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společnosti Akademie věd ČR 1ET400300415, Grantovou agenturou České re-
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Dr. Jakub Š́ıstek for a pleasant and fruitful joint research on a new formulation
and implementation of the BDDC method.

Last but not least I thank my parents for bringing me up the way they did
and for continuing support, without which the thesis could never be written.

The doctoral dissertation has been kindly supported by the program of the
Information Society of the Czech Academy of Sciences 1ET400300415, Grant
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1. INTRODUCTION

Tremendous progress in the design and availability of parallel computers over
the last several decades has motivated active and progressive research in many
areas including the domain decomposition methods. By domain decomposition
we will in our context understand the processes of separation of physical do-
main into regions typically called substructures or subdomains. The basic idea
is that the problem formulated on the whole domain can be divided into a set
of smaller problems formulated on individual substructures, each one assigned
typically to a different processor on a parallel computer, allowing subsequently
the solution of problems with significantly larger number of unknown and/or sig-
nificant shortening of the computational time. An important class of methods,
that we will in particular focus on, is iterative substructuring class characterized
by non-overlapping division into subdomains. These methods are used for the
construction of preconditioners in the iterative loop of conjugate gradients (or
other Krylov subspace method). First, we provide a short overview of some
of these iterative substructuring methods centered on works connected to the
theory that motivated our research. For a more complete survey of the theory
and implementation, we refer the reader to the monographs, e.g., [33, 57, 60].

Let us consider a second order, self-adjoint, positive definite problem ob-
tained from an elliptic partial differential equation, such as Laplace equation
or linearized elasticity, given on a physical domain in two or three spatial di-
mensions and discretized by finite elements with characteristic element size h.
Given sufficient boundary conditions, the global stiffness matrix is nonsingular,
and its condition number grows as O

(
h−2

)
for h → 0. However, if the domain

is divided into substructures consisting of disjoint unions of elements and the
interior degrees of freedom of each substructure are eliminated, the resulting
matrix on the boundary degrees of freedom has condition that grows only as
O

(
H−1h−1

)
where H >> h is the characteristic size of the substructure. This

fact has been known early on (Keyes and Gropp [25]); for a recent rigorous
treatment, see Brenner [4]. The elimination of the interior degrees of freedom
is also called static condensation, and the resulting reduced matrix is called the
Schur complement. Because of the significant decrease of the condition num-
ber, one can substantially accelerate iterative methods by investing some work
up front in the Choleski decomposition of the stiffness matrix on the interior
degrees of freedom and then just run back substitution in each iteration. The
finite element matrix is assembled separately in each substructure. This process
is called subassembly. The elimination of the interior degrees of freedom in each
substructure can be done independently, which is important for parallel com-
puting: each substructure can be assigned to an independent processor. The
substructures are then treated as large elements, with the Schur complements
playing the role of the local stiffness matrices of the substructures. See [25, 57]
for more details.
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The process just described is the background of primal iterative substructur-
ing methods. Here, the condition that the values of degrees of freedom common
to several substructures coincide is enforced strongly, by using a single variable
to represent them. The improvement of the condition number from O

(
h−2

)

to O
(
H−1h−1

)
, straightforward implementation, and the potential for parallel

computing, explain the early popularity of iterative substructuring methods [25].
However, further preconditioning is needed. Perhaps the most basic precondi-
tioner for the reduced problem is a diagonal one. Preconditioning of a matrix
by its diagonal helps to take out the dependence on scaling and variation of
coefficients and grid sizes. But the diagonal of the Schur complement is expen-
sive to obtain. It is usually better to avoid explicit computation of the Schur
complement and use only multiplication by the reduced substructure matrices,
which can be implemented by solving a Dirichlet problem on each substructure.
Probing methods (Chan and Mathew [6]) use such matrix-vector multiplication
to estimate the diagonal entries of the Schur complement.

In dual iterative substructuring methods, also called FETI methods, the con-
dition that the values of degrees of freedom common to several substructures
coincide is enforced weakly, by Lagrange multipliers. The original degrees of
freedom are then eliminated, resulting in a system for the Lagrange multipliers,
with the system operator consisting essentially of an assembly of the inverses
of the Schur complements. Multiplication by the inverses of the Schur comple-
ments can be implemented by solving a Neumann problem on each substructure.
The assembly process is modified to ensure that the Neumann problems are con-
sistent, giving rise to a natural coarse problem. The system for the Lagrange
multipliers is solved again iteratively. This is the essence of the FETI method by
Farhat and Roux [19], later called FETI-1. The condition number of the FETI-1
method with diagonal preconditioning grows as O

(
h−1

)
and is bounded inde-

pendently of the number of substructures (Farhat, Mandel, and Roux [18]). For
a small number of substructures, the distribution of the eigenvalues of the iter-
ation operator is clustered at zero, resulting in superconvergence of conjugate
gradients; however, for more than a handful of substructures, the superconver-
gence is lost and the speed of convergence is as predicted by the O

(
h−1

)
growth

of the condition number [18].
For large problems and large number of substructures, asymptotically optimal

preconditioners are needed. These preconditioners result typically in condition
number bounds of the form O (logα (1 + H/h)) (the number 1 is there only to
avoid the value log 1 = 0). In particular, the condition number is bounded
independently of the number of substructures and the bound grows only slowly
with the substructure size. Such preconditioners require a coarse problem, and
local preconditioning that inverts approximately (but well enough) the diagonal
submatrices associated with segments of the interfaces between the subtructures
or the substructure matrices themselves. The role of the local preconditioning
is to slow down the growth of the condition number as h → 0, while the role
of the coarse problem is to provide global exchange of information in order
to bound the condition number independently of the number of substructures.
Many such asymptotically optimal primal methods were designed in the 1980s
and 1990s, e.g., Bramble, Pasciak, and Schatz [2, 3], Dryja [12], Dryja, Smith,
and Widlund [14], Dryja and Widlund [15], and Widlund [62]. However, those
algorithms require additional assumptions and information that may not be
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readily available from finite element software, such as an explicit assumption
that the substructures form a coarse triangulation, and that one can build coarse
linear functions from its vertices.

Practitioners desire methods that work algebraically with arbitrary substruc-
tures (even if a theory may be available only in special cases), and are formulated
in terms of the substructure matrices only, with minimal additional information.
In addition, the methods should be robust with respect to various irregularities
of the problem. Two such methods have emerged in early 1990s: the Finite
Element Tearing and Interconnecting (FETI) method by Farhat and Roux [19],
and the Balancing Domain Decomposition (BDD) by Mandel [42]. Essentially,
the FETI method (with the Dirichlet preconditioner) preconditions assembly
of the inverses of the Schur complements by an assembly of the Schur comple-
ments, and the BDD method preconditions assembly of Schur complements by
an assembly of the inverses, with a suitable coarse problem added. Of course,
the assembly weights and other details play an essential role.

The BDD method added a coarse problem to the local Neumann-Neumann
preconditioner by DeRoeck and Le Tallec [55], which consisted of the assem-
bly (with weights) of pseudoinverses of the local matrices of the substructures.
Assembling the inverses of the of the local matrices is an idea similar to the
Element-by-Element (EBE) method by Hughes et al. [23]. The method was
called Neumann-Neumann because the preconditioner requires solution of Neu-
mann problems on all substructures, in contrast to an earlier Neumann-Dirichlet
method, which, for a problem with two substructures, required the solution of
a Neumann problem on one and a Dirichlet problem on the other [62]. The
coarse problem in BDD was constructed from the natural nullspace of the prob-
lem (constant for the Laplace equation, rigid body motions for elasticity) and
solving the coarse problem guaranteed consistency of local problems in the pre-
conditioner. The coarse correction was then imposed variationally, just as the
coarse correction in multigrid methods. The O

(
log2 (1 + H/h)

)
bound was then

proved [42].
In the FETI method, solving the local problems on the substructures to

eliminate the original degrees of freedom has likewise required working in the
complement of the nullspace of the substructure matrices, which gave a rise
to a natural coarse problem. Since the operator employs inverse of the Schur
complement (solving a Neumann problem), an optimal preconditioner employs
multiplication by the Schur complement (solving a Dirichlet problem), hence the
preconditioner was called the Dirichlet preconditioner. The O

(
log3 (1 + H/h)

)

bound was proved by Mandel and Tezaur [50], and O
(
log2 (1 + H/h)

