi)W̃∆i = Vk.

Since Pi is an a-orthogonal projection, it holds that

a (Piw∆i, Piw∆i) = a (w∆i, Piw∆i) = 〈rBi, EiPiw∆i〉 = 0,
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where we have used EiUIi ⊂ UIi following the assumption (4.5) and the equality

〈rBi, zIi〉 = 〈ri, zIi〉 − a (uIi, zIi) = 0

for any zIi ∈ UIi, which follows from (4.6) and (4.7).

In exactly the same way, we get that if wΠL−1 ∈ W̃ΠL−1 is defined by (4.9),

then v2L−1 = wΠL−1 satisfies (3.2) with k = 2L− 1.

Finally, from (4.11)-(4.13) for any i = L− 2, . . . , 1, we get

ui = uIi + uBi − vIi

= uIi + (I − Pi)Ei (w∆i + ui+1)

= uIi + (I − Pi)Ei [w∆i + uIi+1 + (I − Pi+1)Ei+1 (w∆i+1 + ui+2)]

= uIi+

+ (I − Pi)Ei [w∆i + . . .+ (I − PL−1)EL−1 (w∆L−1 + uΠL−1)] ,

and, in particular for u1,

u1 = uI1+

+ (I − P1)E1 [w∆1 + . . .+ (I − PL−1)EL−1 (w∆L−1 + uΠL−1)]

= Q1v1 +Q2v2 + . . .+Q2L−2v2L−2 +Q2L−1v2L−1.

It remains to verify the assumptions of Corollary 3.4.

The spaces W̃Πi and W̃∆i, for all i = 1, . . . , L− 1, are a-orthogonal by (4.2)

and from (4.3),

(I − Pi) W̃∆i ⊂ W̃∆i,

thus (I − Pi) W̃∆i is a-orthogonal to W̃Πi. Since W̃Πi = Ui+1 consists of dis-

crete harmonic functions on level i from (4.4), and UIi+1 ⊂ Ui+1, it follows by

induction that the spaces Vk, given by (4.14), are a-orthogonal.
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We now show that the operators Qk defined by (4.15) are projections. From

our definitions, coarse degrees of freedom on substructuring level i (from which

we construct the level i + 1 problem) depend only on the values of degrees of

freedom on the interface Γi and Γj ⊂ Γi for j ≥ i. Then,

(I − Pj)Ej(I − Pi)Ei(I − Pj)Ej = (I − Pi)Ei(I − Pj)Ej. (4.18)

Using (4.18), and since (I − P1)E1 is a projection by (3.24), we get

[(I − P1)E1 · · · (I − Pi)Ei]
2 = (I − P1)E1 (I − P1)E1 · · · (I − Pi)Ei

= (I − P1)E1 · · · (I − Pi)Ei,

so the operators Qk from (4.15) are projections.

It remains to prove the decomposition of unity (3.8). Let ui ∈ Ui, such that

u′i = uIi + w∆i + ui+1, (4.19)

uIi ∈ UIi, w∆i ∈ (I − Pi) W̃∆i, ui+1 ∈ Ui+1 (4.20)

and

vi = uIi + (I − Pi)Eiw∆i + (I − Pi)Eiui+1. (4.21)

From (4.19), w∆i + ui+1 ∈ Ui since ui ∈ Ui and uIi ∈ UIi ⊂ Ui. Then

Ei [w∆i + ui+1] = w∆i + ui+1 by (4.5), so

vi = uIi + (I − Pi)Ei [w∆i + ui+1] = uIi + (I − Pi) [w∆i + ui+1] =

= uIi + w∆i + ui+1 = uIi + w∆i + ui+1 = u′i,

because w∆i and ui+1 are discrete harmonic on level i. The fact that ui+1 in

(4.19) and (4.21) are the same on arbitrary level i can be proved in exactly the

45



same way using induction and putting ui+1 in (4.19) as

ui+1 = uIi+1 + . . .+ w∆L−1 + wΠL−1,

uIi+1 ∈ UIi+1, w∆L−1 ∈ (I − PL−1) W̃∆L−1, wΠL−1 ∈ W̃ΠL−1,

and in (4.21) as

ui+1 = uIi+1 + . . .+ (I − Pi+1)Ei+1 · · · (I − PL−1)EL−1 (w∆L−1 + wΠL−1) ,

which concludes the proof.

The following bound follows from writing of the Multilevel BDDC as Mul-

tispace BDDC in Lemma 4.2 and the estimate for Multispace BDDC in Corol-

lary 3.4.

Lemma 4.3 If for some ω ≥ 1,

‖(I − P1)E1w∆1‖2
a ≤ ω ‖w∆1‖2

a ∀w∆1 ∈ (I − P1) W̃∆1,

‖(I − P1)E1uI2‖2
a ≤ ω ‖uI2‖2

a ∀uI2 ∈ UI2,

. . . (4.22)

‖(I − P1)E1 · · · (I − PL−1)EL−1wΠL−1‖2
a ≤ ω ‖wΠL−1‖2

a ∀wΠL−1 ∈ W̃ΠL−1,

then the Multilevel BDDC preconditioner (Algorithm 4.1) satisfies κ ≤ ω.

Proof. Choose the spaces and operators as in (4.14)-(4.15) so that uI1 = v1 ∈

V1 = UI1, w∆1 = v2 ∈ V2 = (I − P1) W̃∆1, . . ., wΠL−1 = v2L−1 ∈ V2L−1 = W̃ΠL−1.

The bound now follows from Corollary 3.4.

The following lemma is an immediate consequence of Lemma 4.3, and it can

be viewed as a multilevel analogy of Theorem 3.15. In fact, in the same way as
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Theorem 3.15, formulated as Theorem 5.2, will serve as a starting point for the

adaptive selection of constraints for the two-level BDDC method, the following

Lemma, formulated as Theorem 6.1, will serve as a starting point for adaptive

selection of constraints for the Multilevel BDDC method.

Lemma 4.4 If for some ωi ≥ 1,

‖(I − Pi)Eiwi‖2
a ≤ ωi ‖wi‖2

a , ∀wi ∈ W̃i, i = 1, . . . , L− 1, (4.23)

then the Multilevel BDDC preconditioner (Algorithm 4.1) satisfies κ ≤
∏L−1

i=1 ωi.

Proof. Note from Lemma 4.3 that (I − P1) W̃∆1 ⊂ W̃∆1 ⊂ W̃1, UI2 ⊂ W̃Π1 ⊂

W̃1, and generally (I − Pi) W̃∆i ⊂ W̃∆i ⊂ W̃i, UIi+1 ⊂ W̃Πi ⊂ W̃i.
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5. Adaptive Coarse Degrees of Freedom

We formulate an algorithm for adaptive selection of the coarse degrees of

freedom for the two-level BDDC method. It was presented in [61] starting

from corner constraints only, formulated in terms of FETI-DP, with the result

translated to BDDC. Later the method has been extended in [65, 79] to the case

of a general space W̃ and implemented in BDDC directly using a projection on

the subspace W̃ . The current formulation allows for an explicit coarse space and

hence for a multilevel extension.

The space W̃ is constructed using coarse degrees of freedom. These can

be, e.g., values at corners, and averages over edges or faces. The space W̃ is

then given by the requirement that the coarse degrees of freedom on adjacent

substructures coincide; for this reason, the terms coarse degrees of freedom and

constraints are used interchangeably. The edge (or face) averages are necessary

in 3D problems to obtain scalability with subdomain size. Ideally, one can prove

the polylogarithmic condition number bound

κ ≤ const

(
1 + log

H

h

)2

, (5.1)

where H is the subdomain size and h is the finite element size.