)
for a

certain variant of the method by Tezaur [59].
Because the interface to the BDD and FETI methods required only the

multiplication by the substructure Schur complements, solving systems with
the substructure Schur complements, and information about the substructure
nullspace, the methods got quite popular and widely used. Cowsar, Mandel,
and Wheeler [7], implemented the multiplications as solutions of mixed prob-
lems on substructures. However, neither BDD nor the FETI method worked
well for 4th order problems (plate bending). The reason was essentially that
both methods involve “tearing” a vector of degrees of freedom reduced to the
interface, and, for 4th order problems, the “torn” function has energy that grows
as negative power of h, unlike for 2nd order problems, where the energy grows
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only as a positive power of log (1/h) by the so-called discrete Sobolev inequal-
ity [43]. The solution was to prevent the “tearing” by fixing the function at the
substructure corners; then only its derivative along the interface gets “torn”,
which has energy again only of the order log (1/h). Preventing such “tearing”
can be generally accomplished by increasing the coarse space, since the method
runs in the complement to the coarse space. For the BDD method, this was rela-
tively straightforward, because the algebra of the BDD method allows arbitrary
enlargement of the coarse space. The coarse space that does the trick contains
additional functions with spikes at corners, defined by fixing the value at the
corner and minimizing the energy. With this improvement, O

(
log2 (1 + H/h)

)

condition number bound was proved and fast convergence was recovered for
4th order problems (Le Tallec, Mandel, and Vidrascu [36, 37]). In the FETI
method, unfortunately, the algebra requires that the coarse space is made of
exactly the nullspace of the substructure matrices, so a simple enlargement of
the coarse space is not possible. Therefore, a version of FETI, called FETI-2,
was developed by Mandel, Tezaur, and Farhat [52], with a second correction
by coarse functions concentrated at corners, wrapped around the original FETI
method variationally much like BDD, and the O

(
log3 (1 + H/h)

)
bound was

proved again. However, the BDD and FETI methods with the modifications
for 4th order problems were rather unwieldy (especially FETI-2), and, conse-
quently, not as widely used. On the other hand, certain variants of the original
FETI method has been successfully applied to composite materials [34, 35].

The breakthrough came with the FETI-DP method by Farhat et al. [16],
which enforced the continuity of the degrees of freedom on a substructure cor-
ner as in the primal method by representing them by one common variable,
while the remaining continuity conditions between the substructures are en-
forced by Lagrange multipliers. The primal variables are again eliminated and
the iterations run on the Lagrange multipliers. The elimination process can be
organized as solution of sparse system and it gives rise to a natural coarse prob-
lem, associated with substructure corners. In 2D, the FETI-DP method was
proved to have condition number bounded as O

(
log2 (1 + H/h)

)
both for 2nd

order and 4th order problems by Mandel and Tezaur [51]. However, the method
does not converge as well in 3D and averages over edges or faces of substructures
need to be added as coarse variables for fast convergence (Klawonn, Widlund,
and Dryja [30], Farhat, Lesoinne, and Pierson [17]), and the O

(
log2 (1 + H/h)

)

bound can then be proved again ([30]).
The Balancing Domain Decomposition by Constraints (BDDC) was devel-

oped by Dohrmann [9] as a primal alternative the FETI-DP method. The BDDC
method uses imposes the equality of coarse degrees of freedom on corners and
of averages by constraints. In the case of only corner constraints, the coarse
basis functions are the same as in the BDD method for 4th order problems
from [36, 37]. The bound O

(
log2 (1 + H/h)

)
for BDDC was first proved by

Mandel and Dohrmann [44].
The BDDC and the FETI-DP are currently the most advanced versions

of the BDD and FETI families of methods. Their convergence properties were
quite similar, yet it came as a surprise when Mandel, Dohrmann, and Tezaur [45]
proved that the spectra of their preconditioned operators are in fact identical,
once all the components are same. This result came at the end of a long chain of
ties discovered between the BDD and FETI type methods. Algebraic relations
between the FETI and BDD methods were pointed out by Rixen et al. [54],
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Klawonn and Widlund [27], and Fragakis and Papadrakakis [21]. An important
common bound on the condition number of both the FETI and the BDD method
in terms of a single inequality was given Klawonn and Widlund [27]. Fragakis
and Papadrakakis [21], who derived certain primal versions of the FETI and
FETI-DP methods (called P-FETI-1 and P-FETI-DP), have also observed that
the eigenvalues of BDD and a certain version of FETI are identical, along with
the proof that the primal version of this particular FETI algorithm gives a
method same as BDD. The proof of equality of eigenvalues of BDD and this
particular version of FETI was given just recently in more abstract framework
by Fragakis [20]. Mandel, Dohrmann, and Tezaur [45] have proved that the
eigenvalues of BDDC and FETI-DP are identical and they have obtained a
simplified and fully algebraic version (i.e., with no undetermined constants) of
a common condition number estimate for BDDC and FETI-DP, similar to the
estimate by Klawonn and Widlund [27] for BDD and FETI. Simpler proofs of
the equality of eigenvalues of BDDC and FETI-DP were obtained later by Li
and Widlund [41], and by Brenner and Sung [5], who also gave an example when
BDDC has an eigenvalue equal to one but FETI-DP does not. Another primal
preconditioner inspired by FETI-DP was independently proposed by Cros [8].
This later gave raise to a conjecture that P-FETI-DP and BDDC are in fact the
same method, which was first shown in our recent works [48, 58].

It is interesting to note that the choice of assembly weights in the BDD
preconditioner was known at the very start from the work of DeRoeck and
Le Tallec [55] and before, while the choice of weights for a FETI type method
is much more complicated. A correct choice of weights is essential for the ro-
bustness of the methods with respect to scaling the matrix in each substructure
by an arbitrary positive number (the “independence of the bounds on jumps in
coefficients”). For the BDD method, such convergence bounds were proved by
Mandel and Brezina [43], using a similar argument as in Sarkis [56] for Schwarz
methods; see also Dryja, Sarkis, and Widlund [13]. For FETI methods, a proper
choice of weights was discovered only much later - see Farhat, Lesoinne and Pier-
son [17] for a special case, Klawonn and Widlund [27] for a more general case
and convergence bounds, and a detailed discussion in Mandel, Dohrmann, and
Tezaur [45].

The main goal of this thesis is to present some of the connections between
the primal and dual iterative substructuring methods as they appeared in our
research, in particular in [46, 47, 48, 58]. It is organized as follows. In Chapter 2
we introduce the notation and a small set of algebraic assumptions needed in
the formulation of all studied methods. The chapter is concluded by a short
section on substructuring that has been motivated by two main reasons: first,
to clarify how the spaces and operators arise in the standard substructuring
theory and second, although we tried to derive all preconditioners in a simple
abstract form, for the historical reasons and references to older version of some
of the preconditioners, we could not avoid using some substructuring compo-
nents. In Chapter 3 we formulate several (the most frequently used) primal
and dual substructuring methods. In the first part of this chapter we derive
two dual methods from the FETI family: the original (one-level) FETI method
by Farhat and Roux [19] denoted from now on as FETI-1, and the FETI-DP
method by Farhat et al. [16, 17] which is currently the most advanced method
from this family. For both methods we also formulate their primal versions,
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denoted respectively as P-FETI-1 and P-FETI-DP, introduced by Fragakis and
Papadrakakis [21]. The P-FETI-DP method is derived at two different levels of
detail: first, it is derived from a particularly simple formulation of FETI-DP as
in our recent work [48] and then from the original FETI-DP formulation [16] -
in order to complete the derivation of P-FETI-DP omitted in [20, 21]. In the
second part of this chapter, we formulate two primal methods from the BDD
family: the original BDD by Mandel [42] and the BDDC by Dohrmann [9].
Again, the BDDC method is derived at two levels of detail: first we state a sim-
ple variational formulation from [47], which allows us to see immediately that
the BDDC and P-FETI-DP preconditioners are in fact the same. Then, we
rederive the BDDC algorithm in order to show that it is the same as a version
of P-FETI-DP from [21], which also immediately shows that the preconditioner
by Cros [8] can be interpreted as either P-FETI-DP or BDDC. In Chapter 4,
we focus on connections between the introduced primal and dual methods. In
the first part of the chapter, we present the condition number bound and the
proof of the equality of eigenvalues of BDDC and FETI-DP in the abstract
minimalist settings from Section 2.2. In the second part of this chapter, we
recall from [21] that for a particular variant of FETI-1, the P-FETI-1 method
gives the same algorithm as BDD, and also apply a recent abstract result by
Fragakis [20] to show that the eigenvalues of BDD and the particular variant
of FETI-1 are the same. It is notable that this is the variant of FETI-1 de-
vised to deal with difficult, heterogeneous problems [1]. One useful aspect is
the translation of the abstract ideas from [20, 21] into the framework usual
in the domain decomposition community. Finally in Chapter 5, based on our
previous work [47], we build on the algebraic estimate from [45] to develop an
adaptive fast method with FETI-DP or BDDC as preconditioners. This esti-
mate can be computed from the matrices in the method as the solution of a
generalized eigenvalue problem. By restricting the eigenproblems onto pairs of
adjacent substructures, we obtain a reliable heuristic indicator of the condition
number. We also show how to use the eigenvectors, which are supported on
subsets of the intersections of adjacent substructures, to build coarse degrees
of freedom that result in an optimal decrease of the heuristic condition number
indicator. We show on numerical examples that the indicator is quite close to
the actual condition number and that our adaptive approach can result in the
concentration of computational work in a small troublesome part of the prob-
lem, which leads to a good convergence behavior at a small added cost. We
note that related work on adaptive coarse space selection has focused on the
global problem of selecting the smallest number of corners to prevent coarse
mechanisms by Lesoinne [38], and the smallest number of (more general) coarse
degrees of freedom to assure asymptotically optimal convergence estimates by
Klawonn and Widlund [28]. This required considering potentially large chains
of substructures, based on the global behavior of the structure. Our goal is
different. We assume that the starting coarse degrees of freedom (i.e., those
present before the adaptive selection of additional ones) are already sufficient
to prevent relative rigid body motions of any two adjacent substructures that
are used to compute the indicator and additional coarse degrees of freedom.
Our methodology is quite general, local in nature, involving only two substruc-
tures at a time and also dimension independent. The chapter is concluded by
several numerical examples in two and three spatial dimensions illustrating the
effectiveness of the proposed adaptive method.



2. CONCEPTS AND SUBSTRUCTURING

We begin with preliminaries and an overview of notation used throughout the
thesis. Next, we list a set of minimalist assumptions including the introduction
of the spaces and linear operators used in the formulation of the studied meth-
ods. Finally, we illustrate on a model problem how the spaces and operators
arise in the standard substructuring theory.

2.1 Notation and preliminaries

All considered spaces are finite dimensional linear spaces. The dual space of a
space V is denoted by V ′ and 〈·, ·〉 is the duality pairing. For a linear operator
L : W → V we define its transpose LT : V ′ → W ′ by 〈v, Lw〉 =

〈
LT v, w

〉
for

all v ∈ V ′, w ∈ W , and ‖v‖K =
√
〈Kv, v〉 denotes the norm associated with a

symmetric and positive definite operator K : V → V ′, i.e., such that 〈Kv, v〉 > 0
for all v ∈ V , v 6= 0. The norm of a linear operator E : V → V subordinate to
this vector norm is defined by ‖E‖K = maxv∈V,v 6=0 ‖Ev‖K / ‖v‖K . The notation
IV denotes the identity operator on the space V .

Mappings from a space to its dual arise naturally in the variational setting
of systems of linear algebraic equations. An an example, consider an n × n
matrix A and the system of equations Ax = b. The variational form of this
system is

x ∈ V : (Ax, y) = (b, y) ∀y ∈ V,

where V = Rn and (·, ·) is the usual Euclidean inner product on Rn. For
a fixed x, instead of the value Ax, we find it convenient to consider the linear
mapping y 7→ (Ax, y). This mapping is an element of the dual space V ′. Denote
this mapping by Kx and its value at y by 〈Kx, y〉; then K : V → V ′ is a linear
operator from V to its dual that corresponds to A. This setting involving dual
spaces is convenient and compact when dealing with multiple nested spaces, or
with dual methods (such as FETI). Restricting a linear functional to a subspace
is immediate, while the equivalent notation without duality requires introducing
new operators, namely projections or transposes of injections. Also, this setting
allows us to make a clear distinction between an approximate solution and its
residual, which is in the dual space. It is beneficial to have approximate solutions
and residuals in different spaces, because they need to be treated differently.

We wish to solve a system of linear algebraic equations

Ku = f,

where K : V → V ′, by a preconditioned conjugate gradient method. Here, a
preconditioner is a mapping M : V ′ → V . In iteration k the method computes
the residual

r(k) = Ku(k) − f ∈ V ′,
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and the preconditioner computes the increment to the approximate solution u(k)

as a linear combination of the preconditioned residual Mr(k) ∈ V with precon-
ditioned residuals in earlier iterations. Convergence properties of the method
can be established from the eigenvalues λ of the preconditioned operator MK;
the condition number

κ =
λmax(MK)

λmin(MK)
,

gives a well-known bound on the error reduction, cf., e.g., [22],

∥∥e(k)
∥∥

K
≤ 2

(√
κ − 1√
κ + 1

)k ∥∥e(0)
∥∥

K
,

where e(k) = u(k) − u is the error of the solution in iteration k.

2.2 Minimalist settings and assumptions

We now list a minimalist set of spaces, linear operators, and assumptions needed
in formulation of the methods and to prove their properties. To see how these
spaces and operators arise in the substructuring, we refer to the next section.
Let W be a finite dimensional space and let a (·, ·) be a symmetric positive

semidefinite bilinear form on W . Let Ŵ ⊂ W be a subspace such that a is
positive definite on Ŵ , and f ∈ Ŵ ′. We wish to solve a variational problem

u ∈ Ŵ : a (u, v) = 〈f, v〉 ∀v ∈ Ŵ . (2.1)

All the methods we are interested in are characterized by a selection of linear
operators E, B, and BD. The operator E is a projection onto Ŵ ,

E : W → Ŵ , E2 = E, range E = Ŵ . (2.2)

The role of the operator B is to enforce the condition u ∈ Ŵ by

Bu = 0 ⇐⇒ u ∈ Ŵ , (2.3)

and
B : W → Λ, nullB = Ŵ , range B = Λ. (2.4)

The operator BT
D is a generalized inverse of B,

BT
D : Λ → W, BBT

D = IΛ. (2.5)

In the construction of the FETI-DP and BDDC preconditioners, the role of the
space W is completely taken by an intermediate space W̃ ,

Ŵ ⊂ W̃ ⊂ W, (2.6)

such that
a (·, ·) is positive definite on W̃ . (2.7)

The properties (2.2) – (2.5) and eventually (2.7) are enough for the theories of
the methods separately, and they will be assumed from now on. To relate the
methods, denote by

R : Ŵ → W, R : w ∈ Ŵ 7−→ w ∈ W, (2.8)
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the natural injection from Ŵ to W . Clearly,

ER = I
Ŵ

, (2.9)

and
BR = 0. (2.10)

We shall also assume that
BT

DB + RE = I (2.11)

when needed. No further assumptions are necessary to formulate and relate all
studied methods in Chapters 3 and 4. The only exceptions are, for the historical
reasons, the more detailed formulations of the P-FETI-DP and BDDC methods;
to derive them we had to make few references to substructuring in Sec. 2.3.

Remark 1: In the literature, esp. [45] and references therein, the projection E
is often written in the form E = RT DP , where R is a mapping of another space
(isomorphic to Ŵ ) into W . In the abstract settings of Chapters 2-4, we choose

to formulate the methods directly in the space Ŵ . It turns out that the space W
is needed only in the theory of the FETI-1 and BDD methods and its role in the
theory of the FETI-DP and BDDC methods is completely taken by W̃ , and so
the space W is not needed for the theory of the latter methods at all. The opera-
tor R thus becomes the identity embedding of Ŵ into W . Next, we remark that
the equation (2.11) is found already in [54, Lemma 1] in the special case, when
the construction of the equation is based on the multiplicity of interfaces. It was
extended to the form used presently and to cover more general algorithms, and
also used to obtain important connections between dual and primal substructur-
ing methods, in [21, 27]. Finally, note that the assumption (2.5) allows the case
when B is a matrix that does not have full row rank. All that is needed is to
define Λ as range B.

Finally, we need to define the linear operators Ŝ, S̃ and S associated with
the bilinear form a on the spaces Ŵ , W̃ and W , respectively, by

Ŝ : Ŵ → Ŵ ′,
〈
Ŝv, w

〉
= a (v, w) ∀v, w ∈ Ŵ . (2.12)

S̃ : W̃ → W̃ ′,
〈
S̃v, w

〉
= a (v, w) ∀v, w ∈ W̃ , (2.13)

S : W → W ′, 〈Sv,w〉 = a (v, w) ∀v, w ∈ W, (2.14)

From (2.12), the variational problem (2.1) becomes

Ŝu = f. (2.15)

Further, it follows from (2.12), (2.14), and (2.8), that

Ŝ = RT SR. (2.16)

Finally, we note that the problem (2.1) is equivalent to the minimization

1

2
a (u, u) − 〈f, u〉 → min subject to u ∈ Ŵ ,

and using
〈f, u〉 = 〈f,Eu〉 =

〈
ET f, u

〉
, u ∈ Ŵ ,

we can rewrite (2.1) as

1

2
a (u, u) −

〈
ET f, u

〉
→ min subject to u ∈ Ŵ . (2.17)
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2.3 Substructuring for a model problem

To clarify ideas, we show how the spaces and operators introduced in the pre-
vious section arise in the standard substructuring theory for a model problem
obtained by a discretization of a second order elliptic problem. Consider a
bounded domain Ω ⊂ Rd, where d = 2 or 3, decomposed into nonoverlap-
ping subdomains Ωi, i = 1, ..., N , which form a conforming triangulation of the
domain Ω. Each subdomain Ωi is a union of Lagrangean P1 or Q1 finite ele-
ments, and the nodes of the finite elements between the substructures coincide.
In the scalar case, each node is associated with one degree of freedom and in the
case of linearized elasticity each node is associated with d degrees of freedom.
The nodes contained in the intersection of at least two substructures are called
boundary nodes. The union of all boundary nodes of all substructures is called
the interface, denoted by Γ, and Γi is the interface of substructure Ωi. The
interface Γ may also be classified as the union of three different types of sets:
faces, edges and corners. We will adopt here a simple (geometric) definition: a
face contains all nodes shared by the same two subdomains, an edge contains
all nodes shared by same set of more than two subdomains, and a corner is a
degenerated edge with only one node; for a more general definition see, e.g., [29].
We just remark that in 2D, we will commonly call faces as edges (as there are
none according to our definition) and that these entities are understood to be
relatively open, i.e., an edge does not contain its endpoints or a face does not
contain its boundaries. Also, similarly to [43], we will call in 2D an edge or in
the 3D a face as a glob.