Remark 5.1 The initial selection of constraints in the proposed adaptive ap-

proach will be done such that (5.1) is satisfied. See, e.g., [43] for theoretical

reasoning for these constraints.
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To choose the space W̃ , cf. [61, Section 2.3], suppose we are given a linear

operator C : W → X and define,

W̃ = {w ∈ W : C (I − E)w = 0} . (5.2)

The values Cw will be called local coarse degrees of freedom, and the space W̃

consists of all functions w whose local coarse degrees of freedom on adjacent

substructures have zero jumps. To represent their common values, i.e., the

global coarse degrees of freedom of vectors u ∈ W̃ , suppose there is a space Uc

and linear operators QT
P : U → Uc, Rc : Uc → X such that Rc is one-to-one,

and injection R : U → W such that

CR = RcQ
T
P . (5.3)

The space W̃ then satisfies

W̃ = {w ∈ W : ∃uc ∈ Uc : Cw = Rcuc} ,

and from (5.3), for w ∈ W̃ , the unique uc that satisfies Cw = Rcuc is given by

uc = QT
Pv, w = Rv.

In order to formulate the adaptive algorithm, we first restate the condition

number bound from (2.11) in a way suitable for our purposes, cf. Theorem 3.15.

Theorem 5.2 ([61, Theorem 3]) The condition number bound (3.45) of the

two-level BDDC satisfies κ ≤ ω, where

ω = sup
w∈W̃

‖(I − P )Ew‖2
a

‖w‖2
a

= sup
w∈W̃

‖(I − (I − P )E)w‖2
a

‖w‖2
a

. (5.4)
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With respect to Remark 3.16, we can conveniently look for the condition

number bound ω only in the subspace W̃Γ = (I − P ) W̃ . Next, observe that

(I − E)Pv = 0 for all v ∈ W , so we can define the space W̃ in (5.2) using

discrete harmonic functions w ∈ (I − P )W , for which

(I − (I − P )E)w = (I − P ) (I − E)w, (5.5)

because Pw = 0 if w ∈ (I − P )W . Clearly, the bound (5.4) can be found as a

maximum eigenvalue of an associated eigenvalue problem, using (5.5) written as

〈(I − P ) (I − E)w, (I − P ) (I − E) z〉a = λ 〈w, z〉a ∀z ∈ W̃Γ. (5.6)

Remark 5.3 The eigenvalue problem (5.6) corresponds to the right-hand side

of (5.4) combined with (5.5). This is motivated by the definition (5.2) of the

space W̃ : in the adaptive algorithm we will prescribe certain weighted “jumps”

of functions to be zero across substructure interfaces.

The following is a well known result from linear algebra, cf., e.g., [16, The-

orem 5.2].

Lemma 5.4 (Courant-Fisher-Weyl minmax principle) Let c (·, ·) be sym-

metric positive semidefinite bilinear form on vector space V of dimension n

and b (·, ·) symmetric positive definite bilinear form on V . Then the generalized

eigenvalue problem

w ∈ V : c (w, u) = λb (w, u) ∀u ∈ V,

has n linearly independent eigenvectors w` and the corresponding eigenvalues are

real and nonnegative and the eigenvectors are stationary points of the Rayleigh
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quotient c (w,w) /b (w,w), with the stationary values equal to λi. Order λ1 ≥

λ2 ≥ . . . ≥ λn ≥ 0. Then, for any subspace Vk ⊂ V of dimension n− k,

max
w∈Vk,w 6=0

c (w,w)

b (w,w)
≥ λk+1,

with equality if

Vk = {w ∈ V : c(w`, w) = 0, ∀` = 1, . . . , k} .

Since the bilinear form on the left-hand side of (5.6) is symmetric positive

semidefinite and the bilinear form on the right-hand side is symmetric positive

definite, Lemma 5.4, using (5.5), implies

Corollary 5.5 ([61]) The generalized eigenvalue problem (5.6) has eigenvalues

λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. Denote the corresponding eigenvectors by w`. Then,

for any k = 1, . . . , n− 1, and any linear functionals L` on WΓ, ` = 1, . . . , k,

max

{
‖(I − P ) (I − E)w‖2

a

‖w‖2
a

: w ∈ W̃Γ, L` (w) = 0 ∀` = 1, . . . , k

}
≥ λk+1,

with equality if

L` (w) = a ((I − P ) (I − E)w`, (I − P ) (I − E)w) . (5.7)

Therefore, because (I − E) is a projection, the optimal decrease of the con-

dition number bound (5.4) can be achieved by adding to the constraint matrix

C in the definition of W̃ the rows c` defined by cT
` w = L` (w). However, solving

the global eigenvalue problem (5.6) is expensive, and the vectors c` are not of the

form required for substructuring, i.e., each c` with nonzero entries corresponding

to only one corner, an edge or a face at a time.
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For these reasons, we replace (5.6) by a collection of local problems, each

defined by considering only two adjacent subdomains Ωs and Ωt. All quantities

associated with such pairs will be denoted by the superscript st. Here, subdo-

mains are considered adjacent if they share an edge in 2D, or a face in 3D. We

note that edges in 2D will be regarded as faces. Using also (5.5), the generalized

eigenvalue problem (5.7) becomes a problem to find w ∈ W̃ st
Γ such that

ast
((
I − P st

) (
I − Est

)
w,
(
I − P st

) (
I − Est

)
z
)

= λ ast (w, z) ∀z ∈ W̃ st
Γ .

(5.8)

Assumption 5.6 The corner constraints are already sufficient to prevent rela-

tive rigid body motions of any pair of adjacent substructures, so

∀w ∈ W̃ st : Astw = 0⇒
(
I − Est

)
w = 0,

i.e., the corner degrees of freedom are sufficient to constrain the rigid body modes

of the two substructures into a single set of rigid body modes, which are contin-

uous across the interface Γst.

The maximal eigenvalue ωst of (5.8) is finite due to Assumption 5.6, and we

define the heuristic condition number indicator

ω̃ = max
{
ωst : Ωs and Ωt are adjacent

}
. (5.9)

Considering two adjacent subdomains Ωs and Ωt only, we get the added

constraints L` (w) = 0 from (5.7) as

ast
((
I − P st

) (
I − Est

)
w`,
(
I − P st

) (
I − Est

)
w
)

= 0 ∀` = 1, . . . , k, (5.10)

where w` are the eigenvectors corresponding to the k largest eigenvalues from (5.8).
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To formulate a numerical algorithm, we need to write the generalized eigen-

value problem (5.8) and the added constraints (5.10) in terms of matrices and

vectors. To avoid complicated notation, we now drop the superscripts st, or,

equivalently, let us consider a domain which consists of only two substruc-

tures. For convenience, we will also identify finite element functions with vectors

formed by their degrees of freedom, and we will also identify linear operators

with their matrices, in bases that will be clear from the context.

The vectors of the local substructure degrees of freedom ws ∈ W s and the

vector of the global degrees of freedom u ∈ U are related by ws = Rsu, where

Rs is the restriction operator (a zero-one matrix), so that

Rs : U → W s, RsRsT = I, (5.11)

and R : U → W . The Schur complement matrices Ss are assumed to be

symmetric and positive semidefinite. Let us consider the vectors and matrices

to be given in a block form

w =

ws

wt

 , S =

Ss

St

 , R =

Rs

Rt

 . (5.12)

We will need a more specific construction of the matrix C in the substruc-

turing framework. We build a block diagonal matrix C satisfying (5.3) by

C =

Cs

Ct

 , Cs = Rs
cQ

T
PR

sT. (5.13)

Then (5.3) follows from (5.13) and (5.11).

Here is an interpretation. The matrix Cs maps a vector of local degrees of

freedom on substructure i to a vector of local coarse degrees of freedom on the
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substructure, and Rs
c restricts a vector of all global coarse degree of freedom to

a vector of local coarse degree of freedom on substructure s. A global coarse

degree of freedom is given by a row of QP . The operator QT
P acts on vectors of

global degrees of freedom in U and it selects global coarse degrees of freedom

in Uc as linear combinations of global degrees of freedom. In our problems,

there are corner coarse degrees of freedom, which are values at corners, and

edge (face) coarse degrees of freedom, which are linear combinations of values

on edges (faces).