The space of all vectors of local degrees of freedom on Γi is denoted by Wi.
Let Si : Wi → Wi be the Schur complement operator obtained from the stiffness
matrix of the substructure Ωi by eliminating all interior degrees of freedom
of Ωi, i.e., those that do not belong to Γi. We assume that the matrices Si are
symmetric positive semidefinite. Let

W = W1 × · · · × WN , (2.18)

and write vectors and matrices in the block form

w =




w1

...
wN


 , w ∈ W, S =




S1

. . .

SN


 . (2.19)

The bilinear form a is then given by

a (u, v) = uT Sv. (2.20)

The solution space Ŵ of the problem (2.1) is a subspace of W such that all
subdomain vectors of degrees of freedom are continuous across the interfaces,
which here means that their values on all the substructures sharing an interface
nodes coincide.

The BDDC and FETI-DP preconditioners are characterized by selection of
coarse degrees of freedom, such as values at the corners and averages over edges
or faces of subdomains. The space is then given by the requirement that the
coarse degrees of freedom on adjacent substructures coincide; for this reason,
the terms coarse degree of freedom and constraint may be used interchangeably.
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Ŵ ⊂ W̃ ⊂ W

Fig. 2.1: Schematic drawing of continuity conditions between substructures, in the case
of corner coarse degrees of freedom only: all degrees of freedom continuous
(the space Ŵ ), only the coarse degrees of freedom need to be continuous (the

space W̃ ), and no continuity conditions (the space W ).

In the present setting, this becomes the selection of the subspace W̃ ⊂ W, de-
fined as the subspace of all functions such that coarse degrees of freedom are
continuous across the interfaces, cf., Fig. 2.1. There needs to be enough con-
straints so that the variational problem on W̃ is coercive, i.e., (2.7) is satisfied.

Creating the stiffness matrix on the space W̃ is called subassembly [41].
The last ingredient of the methods is the selections of the linear operators

E, B and BD. We note that the operators E and B are defined on the whole
space W . The operator E : W → Ŵ is an averaging of the values of degrees
of freedom between the substructures. The averaging weights are often taken
proportional to the diagonal entry of the stiffness matrices in the substructures.
The matrix B enforces the continuity across substructure interfaces by the con-
dition Bw = 0. Each row B has only two nonzero entries, one equal to +1
and one equal to −1, corresponding to the two degrees of freedom whose value
should be same. So, Bw is the jump of the value of w between substructures.
Redundant Lagrange multipliers are possible; then B does not have full row rank
and Λ = rangeB is not the whole Euclidean space. Finally, BD is a matrix such
that a vector λ of jumps between the substructures is made into a vector of
degrees of freedom BT

Dλ that exhibits exactly those jumps. That is, BBT
D = I.

The construction of BD involves weights, related to those in the operator E,
so that BT

DB + RE = I. Such construction was done first for FETI-1 in [30]
in order to obtain estimates independent of the jump of coefficients between
substructures, and then adopted for FETI-DP. We only note that in many cases
of practical relevance, the matrix BD is determined from the properties (2.2) –
(2.11) uniquely as the Moore-Penrose pseudoinverse in a special inner product
given by the averaging weights in the operator E [45, Theorem 14].



3. FORMULATION OF THE METHODS

3.1 Methods from the FETI family

We formulate two FETI methods: the FETI-1 method by Farhat and Roux [19]
and the FETI-DP by Farhat et al. [16, 17]. In both cases we also derive
the primal versions of these methods, proposed originally by Fragakis and Pa-
padrakakis [21], and denoted as P-FETI-1 and P-FETI-DP, respectively.

3.1.1 FETI-1

We can write (2.17) as a constrained minimization problem posed on W ,

1

2
a (w,w) −

〈
ET f, w

〉
→ min subject to w ∈ W and Bw = 0, (3.1)

Introducing the Lagrangean

L(w, λ) =
1

2
a (w,w) −

〈
ET f, w

〉
+

〈
BT λ,w

〉
, (3.2)

where λ ∈ Λ′ are the Lagrange multipliers, we obtain that problem (3.1) is
equivalent to solving the saddle-point problem, cf., e.g. [53],

min
w∈W

max
λ∈Λ′

L(w, λ). (3.3)

Since
min
w∈W

max
λ∈Λ′

L(w, λ) = max
λ∈Λ′

min
w∈W

L(w, λ),

it follows that (3.1) is equivalent to the dual problem

∂C(λ)

∂λ
= 0, (3.4)

where
C(λ) = min

w∈W
L(w, λ). (3.5)

Problem (3.4) is equivalent to stationary conditions for the Lagrangean L,

∂

∂w
L(w, λ) ⊥ W, (3.6)

∂

∂λ
L(w, λ) = 0,

which is the same as solving for w ∈ W and λ ∈ Λ′ from the system

Sw + BT λ = ET f,
Bw = 0.

(3.7)
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We note that the operator S is not in general invertible on the whole space W .
Also, since S is invertible on nullB and λ is unique up to a component in
nullBT , the space Λ in (2.4) is selected to be range B. Next, let Z be a matrix
with linearly independent columns, such that

range Z = nullS. (3.8)

Since S is semidefinite, it must hold for the first equation in (3.7) that

ET f − BT λ ∈ range S =
(
nullST

)⊥
=

(
range ZT

)⊥
= nullZT ,

so equivalently,
ZT (ET f − BT λ) = 0. (3.9)

Eliminating w from the first equation in (3.7) as

w = S+(ET f − BT λ) + Za, (3.10)

substituting in the second equation in (3.7) and rewriting (3.9), we get

BS+BT λ − BZa = BS+ET f,
−ZT BT λ = −ZT ET f.

Denoting G = BZ and F = BS+BT this system becomes

Fλ − Ga = BS+ET f,
−GT λ = −ZT ET f.

(3.11)

Multiplying the first equation by
(
GT QG

)−1
GT Q, where Q is some symmetric

and positive definite scaling matrix, cf., e.g. [60, p. 147], we can compute a as

a =
(
GT QG

)−1
GT Q(BS+ET f − Fλ). (3.12)

The first equation in (3.11) thus becomes

Fλ − G
(
GT QG

)−1
GT Q(BS+ET f − Fλ) = GT QBS+ET f. (3.13)

Introducing
P = I − QG(GT QG)−1GT , (3.14)

as the Q-orthogonal projection onto nullGT , we get that (3.13) corresponds to
the first equation in (3.11) multiplied by PT . So, the system (3.11) can be
written in the decoupled form as

PT Fλ = PT BS+ET f,
GT λ = ZT ET f.

The initial value of λ is chosen to satisfy the second equation in (3.11), so

λ0 = QG(GT QG)−1ZT ET f. (3.15)

Substituting λ0 into (3.12) gives initial value of a as

a0 =
(
GT QG

)−1
GT Q(BS+ET f − Fλ0). (3.16)
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Since we are looking for λ ∈ nullGT , the FETI-1 method is a preconditioned
conjugate gradient method applied to the system

PT FPλ = PT BS+ET f, (3.17)

with the Dirichlet preconditioner

MFETI−1 = BDSBT
D. (3.18)

The FETI-1 method solves for the Lagrange multiplier λ. The corresponding
primal solution is found as the minimizer of w in (3.5). Equivalently, from (3.6),
which is the same as the first equation in (3.7), we have expressed w in (3.10).

If λ is the exact solution of the dual problem (3.4), then w ∈ Ŵ and so u = w
is the desired solution of the primal minimization problem (3.1). However, for

approximate solution λ, in general w /∈ Ŵ , and so the primal solution needs
to be projected onto Ŵ . We use the operator E for this purpose. So, for an
arbitrary Lagrange multiplier λ, the corresponding approximate solution of the
original problem is

u = Ew = ES+(ET f − BT λ) + Za,

with a determined from (3.12). Note that the operator E does not play any role
in FETI-1 iterations themselves. It only serves to form the right-hand side of the
constrained problem (3.7), and to recover the primal solution in the space Ŵ .

3.1.2 P-FETI-1

The P-FETI-1 preconditioner is based on the first step of FETI-1; the averaged
solution u is obtained from (3.10) with f = r and using (3.15)-(3.16) as

u = Ew

= E
[
S+(ET r − BT λ0) + Za0

]

= E
[
S+(ET r − BT λ0) + Z

(
GT QG

)−1
GT Q(Fλ0 − BS+ET r)

]

= E
[
S+(ET r − BT λ0) + Z

(
GT QG

)−1
GT Q(BS+BT λ0 − BS+ET r)

]

= E
[
I − Z

(
GT QG

)−1
GT QB

]
S+(ET r − BT λ0)

= E
[(

I − Z
(
GT QG

)−1
GT QB

)
S+

(
I − BT QG

(
GT QG

)−1
ZT

)]
ET r

= EHT S+HET r

= MP−FETI−1r,

where we have denoted by

H = I − BT QG
(
GT QG

)−1
ZT , (3.19)

and so
MP−FETI−1 = EHT S+HET , (3.20)

is the associated primal P-FETI-1 preconditioner, same as [21, eq. (79)].
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3.1.3 FETI-DP

We can also write (2.17) as a constrained minimization problem posed on W̃ ,

1

2
a (w,w) −

〈
ET f, w

〉
→ min subject to w ∈ W̃ and Bw = 0. (3.21)

By essentially the same procedure as (3.2)-(3.7), we obtain that solving (3.21)

is the same as solving for w ∈ W̃ and λ ∈ Λ′ from the system

S̃w + BT λ = ET f,
Bw = 0.

(3.22)

The situation is now much favorable that in the case of the FETI-1 method: by
(2.7) and (2.13) the operator S̃ is invertible on W̃ . So, expressing w from the
first equation in (3.22) and substituting into the second equation, we get the
dual problem in an operator form,

BS̃−1BT λ = BS̃−1ET f. (3.23)

The FETI-DP method is the method of preconditioned conjugate gradients
applied to the problem (3.23), with the Dirichlet preconditioner given by

MFETI−DP = BDS̃BT
D. (3.24)

The FETI-DP method solves for the Lagrange multiplier λ. The correspond-
ing primal solution is found from the first equation in (3.22) as

w = S̃−1
(
ET f − BT λ

)
.

Again, if λ is the exact solution of the dual problem, then w ∈ Ŵ and so u = w
is the desired solution of the primal minimization problem (3.21). However, for
approximate solution λ we use, as for the FETI-1 method, the operator E to
project the primal solution onto Ŵ as

u = ES̃−1
(
ET f − BT λ

)
. (3.25)

Note that the operator E serves again only to form the right-hand side of the
constrained problem (3.22), and to recover the primal solution u ∈ Ŵ .

3.1.4 P-FETI-DP

We derive the P-FETI-DP preconditioner at two distinct levels of abstraction,
first on the more abstract level. The preconditioner is based on the approximate
solution from the first step of FETI-DP, starting from λ = 0 (which can be used,
cf., e.g., [60, Section 6.4]), and with the residual r as the right-hand side. The
primal solution corresponding to the result of this step is the output of the
preconditioner. Thus, from (3.25) with λ = 0 and f = r, we have

MP−FETI−DP r = ES̃−1ET r, (3.26)

where MP−FETI−DP is the associated primal P-FETI-DP preconditioner.
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Next, we will derive the P-FETI-DP preconditioner using the original paper
on FETI-DP by Farhat et. al. [16], in order to verify and complete the derivation
of the P-FETI-DP algorithm given in [21, eq. (90)] for the corner constraints.
So, we need to make here a direct reference to substructuring and Section 2.3.
Let us split the set of interface nodes into corners and remaining nodes and
decompose the space W̃ , cf. also [45, Remark 5], as

W̃ = W̃c ⊕ W̃r. (3.27)

The space W̃c consists of functions that are continuous across interfaces, have
a nonzero value at one corner degree of freedom at a time and zero at others,
and the space W̃r consists of functions with corner degrees of freedom equal to
zero. The solution splits into the solution of the global coarse problem in the
space W̃c and the solution of independent subdomain problems in the space W̃r.

Remark 2: As in Li and Widlund [41], we could perform a change of basis
in order to make also all other primal constraints (such as averages over edges

or faces) explicit and refer to W̃c as the space of coarse basis functions. The
change of basis and its generalization will be described in detail in Section 5.3.

Let R
(i)
c be a map of global coarse variables to its subdomain component,

R(i)
c wc = w(i)

c , Rc =




R
(1)
c

...

R
(N)
c


 ,

let Br be an operator enforcing the interface continuity of wr by

Brwr = 0, Br =
(

B
(1)
r . . . B

(N)
r

)
,

and define projections Er : W̃r → Ŵ and Ec : W̃c → Ŵ , so that their transposes
distribute the primal residual r to the so called subdomain forces fr = ET

r r and
to the global coarse problem right-hand side fc = ET

c r.
The equations of equilibrium can now be written, cf. [16, eq. (9)-(10)], as

Srrwr + SrcRcwc + BT
r λ = fr,

N∑
i=1

R
(i)T
c S

(i)T
rc w

(i)
r +

N∑
i=1

R
(i)T
c S

(i)
cc R

(i)
c wc = fc,

Brwr = 0,

where the first equation corresponds to independent subdomain problems, the
second corresponds to the global coarse problem, and the third enforces the
continuity of local problems. This system can be rewritten as




Srr SrcRc BT
r

(SrcRc)
T

S̃cc 0
Br 0 0







wr

wc

λ


 =




fr

fc

0


 , (3.28)

and the blocks are defined as

S̃cc =

N∑

i=1

R(i)T
c S(i)

cc R(i)
c , Srr =




S
(1)
rr

. . .

S
(N)
rr


 , SrcRc =




S
(1)
rc R

(1)
c

...

S
(N)
rc R

(N)
c


 .



3. Formulation of the methods 19

Remark 3: The system (3.28) is just expanded system (3.22).

Expressing wr from the first equation in (3.28), we get

wr = S−1
rr

(
fr − SrcRcwc − BT

r λ
)
.

Substituting for wr into the second equation in (3.28) gives

S̃∗
ccwc − (SrcRc)

T
S−1

rr BT
r λ = fc − (SrcRc)

T
S−1

rr fr,

where S̃∗
cc = S̃cc − RT

c ST
rcS

−1
rr SrcRc. Inverting S̃∗

cc, we get that

wc = S̃∗−1

cc

[
fc − (SrcRc)

T
S−1

rr fr + (SrcRc)
T

S−1
rr BT

r λ
]
.

After initialization with λ = 0 which [21, 20] does not say but it can be used,
cf. the first derivation of the method, the assembled and averaged solution is

u = Erwr + Ecwc

= ErS
−1
rr

{
fr − SrcRcS̃

∗−1

cc

(
fc − (SrcRc)

T
S−1

rr fr

)}
+

+ EcS̃
∗−1

cc

(
fc − (SrcRc)

T
S−1

rr fr

)

= ErS
−1
rr fr − ErS

−1
rr SrcRcS̃

∗−1

cc fc+

+ ErS
−1
rr SrcRcS̃

∗−1

cc (SrcRc)
T

S−1
rr fr+

+ EcS̃
∗−1

cc fc − EcS̃
∗−1

cc (SrcRc)
T

S−1
rr fr

= ErS
−1
rr fr+

+
(
Ec − ErS

−1
rr SrcRc

)
S̃∗−1

cc

(
fc − (SrcRc)

T
S−1

rr fr

)

= ErS
−1
rr ET

r r+

+
(
Ec − ErS

−1
rr SrcRc

)
S̃∗−1

cc

(
ET

c r − (SrcRc)
T

S−1
rr ET

r r
)

= MP−FETI−DP r,

where

MP−FETI−DP = ErS
−1
rr ET

r + (3.29)

+
(
Ec − ErS

−1
rr SrcRc

)
S̃∗−1

cc

(
ET

c − RT
c ST

rcS
−1
rr ET

r

)

is the associated P-FETI-DP preconditioner, and we have verified [21, eq. (90)].

3.2 Methods from the BDD family

We recall two primal methods from the Balancing Domain Decomposition (BDD)
family by Mandel in [42]; namely the original BDD and Balancing Domain De-
composition by Constraints (BDDC) introduced by Dohrmann [9].
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3.2.1 BDD

The BDD is a Neumann-Neumann algorithm, cf., e.g., [15], with a simple coarse
grid correction, introduced by Mandel [42]. The name of the preconditioner

comes from an idea to balance the residual. We say that v ∈ Ŵ is balanced if

ZT ET v = 0.