Consider the space W̃ given some initial constraint matrix C containing at

least corner constraints. Let us denote D = C (I − E) and define the orthogonal

projection onto nullD by

Π = I −DT
(
DDT

)−1
D.

The generalized eigenvalue problem (5.6) now becomes

Π (I − P )T (I − E)T S (I − E) (I − P ) Πw = λΠSΠw. (5.14)

Since

null ΠSΠ ⊂ null Π (I − P )T (I − E)T S (I − E) (I − P ) Π, (5.15)

the eigenvalue problem (5.14) reduces in the factorspace modulo null ΠSΠ to the

problem with the operator on the right-hand side positive definite. In some of

the computations, we have used the subspace iteration method LOBPCG [45] to

find the dominant eigenvalues and their eigenvectors. The LOBPCG iterations

then simply run in the factorspace. To use standard eigenvalue solvers, (5.14)

is converted to a matrix eigenvalue problem by penalizing the components in
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nullD and rigid body modes, already described in [61, 79], and recalled here for

completeness. We can formulate 5.14 as a generalized eigenvalue problem with

the matrix on the right-hand side positive definite using the following procedure.

Theorem 5.7 ([61]) Let a > 0. Then the nonzero eigenvalues and the eigen-

vectors of (5.14) are same as those of the generalized eigenvalue problem

Π (I − P )T (I − E)T S (I − E) (I − P ) Πw = λ (ΠSΠ + a (I − Π))w, (5.16)

The matrix on the left-hand side is symmetric positive semidefinite and if the

pair of substructures intersects boundary with Dirichlet boundary conditions, the

matrix on the right-hand side is symmetric positive definite.

In practice, we choose a to be roughly the same magnitude as S. Note

that if the eigenvalues are computed approximately, the result will in general

depend on a. Also, for subspace iteration methods the matrices, in particular

the Schur complement S, need not to be formulated explicitly, and only matrix-

vector products are evaluated. However, the matrices on both sides may be still

singular because of rigid body modes that move substructures s and t as a whole.

To reduce (5.16) to an eigenvalue problem with the matrix on the right-hand

side positive definite, we use matrix Z that generates a superspace of rigid body

modes of the two substructures

nullS ⊂ rangeZ.

The matrix Z can be available from finite element software or can be easily

computed from the geometry of the finite element mesh with rigid body modes

as its columns, e.g., [81, Chapter 8]. To avoid using any information other
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than the system matrices, we can instead use as Z a block diagonal matrix of

the coarse basis functions of the two subtructures because their span contains

the rigid body modes. However, the computations in this case will be more

expensive because there are typically more coarse basis functions for the two

substructures than the number of the rigid body modes.

Remark 5.8 We have used in the computations the true rigid body modes com-

puted from the mesh geometry for the two-level method, and the coarse basis

functions on higher levels of Multilevel BDDC.

We find a basis of null (ΠSΠ + a (I − Π)) by computing the nullspace of a

much smaller symmetric positive semi-definite matrix,

null
(
ZT (ΠSΠ + a (I − Π))Z

)
= rangeK,

and applying the QR decomposition

ZK = QR, QTQ = I,

which gives

rangeQ = null (ΠSΠ + a (I − Π)) .

Consequently,

Π = I −QQT,

is the orthogonal projection onto range (ΠSΠ + a (I − Π)).

The following theorem follows similarly as Theorem 5.7.
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Theorem 5.9 ([61]) The nonzero eigenvalues and the corresponding eigenvec-

tors of

Π (I − E)T S (I − E) Πwk = λk (ΠSΠ + a (I − Π))wk,

are the same as nonzero eigenvalues and corresponding eigenvectors of

Xwk = λkY wk, (5.17)

where

X = Π (I − E)T S (I − E) Π,

Y =
(
Π (ΠSΠ + a (I − Π)) Π + a

(
I − Π

))
.

In addition, Y is symmetric positive definite.

Remark 5.10 The automatic decomposition can result, due to the vagaries of a

mesh partitioner, in very irregular substructures including spurious mechanisms,

see Figs. 5.2, or 7.8. It such cases the nullspace of the Schur complement is in

general unknown. See Section 5.1 for further discussion.

From the matrix form (5.15) of the eigenvalue problem, the constraints to

be added are

L` (w) = wT
` Π (I − P )T (I − E)T S (I − E) (I − P ) Πw = 0.

That is, we wish to add to the constraint matrix C the rows

c` = wT
` Π (I − P )T (I − E)T S (I − E) (I − P ) Π. (5.18)

Proposition 5.11 The vectors c`, constructed for a domain consisting of only

two substructures Ωs and Ωt, have matching entries on the interface between the

two substructures, with opposite signs.

57



Proof: Consider the vector w ∈ W that has two entries equal to 1,

corresponding to a degree of freedom on the interface, and all other entries

equal to 0. Using the definition of c` and because (I − E)u = 0 for all u ∈ U ,

we get c`w = L` (w) = 0.

It remains to construct the augmentation of the primal constraint matrix QP

from the augmentation c`. Due to Proposition 5.11, each row of c` can be split

into two blocks and written as

c` =

[
cs` −cs`

]
.

The augmentation of QP is then constructed by simply taking cs`, and computing

q = RsTcsT` . (5.19)

Because Rs is a 0−1 matrix, it means that columns q are formed by a scattering

of the entries in csT` . Each column of q defines a coarse degree of freedom, which

is used to augment the matrix QP as

[QP q ] . (5.20)

Unfortunately, the added columns will generally have nonzero entries over

all of the interface of Ωs and Ωt, including the edges in 3D where Ωs and Ωt

intersect other substructures. Consequently, the added q are not of the form

required for substructuring, i.e., each q with nonzeros in one edge or face only.

In the computations reported in Section 7, we drop the adaptively generated edge

constraints in 3D. Then it is no longer guaranteed that the condition number

indicator ω̃ ≤ τ . However, the method is still observed to perform well.
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Now Corollary 5.5 and the formulation of the constraints (5.18)-(5.20) sug-

gest a way to decrease the indicator ω̃ and the proposed adaptive algorithm

follows.

Algorithm 5.12 (Adaptive BDDC [61]) Find the smallest k for every two

adjacent substructures to guarantee that λk+1 ≤ τ , where τ is a given tolerance,

and add the constraints (5.10) to the definition of W̃ .

5.1 Preconditioned LOBPCG

The most important step towards future parallel implementation of the

adaptive method seems to be an efficient solution of local generalized eigenvalue

problems. An attractive approach is to use an inverse-free method, such as the

method by Golub and Ye [32], or LOBPCG by Knyazev [45]. These methods al-

low the matrices to be in a matrix-free format, i.e., as functions for matrix-vector

multiplication, which are readily available in our implementation. In particular,

LOBPCG might be more suitable because it allows for the resolution of more

eigenpairs at once and it can simply run in the factorspace with the operator on

the right-hand side only positive semi-definite. Initial experiments reveal that

the non-preconditioned LOBPCG as well as the method of Golub and Ye work

well for reasonably hard problems [79]. Unfortunately, it turns out that many

iterations are required for problems with extremely irregular structures and/or

high jumps in coefficients, and preconditioning of the local eigenproblems seems

to be necessary [65].

One desirable property of a preconditioner is that it must be invariant on

the nullS. Also, unless the component of the solution in the direction of the
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nullspace is small, the errors will accumulate, which may eventually result in

instability of the code at the Rayleigh-Ritz step, but only after a large number

of steps [46]. Because the Schur complement operator S plays a central role in

the operators on both sides of the local generalized eigenvalue problems (5.14),

(5.16), and (5.17), a straightforward idea is to use a local version of the BDDC

preconditioner, denoted here as M loc. The only difference is that this precondi-

tioner acts on the larger space W , unlike the preconditioners in Section 3.2, and

therefore in place of averaging E we have used an injection R instead. The coarse

space correction is obtained using corner (and in 3D edge) constraints, shared

by the two substructures. We restrict the action of the preconditioner in the

suitable subspaces using the two projections Π resp. Π introduced previously,

ΠM locΠ resp.. ΠΠM locΠΠ. (5.21)

Unfortunately, as we have pointed out already in Remark 5.10, the auto-

matic decomposition of the finite element mesh can result, due to the vagaries

of a mesh partitioner (in the experiments we have used METIS 4.0 [34]), in very

irregular substructures including spurious mechanisms, see Figs. 5.2, or 7.8. In

such cases the nullspace of the Schur complement is in general unknown, and the

LOBPCG iterations with the preconditioner (5.21) can fail. To detect the eigen-

vectors in the nullspace of the operator on the right-hand side in (5.17), resp.