Let us denote the “balancing” operator as

C = EZ, (3.30)

so the columns of C are equal to the weighted sum of traces of the subdomain
zero energy modes. Next, let us denote by SC Ŝ the Ŝ − orthogonal projection
onto the range of C, so that

SC = C
(
CT ŜC

)−1

CT ,

and by PC the complementary projection to SC Ŝ, defined as

PC = I − SC Ŝ. (3.31)

The BDD preconditioner [42, Lemma 3.1], can be written in our settings as

MBDD =
[(

I − SC Ŝ
)

ES+ET Ŝ(I − SC Ŝ) + SC Ŝ
]
Ŝ−1

=
[(

I − SC Ŝ
)

ES+ET (ŜŜ−1 − ŜSC ŜŜ−1) + SC ŜŜ−1
]

= PCES+ET PT
C + SC (3.32)

where SC serves as the coarse grid correction. See [42, 43], and [21] for details.

3.2.2 BDDC

First, we formulate the BDDC method in a particularly simple abstract vari-
ational form following our work in [47], which was inspired by a view of the
Neumann-Neumann methods going back to [15]. It is essentially same as the
approach of [5], and it is also related to the concept of subassembly in [41].

Algorithm 4: The abstract BDDC preconditioner MBDDC is defined by

MBDDC : r 7−→ u = Ew, w ∈ W̃ : a (w, z) = 〈r, Ez〉 , ∀z ∈ W̃ . (3.33)

From the definitions of S̃ in (2.13) and R in (2.8), it follows that the operator
form of the BDDC preconditioner is

MBDDC = ES̃−1ET . (3.34)

Comparing (3.34) with P-FETI-DP in (3.26), we have immediately:

Theorem 5: The P-FETI-DP and the BDDC preconditioners are the same.
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Next, we introduce another mathematically equivalent formulation of the
BDDC algorithm. Following Li and Widlund [41], we will assume that each
constraint can be represented by an explicit degree of freedom, cf. Remark 2,
and that we can decompose the space W̃ as in (3.27). The preconditioner
MBDDC is defined in this formulation by, cf. [41, eq. (27)],

MBDDC = Tsub + Tcoarse,

where Tsub = ErS
−1
rr ET

r is the subdomain correction obtained by solving inde-

pendent problems on subdomains, and Tcoarse = EΨ
(
ΨT SΨ

)−1
ΨT ET is the

coarse grid correction. Here Ψ are the coarse basis functions defined by energy
minimization,

tr ΨT SΨ → min .

Since we assume that each constraint corresponds to an explicit degree of free-
dom, the coarse basis functions Ψ can be easily determined via the analogy to
the discrete harmonic functions, discussed, e.g., in [60, Section 4.4]; Ψ are equal
to 1 in the coarse degrees of freedom and have energy minimal extension with
respect to the remaining degrees of freedom ur, so they are precisely given as

Ψ =

(
Rc

−S−1
rr SrcRc

)
.

Then, we can compute

ΨT SΨ =
(

RT
c −RT

c ST
rcS

−1
rr

) (
Scc ST

rc

Src Srr

)(
Rc

−S−1
rr SrcRc

)

= RT
c SccRc − RT

c ST
rcS

−1
rr SrcRc

= S̃cc − RT
c ST

rcS
−1
rr SrcRc

= S̃∗
cc,

followed by

EΨ
[
ΨT SΨ

]−1
ΨT ET

= E

(
Rc

−S−1
rr SrcRc

)
S̃∗−1

cc

(
RT

c −RT
c ST

rcS
−1
rr

)
ET

=
(
Ec − ErS

−1
rr SrcRc

)
S̃∗−1

cc

(
ET

c − RT
c ST

rcS
−1
rr ET

r

)
.

So, the BDDC preconditioner takes the form

MBDDC = ErS
−1
rr ET

r + (3.35)

+
(
Ec − ErS

−1
rr SrcRc

)
S̃∗−1

cc

(
ET

c − RT
c ST

rcS
−1
rr ET

r

)
.

Comparing now the definitions of both, P-FETI-DP in eq. (3.29) and BDDC
in eq. (3.35) we again immediately see on another level of detail that these two
preconditioners are the same. Moreover:

Theorem 6: The preconditioner proposed by Cros [8, eq. 4.8] can be inter-
preted as either the P-FETI-DP preconditioner by Fragakis and Papadrakakis [21],
or the BDDC preconditioner by Dohrmann [9].
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We will now study some relations between the FETI-DP and BDDC methods,
and between the (P-)FETI-1 and BDD methods. We would like to premise that
even though we will observe some similar relations between (P-)FETI and BDD
as between FETI-DP and BDDC, cf., e.g., Lemmas 7 and 16, we have decided
to split the comparison into two sections for the following reason. The action
of the FETI-DP and BDDC preconditioners is defined on space W̃ , where by
assumption (2.7) the operator S̃ defined by (2.13) is invertible. On the other
hand, the FETI and BDD algorithms are defined on the whole space W , where
the operator S defined by (2.14) is in general only positive semidefinite, and
more delicate analysis is necessary. This also explains why we have decided to
begin with the analysis of the FETI-DP and BDDC methods, which is simpler.

The next two simple observations, following directly from the assumptions
in Section 2.2, will be useful in both sections of this chapter:

EBT
DB = E (I − RE) = E − ERE = 0, (4.1)

REBT
D =

(
I − BT

DB
)
BT

D = BT
D − BT

DBBT
D = 0. (4.2)

We note that, since R is an injection, in fact it also holds that EBT
D = 0.

4.1 FETI-DP and BDDC

We have already shown in Theorems 5 and 6 that the P-FETI-DP, the BDDC,
and the preconditioner by Cros are the same. We will focus now on the con-
dition number bound and the spectral properties of the FETI-DP and BDDC
preconditioned operators. Our starting point in this section is as follows:

Lemma 7: The two preconditioned operators can be written as

PFETI−DP =
(
BDS̃BT

D

) (
BS̃−1BT

)
, (4.3)

PBDDC =
(
ES̃−1ET

)(
RT S̃R

)
. (4.4)

Proof. The forms of the preconditioned operators follow for FETI-DP from
(3.23)-(3.24), and for BDDC from (2.16) and (3.34).

Clearly, both preconditioned operators have the same general form

(
LA−1LT

) (
TT AT

)
, (4.5)

where A is symmetric, positive definite, and L and T are some linear operators
such that, because of (2.5) and (2.9),

LT = I. (4.6)
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This important observation was made in [41] in the equivalent form that PS̃−1PS̃ :
range P → range P , where P is a projection, and in the present form in [5].

It is interesting that the fundamental eigenvalue bound can be proved for
arbitrary operators of the form (4.5) – (4.6). The following lemma was proved
in terms of the BDDC preconditioner in [45, Theorem 25], and the proof carries
over to the FETI-DP. Because the translation between the two settings is time
consuming, the proof (with some simplifications but no substantial differences)
is included here for completeness, in the general form.

Lemma 8: Let U and V be finite dimensional vector spaces and A : V → V ′

be an SPD operator. If L : V → U and T : U → V are linear operators such
that LT = I on U , then all eigenvalues λ of the operator

(
LA−1LT

) (
TT AT

)

satisfy
1 ≤ λ ≤ ‖TL‖2

A . (4.7)

Proof. The operator
(
LA−1LT

) (
TT AT

)
is selfadjoint with respect to the in-

ner product
〈
TT ATu, v

〉
. So, it is sufficient to bound

〈(
LA−1LT

) (
TT AT

)
u, u

〉

in terms of
〈(

TT AT
)
u, u

〉
.

Let u ∈ U . Then (
LA−1LT

) (
TT AT

)
u = Lw, (4.8)

where w = A−1LT TT ATu satisfies

w ∈ V, 〈Aw, v〉 =
〈
TT ATu,Lv

〉
∀v ∈ V. (4.9)

In particular, from (4.9) with v = w and (4.8)

〈Aw,w〉 =
〈
TT ATu,Lw

〉
=

〈
TT ATu,

(
LA−1LT

) (
TT AT

)
u
〉
, (4.10)

and using LT = I, (4.9) with v = Tu, Cauchy inequality, the definition of
transpose, and (4.10),

〈
TT ATu, u

〉2
=

〈
TT ATu,LTu

〉2

= 〈Aw, Tu〉2

≤ 〈Aw,w〉 〈ATu, Tu〉
= 〈Aw,w〉

〈
TT ATu, u

〉

=
〈
TT ATu,

(
LA−1LT

) (
TT AT

)
u
〉 〈

TT ATu, u
〉
.