(5.16), we have used again LOBPCG with M loc as a preconditioner. However

because the Schur complement is singular, so is M loc. To circumvent this, we

have applied a shift and the action of the preconditioner was in this case given

as M loc + I. Once the nullspace is detected, we can enrich the nullspace basis,

reconstruct the projection Π and rerun the preconditioned LOBPCG iterations.
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Figure 5.1: Comparison of the non-preconditioned (top) vs. preconditioned
LOBPCG (bottom) for one of the faces with large jumps in coefficients of the
composite cube problem, cf. Chapter 7 and Fig. 7.2. Estimated eigenvalue
errors are in the panels on the left-hand side, and Euclidean norms of residuals
for different eigenpairs are in the panels on the right-hand side. We see that
LOBPCG without a preconditioner showed essentially no convergence, and with
the preconditioner we have reached convergence in less than 30 iterations.
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Figure 5.2: A pair of substructures of the mining reel problem from Figure 7.8,
obtained from the automatic decomposition by METIS 4.0. We see that one of
the substructures has 4 spurious rigid body modes.
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Figure 5.3: Comparison of the non-preconditioned (top) vs. preconditioned
LOBPCG (bottom) for the detection of spurious rigid-body modes of the pair of
subdomains from Fig. 5.2. Estimated eigenvalue errors are in the panels on the
left-hand side, and Euclidean norms of residuals for different eigenpairs are in the
panels on the right-hand side. We see that LOBPCG without a preconditioner
essentially did not detect the nullspace, and the application of preconditioner
led to relatively fast detection of the nullspace.
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.

Figure 5.4: Convergence of the preconditioned LOBPCG for the pair of subdo-
mains from Fig. 5.2 with the nullspace detection (Fig. 5.3). Estimated eigenvalue
errors are in the panels on the left-hand side, and Euclidean norms of residuals
for different eigenpairs are in the panels on the right-hand side.
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6. Adaptive – Multilevel BDDC

We build on the previous two chapters to propose a new variant of the

Multilevel BDDC with adaptive selection of constraints on each level. The

starting point is Lemma 4.4, formulated as a multilevel analogy to Theorem 5.2.

Theorem 6.1 The condition number bound κ ≤ ω of Multilevel BDDC from

Algorithm 4.1 satisfies

ω = ΠL−1
i=1 ωi , (6.1)

where

ωi = sup
w∈W̃i

‖(I − Pi)Eiwi‖2
a

‖wi‖2
a

= sup
w∈W̃i

‖(I − (I − Pi)Ei)wi‖2
a

‖wi‖2
a

.

The development of adaptive selection of constraints in Multilevel BDDC

now proceeds similarly as in Chapter 5. We formulate (6.1) as a set of eigen-

value problems for each decomposition level. On each level we solve for every

two adjacent substructures a generalized eigenvalue problem and we add the

constraints to the definitions of W̃i.

The heuristic condition number indicator is defined as

ω̃ = ΠL−1
i=1 max

{
ωst
i : Ωs

i and Ωt
i are adjacent

}
. (6.2)

We now describe the Adaptive – Multilevel BDDC in more detail. The al-

gorithm consists of two main steps: (i) setup (adaptive selection of constraints),

and (ii) loop of the preconditioned conjugate gradients with the Multilevel

BDDC from Algorithm 4.1 as a preconditioner. The setup can be summarized

as follows (cf. [78, Algorithm 4] for the 2D case):
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Algorithm 6.2 (Setup of Adaptive – Multilevel BDDC) Adding of coarse

degrees of freedom to guarantee that the condition number indicator ω̃ ≤ τL−1,

for a given a target value τ :

for levels i = 1 : L− 1,

Create substructures with roughly the same numbers of degrees of freedom (one

can use a graph partitioner, e.g., METIS 4.0 [34]).

Find a set of initial constraints (in particular sufficient number of corners),

and set up the BDDC structures for the adaptive algorithm (the next loop

over faces).

for all faces Fi on level i,

Compute the largest local eigenvalues and corresponding eigenvectors, until

the first mst is found such that λstmst ≤ τ .

Compute the constraint weights and update the global coarse degrees of

freedom selection matrix.

end.

Setup the BDDC structures for level i and check size of the coarse problem:

if small enough, call this level L problem, factor it directly, break the loop.

end.
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6.1 Implementation remarks

The matrices of the averaging operator E were constructed with entries pro-

portional to the diagonal entries of the substructure matrices before elimination

of interiors, which is also known as a stiffness scaling [39].

6.1.1 Initial constraints

Following Remark 5.1, in order to satisfy the polylogarithmic condition num-

ber bounds, we have used corners, and in 3D corners with arithmetic averages

over edges as initial constraints. It is essential (Assumption 5.6) to generate a

sufficient number of corners as initial constraints to prevent rigid body motions

between any pair of adjacent substructures. This topic has been addressed in

the literature several times cf., e.g., [9, 50] in a different context, or a recent con-

tribution in the context of BDDC by Burda et al. [10]. The selection of corners

in our implementation follows the original implementation by Dohrmann [17].

Let N st denote the set of all nodes shared by substructures Ωs and Ωt. The first

corner cst1 ∈ N st is chosen as a node shared by the largest number of substruc-

tures. The second corner cst2 ∈ N st is chosen as a node with greatest distance

from cst1 . For problems in three dimensions, a third corner cst3 ∈ N st is chosen as

a node for which the area of the triangle connecting cst1 , cst2 , and cst3 is maximized

from vector cross product. However if all nodes in N st are shared only by the

two substructures, the algorithm starts by a random selection of an initial node

in N st and cst1 is identified as a node maximizing the distance from the initial

node, as suggested in [10].
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6.1.2 Algebraic coarse elements

The substructures in engineering applications were obtained using a graph

partitioner METIS 4.0 [34]. The connectivity graph has been weighted in both

vertices and edges in order to minimize the number of “cuts”. The vertex weights

were given by the total number of degrees of freedom in the substructure and

the weights of graph edges were determined as the numbers of the degrees of

freedom identified on faces by the adaptive algorithm.

The substructures on higher levels were then treated in an algebraic way,

unlike the geometric substructures illustrated in Figure 3.2, as (coarse) elements

with energy minimal basis functions. The routines for multilevel algorithm must

allow for (coarse) elements with variable number of nodes, and they must also

allow for variable number of degrees of freedom on each node (corresponding to

a face) – the number of nodes and the number of their degrees of freedom is

a-priori unknown due to their adaptive selection. For this purpose we transform,

renumber and reorder all globs so that the nodes corresponding to corners have

the lowest numbers, followed by nodes corresponding to edges, and finally by

nodes corresponding to faces identified by the adaptive algorithm.

It is also convenient to use the same assembling routines for higher levels. To

this end, the globs that do not consist of single nodes (edges or faces) are replaced

by “virtual” nodes with coordinates given by arithmetic averages of coordinates

of all nodes belonging to that particular glob. We note that the coordinates of

these nodes are in fact not used by the algorithm, so the only purpose is to allow

the use of the basic two-level routines without any modifications.
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Finally, we remark that instead of interior pre- and post-correction on the

lowest decomposition level, cf. equations (4.6)-(4.7) and (4.12)-(4.13), we reduce

the problem to interfaces in the pre-processing step, cf. also Remark 3.12.

6.1.3 Adaptive constraints

The adaptive algorithm uses matrices and operators that are readily avail-

able in an implementation of the BDDC method with an explicit coarse space,

with one exception: in order to satisfy the local partition of unity, cf. [62, eq. (9)],

Est
i R

st
i = I,

we need to generate locally the weight matrices Est
i .

In the computations reported in Chapter 7, we drop the adaptively generated

edge constraints in 3D. Then, it is no longer guaranteed that the condition

number indicator ω̃ ≤ τL−1. However, the method is still observed to perform

well. Since the constraint weights are thus supported only on faces, and the

entries corresponding to edges are set to be zero, we orthogonalize and normalize

the vectors of constraint weights to preserve numerical stability.
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7. Numerical Examples

The main purpose of this chapter is to compare performance of the standard

two-level BDDC with the adaptive and multilevel extensions. For consistency

with our previous research [61, 65, 79], we first present results for several aca-

demic examples. Results of Multilevel BDDC for scalar problems can be found in

[64]. The computations were done in Matlab (version 7.8.0.347 (R2009a)). The

generalized eigenproblems on pairs of substructures were solved by setting up

the matrices and using standard methods for the symmetric eigenvalue problem

in Matlab, and we have also tested LOBPCG by Knyazev [45] with a precon-

ditioner described in Section 5.1. The two-dimensional results are reproduced

from [78], the three-dimensional results appear here for the first time.

7.1 Two-dimensional results

The method has been tested on planar elasticity (with λ = 1, µ = 2) on

a square domain discretized by Lagrange bilinear finite elements with 1 182 722

degrees of freedom. The domain was decomposed into 48× 48(= 2 304) subdo-

mains on the second level and into 3 × 3(= 9) subdomains on the third-level.

Such a decomposition leads to the coarsening ratio Hi/Hi−1 = 16, for i = 1, 2.

In order to test the adaptive selection of constraints, one single edge is jagged

on both levels, see Fig. 7.1. Recall that edges in 2D are regarded as faces.

In the first set of experiments, we have compared performance of the non-

adaptive BDDC method with 2 and 3 decomposition levels. The results are

presented in Tables 7.1 and 7.2. As suggested by Lemma 4.4, the convergence

of the algorithm deteriorates when additional levels are introduced.
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In the next set of experiments, we have tested the adaptive algorithm for

the two-level BDDC. The results are summarized in Table 7.5. The algorithm

performs consistently with our previous formulation in [61]. The eigenvalues as-

sociated with edges between substructures clearly distinguish between the single

problematic edge and the others (Table 7.3). Adding the coarse dofs created

from the associated eigenvectors decreases the value of the condition number

indicator ω̃ and improves convergence at the cost of increasing the number of

coarse dofs.

Finally, we have tested the performance of the Adaptive – Multilevel BDDC

for the model problem with three-level decomposition (Fig. 7.1). Because the

number of coarse degrees of freedom depends on a-priori chosen value of τ and

the coarse basis functions on level i become shape basis functions on level i+ 1,

the solutions of local eigenvalue problems will depend on τ as well. This fact

is illustrated by Table 7.4 for τ = 2, and τ = 10 (the local eigenvalues for

τ = 3 were essentially same as for τ = 2). Comparing the values in the two

panels of this table, we see that lower values of τ result in worse conditioning of

the local eigenvalue problems on higher decomposition level. This immediately

raises the conjecture that it might not be desirable to decrease the values of

τ arbitrarily low in order to achieve a better convergence of the method. On

the other hand, for the model problem, comparing the convergence results for

the two-level method (Table 7.5) with the three-level method (Table 7.6), we

see that with the adaptive constraints we were able to achieve nearly the same

convergence properties of both methods.
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Figure 7.1: Two remote corners of the two-level decomposition into 48×48 (=
2304) subdomains (top), and the decomposition into 9 subdomains for the three-
level method (bottom). The jagged edge from the lower decomposition level
(top) is indicated on the second-level decomposition (bottom) by the thick line.
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Table 7.1: Results for the planar elasticity from Fig. 7.1 obtained using non-
adaptive 2-level method. Constraints are corners, or corners and arithmetic
averages over edges, denoted as c, c+f, resp., and Nc is number of constraints
(coarse degrees of freedom), C is size of the coarse problem related to size of a
subdomain problem, κ is the approximate condition number computed from the
Lanczos sequence in conjugate gradients, and it is the number of iterations for
relative residual tolerance 10−8.

constraint Nc C κ it

c 4794 9.3 18.41 43

c+f 13818 26.9 18.43 32

Table 7.2: Results for the planar elasticity from Fig. 7.1 obtained using non-
adaptive 3-level method. Nc is the number of coarse degrees of freedom on
the first (+ the second) decomposition level, C is the relative coarsening with
respect to the size of substructures on the first level (the size of the coarse
problem for the three-level method is negligible). Other headings are the same
as in Table 7.1.

constraint Nc C κ it

c 4794 + 24 1.0 67.5 74

c+f 13818 + 48 3.0 97.7 70
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Table 7.3: The largest eigenvalues λst,k of the local eigenvalue problems for
several pairs of subdomains s and t of the 2-level elasticity problem from Fig. 7.1
(top), with (s, t) = (2, 50) being the jagged edge.

s t λst,1 λst,2 λst,3 λst,4 λst,5 λst,6 λst,7 λst,8

1 2 3.8 2.4 1.4 1.3 1.2 1.1 1.1 1.1

1 49 6.0 3.5 2.7 1.4 1.3 1.1 1.1 1.1

2 3 5.4 2.6 1.6 1.3 1.2 1.1 1.1 1.1

2 50 24.3 18.4 18.3 16.7 16.7 14.7 13.5 13.1

3 4 3.4 2.4 1.4 1.3 1.1 1.1 1.1 1.1

3 51 7.4 4.6 3.7 1.7 1.4 1.3 1.2 1.1

49 50 12.6 5.1 4.3 1.9 1.6 1.3 1.2 1.2

50 51 8.7 4.8 3.9 1.8 1.5 1.3 1.2 1.2

50 98 7.5 4.6 3.7 1.7 1.4 1.3 1.2 1.1
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Table 7.4: The largest eigenvalues λst,k of the local problems for several pairs
of subdomains s, t on the level i = 2, cf. Fig. 7.1 (lower panel), with τ = 2 (top)
and with τ = 10 (bottom). The jagged edge is between subdomains 2 and 5.

s t λst,1 λst,2 λst,3 λst,4 λst,5 λst,6 λst,7 λst,8

1 2 16.5 9.0 5.4 2.6 2.1 1.4 1.3 1.3

1 4 6.5 4.7 1.9 1.7 1.3 1.2 1.2 1.1

2 3 23.1 9.4 4.6 3.2 2.1 1.6 1.4 1.3

2 5 84.3 61.4 61.4 55.9 55.8 49.3 48.0 46.9

3 6 13.7 8.8 4.4 2.2 1.9 1.4 1.3 1.2

4 7 6.5 4.7 1.9 1.7 1.3 1.2 1.2 1.1

5 6 18.9 13.1 11.3 3.8 2.6 2.1 1.9 1.5

5 8 17.3 12.9 10.8 3.6 2.3 2.0 1.8 1.4

8 9 13.7 8.8 4.4 2.2 1.9 1.4 1.3 1.2

1 2 7.7 4.5 2.7 1.6 1.4 1.2 1.2 1.1

1 4 3.6 3.0 1.5 1.5 1.2 1.2 1.1 1.1

2 3 10.9 4.8 2.7 1.7 1.5 1.2 1.2 1.1

2 5 23.2 17.2 13.7 13.7 12.7 12.4 11.0 10.9

3 6 6.1 4.2 2.5 1.5 1.3 1.2 1.1 1.1

4 7 3.6 3.0 1.5 1.5 1.2 1.2 1.1 1.1

5 6 9.8 6.2 4.1 2.1 1.6 1.5 1.3 1.2

5 8 8.6 5.9 3.9 2.0 1.5 1.4 1.2 1.2

8 9 6.1 4.2 2.5 1.5 1.3 1.2 1.1 1.1
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Table 7.5: Results for the planar elasticity from Fig. 7.1 obtained using the
adaptive 2-level method. Here, τ is condition number target, ω̃ is condition
number indicator, and the other headings are the same as in Table 7.1.