Dividing by
〈
TT ATu, u

〉
, we get

〈
TT ATu, u

〉
≤

〈
TT ATu,

(
LA−1LT

) (
TT AT

)
u
〉

∀u ∈ U,

which gives the left inequality in (4.7).
To prove the right inequality in (4.7), let again u ∈ U . Then it follows, from

(4.8), Cauchy inequality in the TT AT inner product, definition of the A norm,
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properties of the norm, and (4.10), that

〈
TT ATu,

(
LA−1LT

) (
TT AT

)
u
〉2

=
〈
TT ATu,Lw

〉2

≤
〈
TT ATu, u

〉 〈
TT ATLw,Lw

〉

=
〈
TT ATu, u

〉
〈ATLw, TLw〉

=
〈
TT ATu, u

〉
‖TLw‖2

A

≤
〈
TT ATu, u

〉
‖TL‖2

A ‖w‖2
A

=
〈
TT ATu, u

〉
‖TL‖2

A

〈
TT ATu,

(
LA−1LT

) (
TT AT

)
u
〉
.

Dividing by
〈
TT ATu,

(
LA−1LT

) (
TT AT

)
u
〉
, we get

〈
TT ATu,

(
LA−1LT

) (
TT AT

)
u
〉
≤ ‖TL‖2

A

〈
TT ATu, u

〉
∀u ∈ U.

The lower bound in Lemma 8 was proved in a different way in [5, Lemma 3.4].
Condition number bounds formulated as the next theorem now follow im-

mediately from Lemma 8. These bounds will also play an essential role in the
design of adaptive FETI-DP and BDDC preconditioners, studied in Chapter 5.

Theorem 9: The eigenvalues of the preconditioned operators of FETI-DP and
BDDC satisfy 1 ≤ λ ≤ ωFETI−DP and 1 ≤ λ ≤ ωBDDC , respectively, where

ωBDDC = ‖RE‖2
S̃

, ωFETI−DP = ‖BT
DBw‖2

S̃
. (4.11)

In addition, if W̃ 6= Ŵ and (2.11) holds, then also

ωBDDC = ωFETI−DP . (4.12)

Proof. The eigenvalue bounds with (4.11) follows from the form of the pre-
conditioned operators (4.3)-(4.4) and Lemma 8. The equality (4.12) follows
from the fact that E and BDB are complementary projections by (2.11), and
the norm of a nontrivial projection depends only on the angle between its range
and its nullspace [24].

The result in Theorem 9 was proved in a different way in [44] for BDDC and
in [51] for FETI-DP. For a simple proof of the bound for BDDC directly from
the variational formulation (3.33), see [47, Theorem 2].

The next abstract lemma is the main tool in the comparison of the eigenval-
ues of the BDDC and FETI-DP preconditioned operators.

Lemma 10 ([5, Lemmas 3.6 – 3.8]): Let V and Ui, i = 1, 2, be finite di-
mensional vector spaces and A : V → V ′ be an SPD operator. If Li : V → Ui

and Ti : Ui → V are linear operators such that

LiTi = I on Ui, i = 1, 2, (4.13)

T1L1 + T2L2 = I on V, (4.14)

then all eigenvalues (except equal to one) of the operators
(
L1A

−1LT
1

) (
TT

1 AT1

)

and
(
TT

2 AT2

) (
L2A

−1LT
2

)
are the same, and their multiplicities are identical.
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Clearly, the assumptions in Lemma 10 correspond to (2.1)-(2.11). The proof
can be found in [5], and its main ideas are as follows. First, we need to show that
the eigenvectors of one operator can be transformed into (nonzero) eigenvectors
of the other operator, and that they correspond to the same eigenvalues. Next
step is to show that the eigenvectors can get mapped to zero only if they corre-
spond to the eigenvalue(s) equal to one. Finally, because the nonzero mapping
of the eigenvectors is one-to-one, the eigenspace of one operator gets mapped
into the eigenspace of the other operator, and because this mapping can be re-
versed, we conclude that all eigenvalues greater than one must be the same and
they also must have the same multiplicities. For completeness, we translate this
abstract result in the case of FETI-DP and BDDC, which is formulated as the
next lemma and theorem. We note, that this translation has been also inspired
by the recent abstract result of Fragakis [20, Theorem 4].

So, the next lemma corresponds to [5, Lemma 3.6] and also, this lemma and
the next theorem are particular versions of [20, Theorem 4].

Lemma 11: The following identities are valid:

TDPFETI−DP = PBDDCTD, TD = ES̃−1BT ,

TP PBDDC = PFETI−DPTP , TP = BDS̃R.

Proof. Using (4.1) and (2.10) we derive the first identity as

TDPFETI−DP = ES̃−1BT BDS̃BT
DBS̃−1BT

= ES̃−1
(
I − ET RT

)
S̃ (I − RE) S̃−1BT

= ES̃−1S̃ (I − RE) S̃−1BT − ES̃−1ET RT SS̃−1BT

+
(
ES̃−1ET

) (
RT SR

)
ES̃−1BT

= EBT
DBS̃−1BT − ES̃−1ET RT BT + PBDDCTD

= PBDDCTD,

and using (4.2) and (2.10), we derive the second identity as

TP PBDDC = BDS̃RES̃−1ET RT S̃R

= BDS̃
(
I − BT

DB
)
S̃−1

(
I − BT BD

)
S̃R

= BDS̃S̃−1
(
I − BT BD

)
S̃R

− BDS̃BT
DBS̃−1S̃R

+
(
BDS̃BT

D

) (
BS̃−1BT

)
BDS̃R

= BDET RT S̃R − BDS̃BT
DBR + PFETI−DPTP

= PFETI−DPTP .

Theorem 12: The spectra of the two preconditioned operators PFETI−DP and
PBDDC are the same except possibly for eigenvalues equal to one. Moreover, the
multiplicity of any common eigenvalue λ 6= 1 is identical for both operators.
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Proof. By Theorem 9, the lower bound on eigenvalues is equal to one. Let uD

be a (nonzero) eigenvector of the preconditioned FETI-DP operator correspond-
ing to the eigenvalue λD. By Lemma 11, it holds that TDuD is an eigenvector
of the preconditioned BDDC operator corresponding to the eigenvalue λD, pro-
vided that TDuD 6= 0. So, assume that TDuD = 0. But then it also must be
true that

0 = TPTDuD = BDS̃RES̃−1BT uD

= BDS̃
(
I − BT

DB
)
S̃−1BT uD = BDBT uD −

(
BDS̃BT

D

) (
BS̃−1BT

)
uD

= BDBT uD − PFETI−DP uD

= BDBT uD − λDuD,

but since BDBT is a projection, λD could be equal only to (0 or) 1.
Next, let uP be a (nonzero) eigenvector of the preconditioned BDDC oper-

ator corresponding to the eigenvalue λP . Then, by Lemma 11, it holds that
TP uP is an eigenvector of the preconditioned FETI-DP operator corresponding
to the eigenvalue λP , provided that TP uP 6= 0. So, assume that TP uP = 0. But
then it also must be true that

0 = TDTP uP = ES̃−1BT BDS̃RuP

= ES̃−1
(
I − ET RT

)
S̃RuP = ERuP −

(
ES̃−1ET

) (
RT SR

)
uP

= ERuP − PBDDCuP

= ERuP − λP uP ,

but since ER is a projection, λP could be equal only to (0 or) 1.
Finally, let λ 6= 1 be an eigenvalue of the operator PBDDC with the multi-

plicity m. From the previous arguments, the eigenspace corresponding to λ is
mapped by the operator TP into an eigenspace of PFETI−DP and since this map-
ping is one-to-one, the multiplicity of λ corresponding to PFETI−DP is n ≥ m.
By the same argument, we can prove the opposite inequality and the conclusion
follows.

Remark 13: The equality of spectra in Theorem 12 was proved in [45] in a dif-
ferent way, and an elegant simplified proof was given in [41]. The equality of
multiplicities of all common eigenvalues greater than one was proved in [5],
where is has been also shown that the multiplicity of the eigenvalue equal to one
for FETI-DP is less than or equal to the multiplicity for BDDC. However, in
practice, there are other eigenvalues very close to one, and the performance of
the FETI-DP and BDDC methods is essentially identical [45].

Remark 14: It is notable, that the definition of the space W̃ with corner con-
straints has been already used for a variant of the BDD preconditioner designed
for plates by Le Tallec et al. [37, equation (39)]. Their spaces V o

i and Zi cor-

respond, respectively, to the spaces W̃r and W̃c defined by (3.27). The only
difference between the algorithm there and BDDC (in case of corners only) is
that the coarse correction is applied multiplicatively rather than additively.
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4.2 (P-)FETI-1 and BDD

In the remainder of this chapter, we will revisit the result from [21] that a certain
version of the P-FETI-1 method gives exactly the same algorithm as BDD, and
we will also translate the recent abstract proof relating the spectra of primal
and dual methods [20, Theorem 4] in the case of FETI-1 and BDD.

Theorem 15 ([21, Section 8]): If Q is chosen to be the Dirichlet precondi-
tioner (3.18), the P-FETI-1 and the BDD preconditioners are the same.