τ Nc C ω̃ κ it

∞(=c) 4794 9.3 - 18.41 43

10 4805 9.4 8.67 8.34 34

3 18110 35.3 2.67 2.44 15

2 18305 35.7 1.97 1.97 13

Table 7.6: Results for the planar elasticity from Fig. 7.1 obtained using the
adaptive 3-level method. Headings are the same as in Tables 7.2 and 7.5.

τ Nc C ω̃ κ it

∞(=c) 4794 + 24 1.0 - 67.5 74

10 4805 + 34 1.0 > (9.80)2 37.42 60

3 18110 + 93 3.9 > (2.95)2 3.11 19

2 18305 + 117 4.0 > (1.97)2 2.28 15
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7.2 Three-dimensional results

The performance of the Adaptive BDDC in the presence of jumps in material

coefficients has been tested on a cube with material parameters E = 106 Pa and

ν = 0.45 (rubber), penetrated by four bars with parameters E = 2.1·1011 Pa and

ν = 0.3 (steel), consisting of 107 811 degrees of freedom, and distributed into

8 substructures with 30 corners, 16 edges and 15 faces, see Fig. 7.2, see also [65].

Comparing the results in Tables 7.8 and 7.9 we see that with τ = 10 000 only 10

additional averages over faces decrease the number of iterations nearly 3 times,

and with τ = 2 the number of iterations decreased more than 13 times compared

to the non-adaptive algorithm with arithmetic averages over all globs (c+e+f)

whereas the number of constraints increased approximately 2.5 times. Results

(and numbers of nonzeros in the action) of the BDDC preconditioner in Table 7.9

can be compared with results obtained by incomplete Cholesky factorization

applied to the global matrix in Table 7.7. We see that for a lower number of

iterations the fill-in of the Cholesky factor was quite high when compared with

the fill-in of the subdomain and the coarse problems in the BDDC method.

The performance of the Adaptive – Multilevel BDDC in the presence of

jumps in material coefficients has been tested on a cube designed similarly as the

problem above (also with the same material parameters), this time consisting of

823 875 degrees of freedom and distributed into 512 substructures, 721 corners,

1 176 edges and 1 344 faces on the first decomposition level, and 4 substructures,

6 corners, one edge and 4 faces on the second decomposition level, see Fig. 7.3.
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Figure 7.2: Finite element discretization and substructuring of the cube with
jumps in coefficients, consisting of 107 811 degrees of freedom, distributed into
8 substructures with 30 corners, 16 edges and 15 faces (the bars cut the sub-
structures only through faces). Notably, similar problems are solved in practice
to determine numerically (anisotropic) properties of composite materials [72].
Courtesy of Jakub Š́ıstek.

Table 7.7: Results for the cube from Fig. 7.2 obtained using a precondition-
ing by incomplete Cholesky factorization. The global stiffness matrix has size
107 811 with 7 737 641 nonzeros. Here, nnz(R) is the number of nonzeros in
the upper triangular Cholesky factor R, fill-in is the relative fill-in computed
as 2 times nnz(R) divided by the number of nonzeros in the global stiffness
matrix, κ is the approximate condition number computed from the Lanczos se-
quence in conjugate gradients, it is number of iterations for relative residual
tolerance 10−8. With the zero-level of fill-in the method did not converge.

drop tol. nnz(R) fill-in cond iter

no fill-in 3 922 726 1.01 - ∞

1 · 10−3 9 784 734 2.53 4.14 · 106 331

1 · 10−4 30 968 534 8.00 2.25 · 106 170

1 · 10−5 88 125 845 22.78 119.12 37

1 · 10−6 194 448 707 50.26 3.63 15

1 · 10−7 273 649 916 70.73 1.88 10
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Table 7.8: Results for the cube from Fig. 7.2 obtained using the non-adaptive
2-level method. Constraints are corners, or corners and arithmetic averages over
edges and faces denoted as c, c+e, c+e+f resp., and c+e+f (3eigv), corresponding
to corner constraints, arithmetic averages, and 3 weighted averages over each face
obtained using the adaptive method. Next, Nc is the number of constraints, C
is the size of the coarse problem related to size of a subdomain problem, κ
is the approximate condition number computed from the Lanczos sequence in
conjugate gradients, it is number of iterations for relative residual tolerance 10−8.

constraint Nc κ it

c 90 408 114 455

c+e 138 125 378 307

c+e+f 183 18 915.1 211

c+e+f (3eigv) 183 1 267.61 81

Table 7.9: Results for the cube from Fig. 7.2 obtained using the adaptive 2-
level method. Here, τ is the condition number target, ω̃ is the condition number
indicator. An approximate number of nonzeros of the Cholesky factor of a
substructure problem is 8 500 000 for all values of τ , and the number of nonzeros
in the Cholesky factor of the coarse problem is denoted by nnz(c). The other
headings are the same as in Table 7.8.

τ Nc nnz(c) ω̃ κ it

∞(=c+e) 138 6 618 268 390.00 125 378.00 307

10 000 148 7 402 5 096.07 1 843.70 104

1 000 159 8 271 368.78 173.57 38

100 162 8 448 5.94 6.42 24

5 198 13 029 4.99 4.55 21

2 465 87 012 < 2 2.80 16
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Comparing the results in Tables 7.10 and 7.11 we see that similar to the pre-

vious problem, a relatively small number of (additional) constraints leads to

a dramatic decrease in number of iterations in the 2-level method. When the

non-adaptive 2-level is replaced by the 3-level method, Tables 7.10 and 7.12, the

condition number estimate as well as the number of iterations grows. However,

with the adaptive 3-level approach (Table 7.13) we were able to achieve nearly

the same convergence properties as in the adaptive 2-level method (Table 7.11).

Table 7.10: Results for the cube from Fig. 7.3 obtained using the non-adaptive
2-level method. The headings are the same as in Table 7.8.

constraint Nc κ it

c 2 163 312 371 > 3 000

c+e 5 691 45 849 1 521

e+e+f 9 723 16 384 916

c+e+f (3eigv) 9 723 3 848 367

Table 7.11: Results for the cube from Fig. 7.3 obtained using the adaptive
2-level method. The headings are the same as in Table 7.9.

τ Nc C ω̃ κ it

∞(=c+e) 5 691 3.54 o(104) 45 848.60 1 521

10 000 5 883 3.66 8 776.50 5 098.60 441

1 000 6 027 3.75 5.33 9.92 32

10 6 149 3.82 6.25 6.66 28

5 9 119 5.67 < 5 4.79 24

2 25 009 15.54 < 2 2.92 18
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Figure 7.3: Finite element discretization and substructuring of the large cube
with jumps in coefficients, consisting of 823 875 degrees of freedom, distributed
into 512 substructures with 721 corners, 1 176 edges and 1 344 faces on the first
decomposition level (top), and 4 substructures, 6 corners, one edge and 4 faces
on the second decomposition level (bottom). Courtesy of Jakub Š́ıstek.
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Table 7.12: Results for the cube from Fig. 7.3 obtained using the non-adaptive
3-level method. The headings are the same as in Tables 7.2 and 7.8.

constraint Nc C κ it

c 2 163 + 18 0.34 + 0.01 o(107) >> 3 000

c+e 5 691 + 21 0.88 + 0.01 o(106) > 3 000

c+e+f 9 723 + 33 1.51 + 0.02 461 750 1 573

c+e+f (3eigv) 9 723 + 33 1.51 + 0.02 125 305 981

Table 7.13: Results for the cube from Fig. 7.3 obtained using the adaptive
3-level method. The headings are the same as in Tables 7.6 and 7.9.

τ Nc C ω̃ κ it

∞(=c+e) 5 691 + 21 0.88 + 0.01 - o(106) > 3 000

10 000 5 883 + 28 0.91 + 0.02 8 776.50 26 874.40 812

1 000 6 027 + 34 0.94 + 0.02 766.82 1 449.50 145

100 6 027 + 53 0.94 + 0.03 99.05 100.89 59

10 6 149 + 65 0.96 + 0.04 7.93 7.91 30

5 9 119 + 67 1.42 + 0.04 < 5 6.18 25

2 25 009 + 122 3.89 + 0.08 < 2 3.08 18
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7.2.1 Applications to engineering problems

7.2.1.1 Application of Multilevel BDDC to a dam

The performance of the Multilevel BDDC has been tested on the realistic

engineering problem of a dam discretized using 3 800 080 tetrahedral finite ele-

ments with 668 916 nodes and 2 006 748 degrees of freedom, with two variants

of substructuring: first decomposed into 400 substructures with 3 990 corners,

3 070 edges and 2 274 faces, see Fig. 7.4, and then decomposed into 1 024 sub-

structures with 10 693 corners, 7 713 edges and 6 182 faces, see Fig. 7.6.

The results with non-adaptive constraints for the decomposition into 400

substructures are summarized in Tables 7.14 and 7.15 for the two- and three-

level methods, respectively. Results with non-adaptive constraints for the de-

composition into 1 024 substructures are summarized in Tables 7.16 and 7.17 for

the two- and three-level methods, respectively. At the first glance, comparing

the values in Tables 7.14 and 7.15, it might appear that for the decomposition

into 400 substructures, the increase in the number of iterations is not too signif-

icant if one uses corners and arithmetic averages over edges (or faces). However,

comparing the values in Tables 7.16 and 7.17, it turns out that for the decom-

position into 1 024 substructures the number of iterations needed for the 3-level

method double, or even triple, compared to the 2-level method.

Nevertheless, we see that for this problem the simple arithmetic averages

already work well enough as there are no interfaces that require extra work -

the quality of the decomposition is uniform, as seen in Figures 7.4–7.7.
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Figure 7.4: Finite element discretization and substructuring of the dam, con-
sisting of 2 006 748 degrees of freedom, distributed into 400 substructures with
3 990 corners, 3 070 edges and 2 274 faces. Courtesy of Jaroslav Kruis.
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Table 7.14: Results for the dam (Fig. 7.4, 400 substructures) obtained using
the non-adaptive 2-level method. The headings are the same as in Table 7.8.

constraint Nc C κ it

c 11 970 2.39 34.82 63

c+e 21 180 4.22 18.91 41

c+e+f 28 002 5.58 5.73 24

Figure 7.5: Correspondence of finite elements and the subdomains on the
second decomposition level. The dam problem with 3 800 080 finite elements,
400 substructures on the first level and 8 substructures on the second level.
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Table 7.15: Results for the dam from Figs. 7.4 and 7.5 (400+8 substructures)
obtained using the non-adaptive 3-level method. The headings are the same as
in Tables 7.2 and 7.8.

constraint Nc nc/ne/nf C κ it

c 11 970 + 99 33/15/15 0.30 + 0.02 99.11 87

c+e 21 180 + 144 33/15/16 0.53 + 0.03 18.88 43

c+e+f 28 002 + 198 33/15/18 0.70 + 0.04 9.92 32

Table 7.16: Results for the dam (Fig. 7.6, 1 024 substructures) obtained using
the non-adaptive 2-level method. The headings are the same as in Table 7.8.

constraint Nc C κ it

c 32079 16.37 28.53 54

c+e 55218 28.18 13.96 35

c+e+f 73764 37.64 5.00 21

Table 7.17: Results for the dam from Figs. 7.6 and 7.7 (1 024 + 32 substruc-
tures) obtained using the non-adaptive 3-level method. The headings are the
same as in Tables 7.2 and 7.8.

constraint Nc nc/ne/nf C κ it

c 32079 + 768 256/194/124 0.51 + 0.39 498.82 136

c+e 55218 + 1407 256/213/128 0.88 + 0.71 161.63 71

c+e+f 73764 + 1818 256/213/137 1.18 + 0.93 169.38 77
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Figure 7.6: Finite element discretization and substructuring of the dam, con-
sisting of 2 006 748 degrees of freedom, distributed into 1 024 substructures with
10 693 corners, 7 713 edges and 6 182 faces. Courtesy of Jaroslav Kruis.
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Figure 7.7: Correspondence of finite elements and the subdomains on the
second decomposition level. The dam problem with 3 800 080 finite elements,
1 024 substructures on the first level and 32 substructures on the second level.
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7.2.1.2 Application of Adaptive – Multilevel BDDC to a mining reel

The performance of Adaptive – Multilevel BDDC has been tested on another

realistic engineering problem, modeling a mining reel. The computational mesh

consists of 140 816 quadratic finite elements, 579 737 nodes and 1 739 211 degrees

of freedom. We have tested two variants of decomposition. In the first variant,

the mesh was distributed into 400 substructures with 4 010 corners, 831 edges

and 1 906 faces on the first decomposition level (Fig. 7.8), and 8 substructures

on the second decomposition level (Fig. 7.9). As may be seen in Figure 7.8, the

main problem is substructuring of the steel rope. Subdomains (created by the

graph partitioner METIS 4.0 [34]) are thin, long, and often contain spurious

mechanisms, cf. also Fig. 5.2. Hence it is not a surprise that a standard, non-

adaptive BDDC method with arithmetic averages over edges (and faces) fails.

The performance of the adaptive algorithm for the two-level method can be

seen in Table 7.18, and for the three-level method in Table 7.19. Comparing

the values in these two tables we see that with the reasonably low values of the

threshold τ , the convergence is essentially identical.

In the second variant of decomposition, the mesh was distributed into 1 024

substructures with 7 864 corners, 1 197 edges, and 3 895 faces on the first de-

composition level (Fig. 7.10), and 32 subdomains on the second decomposition

level (Fig 7.11). This decomposition is more adequate for the standard BDDC

method (Table 7.20). However, comparing Tables 7.20 and 7.21 we see that the

adaptive approach still allows for significant improvement in number of itera-
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tions and moreover, convergence of the adaptive two- and three-level method

(Tables 7.21 and 7.22) is, similar to the above, essentially identical.

We note that the observed approximate condition number κ computed from

the Lanczos sequence in conjugate gradients is no longer close to the target

condition number τ . However the algorithm is still observed to perform well.

Table 7.18: Results for the mining reel (Fig. 7.8, 400 substructures) obtained
using the adaptive 2-level method. The headings are the same as in Table 7.9.

τ Nc C ω̃ κ it

∞(=c+e) 14 523 - o(107) - -

10 000 16 080 3.70 9 999.85 401 441.00 1 453

1 000 20 331 4.68 999.94 4 205.79 401

500 22 575 5.19 499.93 2 024.16 297

100 29 641 6.82 99.96 1 653.31 173

50 33 049 7.60 49.98 1 647.41 150

10 45 113 10.38 < 10 1 625.31 108

5 54 191 12.46 < 5 1 620.18 93

2 78 475 18.05 < 2 1 608.54 80

Table 7.19: Results for the mining reel from Figs. 7.8 and 7.9 (400 and 8
subdomains) obtained using teh adaptive 3-level method. The headings are the
same as in Tables 7.6 and 7.9.

τ Nc nc/ne/nf C ω̃ κ it

100 29 641 + 170 22/0/8 0.85/0.04 99.942 58 828.8 1 129

10 45 113 + 539 22/0/8 1.30/0.12 < 102 1 623.18 123

2 78 475 + 2 177 22/0/8 2.26/0.50 < 22 1 607.88 79
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Figure 7.8: Finite element discretization and substructuring of the mining
reel problem, consisting of 1 739 211 degrees of freedom, distributed into 400
substructures with 4 010 corners, 831 edges and 1 906 faces. Courtesy of Jan
Leština, Jaroslav Novotný and Jakub Š́ıstek.

91



Figure 7.9: Correspondence of finite elements on the zero decomposition level
and the subdomains on the second decomposition level. Mining reel with 140 816
finite elements, 400 substructures on the first level and 8 substructures on the
second level.

Figure 7.10: Finite element discretization and substructuring of the mining
reel problem, consisting of 1 739 211 degrees of freedom, distributed into 1 024
substructures with 7 864 corners, 1 197 edges, and 3 895 faces. Courtesy of Jan
Leština, Jaroslav Novotný and Jakub Š́ıstek.
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Figure 7.11: Correspondence of finite elements on the zero decomposition level
and the subdomains on the second decomposition level. Mining reel with 140 816
finite elements, 1 024 substructures on the first level and 32 substructures on the
second level.

Table 7.20: Results for the mining reel (Fig. 7.10, 1 024 substructures) obtained
by the non-adaptive 2-level method. The headings are the same as in Table 7.8.

constraint Nc C κ it

c+e 27 183 - - >> 2 000

c+e+f 38 868 22.88 1.18 · 106 1 303

c+e+f (3eigv) 38 868 22.88 72 704.80 674
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Table 7.21: Results for the mining reel (Fig. 7.10, 1 024 substructures) obtained
using the adaptive 2-level method. The headings are the same as in Table 7.9.

τ Nc C ω̃ κ it

∞(=c+e) 27 183 - 1.76 · 106 - >> 2 000

10000 28 023 16.50 9 992.61 9 538.18 910

5000 28 727 16.91 4 934.62 4 849.75 673

1000 32 460 19.11 999.90 2 179.79 391

500 35 017 20.62 499.64 1 277.59 318

100 42 849 25.23 99.89 840.74 213

50 46 093 27.14 49.98 784.49 194

10 59 496 35.03 < 10 321.20 129

5 69 249 40.77 < 5 198.68 91

2 92 467 54.44 < 2 91.24 72

Table 7.22: Results for the mining reel from Figs. 7.10 and 7.11 (1 024 + 32
substructures) obtained using the adaptive 3-level method. The headings are
the same as in Tables 7.6 and 7.9.

τ Nc nc/ne/nf C ω̃ κ it

100 42 849 + 2 378 208/63/94 0.79 + 1.40 99.892 3 567.02 382

10 59 496 + 6 419 208/63/95 1.09/3.78 < 102 320.82 139

5 69 249 + 8 681 208/63/95 1.27/5.11 < 52 198.55 98
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7.2.1.3 Application of Adaptive – Multilevel BDDC to a bridge

The power of the adaptive algorithm seems to dominate also for finite

element discretization with high aspect ratios. An example of such a prob-

lem is a bridge construction discretized by 880 000 hexahedral finite elements

with 1 057 920 nodes, 3 173 664 dofs, and decomposed into 1 024 substructures

with 6 051 corners, 2 099 edges, and 3 034 faces on the first decomposition level

(Fig. 7.13), and 8 substructures on the second decomposition level (Fig. 7.12).

A smaller variant of the same problem can be found in [65]. The non-adaptive

approach failed, and results for the adaptive 2-level method are summarized in

Table 7.23. Note that for convergence of this problem, it was necessary to keep

the values of τ relatively low when compared to the previous problems, and

the values of τ and κ are again quite different. Finally, comparing convergence

results for the two- and three-level methods Tables 7.23 and 7.24, we see that

the convergence of the two- and three-level method is quite similar.

Figure 7.12: Correspondence of finite elements on the zero decomposition level
and the subdomains on the second decomposition level. The bridge problem with
880 000 finite elements, 1 024 substructures on the first level and 8 substructures
on the second level (a scaled view).
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Figure 7.13: Finite element discretization of the bridge construction with
3 173 664 degrees of freedom, distributed into 1 024 subdomains with 6 051 cor-
ners, 2 099 edges and 3 034 faces. Courtesy of Jaroslav Kruis.
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Table 7.23: Results for the bridge construction from Fig. 7.13 obtained using
the adaptive 2-level method. The headings are the same as in Table 7.9.

τ Nc C ω̃ κ it

∞(=c+e) 24 450 7.89 o(107) ∞ -

100 26 219 8.46 99.95 17 141.40 252

50 27 081 8.74 49.87 11 460.70 191

10 32 219 10.40 9.99 7 014.42 124

5 37 763 12.18 < 5 6 361.90 109

2 61 497 19.84 < 2 5 878.03 90

Table 7.24: Results for the bridge construction from Figs. 7.13 and 7.12
(1 024+8 substructures) obtained using the adaptive 3-level method. The head-
ings are the same as in Tables 7.6 and 7.9.

τ Nc nc/ne/nf C ω̃ κ it

10 32 219 + 197 22/2/9 1.30 + 0.06 < 102 7 008.82 135

5 37 763 + 309 22/2/9 1.52 + 0.10 < 52 6 355.71 118

2 61 497 + 1007 22/2/9 2.48 + 0.32 < 22 5 872.43 94
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8. Conclusion

The research presented in this dissertation has been motivated by a persis-

tent need for robust parallel iterative solvers for very large systems of algebraic

equations that arise from finite element discretizations of structural mechanics

problems. The methods from the iterative substructuring class of domain de-

composition seem to be of particular interest, because their philosophy is based

naturally on ideas of parallel computing. The methods are typically formulated

as preconditioned Krylov subspace methods. We have proposed a new method

called Adaptive – Multilevel BDDC, combining Multilevel BDDC [63, 64] with

adaptive selection of constraints [61, 65, 79]. In the two-level BDDC method,

the solution of the coarse problem becomes a bottleneck as the number of sub-

domains increases. The idea of Multilevel BDDC is to apply recursively the

two-level method in order to preserve parallel scalability of the algorithm, al-

though the theory reveals that the condition number grows exponentially with

the number of levels. On the other hand the idea of the adaptive method is to

locally detect, on each decomposition level, the troublesome parts of a problem

and decrease the condition number bound (and the number of iterations) as

much as possible with the aid of an a-priori chosen target condition number τ .

The current “prototype” implementation has been programmed and tested

in Matlab (version 7.8.0.347 (R2009a)), and run on a 4 Quad Core Opteron 2.0

GHz CPUs computer, with 64 GB RAM and Fedora 10 OS. The code is sequen-

tial, and therefore we do not report on CPU times and memory requirements.
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The new methods show quite impressive results on various academic and

engineering problems, where the standard two-level BDDC with arithmetic av-

erages over edges and faces would perform poorly or even fail. In particular, the

Adaptive – Multilevel BDDC outperforms the standard BDDC in the presence

of jumps in coefficients not aligned with the substructure boundaries, and on

problems with irregular substructures obtained due to the vagaries of a mesh

partitioner (both are quite frequent in practical engineering applications). How-

ever, for reasonably difficult problems, e.g., the dam problem, it turns out that

the Multilevel BDDC performs quite well and there is no need for the adaptive

constraints. We have also observed that the increase of the fill-in in the action

of the two-level adaptive BDDC is quite small compared to the fill-in of the

incomplete Cholesky preconditioner applied to the global stiffness matrix.

We also note that recent, closely related research by Burda, Čert́ıková, Š́ıstek

et al. [10, 76, 88] has focused on a selection of a sufficiently large initial set of cor-

ners with the goal of preventing the creation of spurious rigid body mechanisms

in the substructuring process. They have also observed numerically that enrich-

ing this initially small set of corners with randomly selected interface nodes can

quite significantly improve the convergence and computational time.

To allow for a parallel implementation of the Adaptive – Multilevel BDDC,

which is our next goal, we have also tested several iterative eigensolvers used in

the adaptive algorithm. In particular, we have performed further tests with the

LOBPCG [45], for which we have also proposed a local version of the BDDC

preconditioner, which is capable of detecting spurious rigid body modes and

significantly improving the convergence of the local eigenvalue problems.
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