Proof. We will show that MP−FETI−1 in (3.20) with Q = BDSBT
D is the

same as MBDD in (3.32). So, similarly as in [21, pp. 3819-3820], we begin
with (3.19) as

H = I − BT QG
(
GT QG

)−1
ZT

= I − BT BDSBT
DBZ

(
ZT BT BDSBT

DBZ
)−1

ZT

= I − AR

(
ZT AR

)−1
ZT ,

where
AR = BT BDSBT

DBZ.

Using (2.11), definitions of C in (3.30), Ŝ in (2.16), and because SZ = 0 by (3.8),

AR =
(
I − ET RT

)
S (I − RE)Z

= SZ − SREZ − ET RT SZ + ET RT SREZ

= SZ − SRC − ET RT SZ + ET ŜC

=
(
ET Ŝ − SR

)
C,

and similarly

ZT AR = ZT
(
ET Ŝ − SR

)
C

= CT ŜC − ZT SREZ

= CT ŜC.

Using the two previous results, (3.31), and symmetries of Ŝ and Sc, we get

HET =
(
I − AR

(
ZT AR

)−1
ZT

)
ET

= ET − AR

(
ZT AR

)−1
ZT ET

= ET −
(
ET Ŝ − SR

)
C

(
CT ŜC

)−1

CT

= ET −
(
ET Ŝ − SR

)
SC

= ET − ET ŜSC + SRSC

= ET
(
I − ŜSC

)
+ SRSC

= ET PT
C + SRSC .
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Next, the matrix SC satisfies the relation

SCRT SS+SRSC = SCRT SRSC = SC ŜSC

= C
(
CT ŜC

)−1

CT ŜC
(
CT ŜC

)−1

CT

= C
(
CT ŜC

)−1

CT = SC .

Because by definition PCC = 0, using (2.9) we get for some Y that

PCES+SRSC = PCE (I + ZY ) RSC

= PCERSC + PCEZY RSC

= PCSC + PCCY RSC

= PCSC

=
(
I − SC Ŝ

)
SC

= SC − SC = 0,

and the same is true for the transpose, so SCRT SS+ET PT
C = 0.

Using these results, the P-FETI-1 preconditioner from (3.20) becomes

MP−FETI−1 = EHT S+HET

=
(
SCRT S + PCE

)
S+

(
ET PT

C + SRSC

)

= SCRT SS+ET PT
C + SCRT SS+SRSC

+ PCES+ET PT
C + PCES+SRSC

= PCES+ET PT
C + SC , (4.15)

and we see that (4.15) is the same as the definition of MBDD in (3.32).
Now we focus on the equality of eigenvalues of the BDD and FETI-1 precon-

ditioned operators, with Q being the Dirichlet preconditioner (3.18). We begin
with an analogy to Lemma 7, this time relating FETI-1 and BDD:

Lemma 16: The two preconditioned operators can be written as

PFETI−1 = MFETIF =
(
BDSBT

D

) (
BS+

HBT
)
,

PBDD = MBDDŜ =
(
ES+

HET
) (

RT SR
)
,

where
S+

H = HT S+H,

and H is defined by (3.19).

Proof. First, MFETI−1 = BDSBT
D, which is the Dirichlet preconditioner (3.18).

From (3.17), using the definition of H by (3.19), we get

F = PT FP

= PT BS+BT P

=
(
I − G(GT QG)−1GT QT

)
BS+BT

(
I − QG(GT QG)−1GT

)

=
(
B − BZ(GT QG)−1GT QT B

)
S+

(
BT − BT QG(GT QG)−1ZT BT

)

= B
(
I − Z(GT QG)−1GT QB

)
S+

(
I − BT QG(GT QG)−1ZT

)
BT

= BHT S+HBT = BS+
HBT .
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Next, Ŝ is defined by (2.16). By Theorem 15 we can use (3.20) for MBDD, i.e.,

MBDD = EHT S+HET = ES+
HET .

Before proceeding to the main result, we need to prove two technical lem-
mas relating the operators S and S+

H . The first lemma establishes [20, Assump-
tions (13) and (22)] as well as [20, Lemma 3] for FETI-1 and BDD.

Lemma 17: The operators S, S+
H , defined by (2.19) and Lemma 16, satisfy

S+
HSR = R, (4.16)

S+
HSS+

H = S+
H . (4.17)

Moreover, the following relations are valid

BS+
HSR = 0, (4.18)

S+
HBT BDSS+

HET = 0. (4.19)

Proof. First, from (3.8) and symmetry of S it follows that

HS =
(
I − BT QG

(
GT QG

)−1
ZT

)
S

= S − BT QG
(
GT QG

)−1
ZT S = S.

Using HT = I − Z
(
GT QG

)−1
GT QB we get

HT S+S = HT (I + ZY ) = HT + HT ZY

= HT +
[
I − Z

(
GT QG

)−1
GT QB

]
ZY

= HT + ZY − Z
(
GT QG

)−1
GT QGY

= HT + ZY − ZY = HT ,

so
S+

HS = HT S+HS = HT S+S = HT .

Finally, from previous and (2.10), we get (4.16) as

S+
HSR = HT R =

(
I − Z

(
GT QG

)−1
GT QB

)
R = R,

and since HT is a projection, we immediately get also (4.17) as

S+
HSS+

H = HT S+
H = HT HT S+H = S+

H .

Next, (4.18) follows directly from (4.16) noting (2.10).
Using (2.11), (4.16)-(4.17) and (4.1), we get (4.19) as

S+
HBT BDSS+

HET = S+
H

(
I − ET RT

)
SS+

HET

= S+
HSS+

HET − S+
HET RT SS+

HET

= S+
HET − S+

HET RT ET

= S+
H

(
I − ET RT

)
ET

= S+
HBT BDET = 0.

Next lemma establishes similar identities as Lemma 11. Again, it is a par-
ticular version of [20, Theorem 4], or it can be also eventually viewed as a
generalization of the result for FETI-DP and BDDC [5, Lemma 3.6].
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Lemma 18: The following identities are valid:

SDPFETI−1 = PBDDSD, SD = ES+
HBT ,

SP PBDD = PFETI−1SP , SP = PFETI−1BDSR.

Proof. Using the transpose of (4.19) and (4.18), we derive the first identity

SDPFETI−1 = ES+
HBT BDSBT

DBS+
HBT

= ES+
H

(
I − ET RT

)
S (I − RE)S+

HBT

= ES+
HS (I − RE)S+

HBT − ES+
HET RT SS+

HBT

+ ES+
HET RT SRES+

HBT

= ES+
HSBT

DBS+
HBT − ES+

HET RT SS+
HBT +

+
(
ES+

HET
) (

RT SR
)
SD

= PBDDSD.

Similarly, using (4.19) and (4.18), we derive the second identity as

SP PBDD = PFETI−1BDSRES+
HET RT SR

= PFETI−1BDS
(
I − BT

DB
)
S+

H

(
I − BT BD

)
SR

= PFETI−1BDSS+
H

(
I − BT BD

)
SR

− PFETI−1BDSBT
DBS+

HSR

+ PFETI−1BDSBT
DBS+

HBT BDSR

= MFETI−1BS+
HBT BDSS+

HET RT SR

− PFETI−1BDSBT
DBS+

HSR

+ PFETI−1

(
BDSBT

D

) (
BS+

HBT
)
BDSR

= PFETI−1 (PFETI−1BDSR) .

= PFETI−1SP .

Theorem 19: The spectra of the preconditioned operators PBDD and PFETI−1

are the same except possibly for eigenvalues equal to zero and one. Moreover,
the multiplicity of any common eigenvalue λ 6= 0, 1 is identical for the two
preconditioned operators.

Proof. Let uD be a (nonzero) eigenvector of the preconditioned FETI-1
operator corresponding to the eigenvalue λD. Then, by Lemma 18, it holds that
SDuD is an eigenvector of the preconditioned BDD operator corresponding to
the eigenvalue λD, provided that SDuD 6= 0. So, assume that SDuD = 0. But
then it also must be true that

0 = BDSR (SDuD) = BDSRES+
HBT uD

= BDS
(
I − BT

DB
)
S+

HBT uD = BDSS+
HBT uD − BDSBT

DBS+
HBT uD

= BDSS+
HBT uD − PFETI−1uD = BDSS+

HBT uD − λDuD,

and, we get
BDSS+

HBT uD = λDuD.
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Note that, by (4.16) and (2.10),

(
BDSS+

HBT
)2

= BDSS+
HBT BDSS+

HBT

= BDSS+
H

(
I − ET RT

)
SS+

HBT

= BDSS+
HSS+

HBT − BDSS+
HET RT SS+

HBT

= BDSS+
HBT − BDSS+

HET RT BT

= BDSS+
HBT ,

so BDSS+
HBT is a projection and therefore λD can be equal only to 0 or 1.

Next, let uP be a (nonzero) eigenvector of the preconditioned BDD operator
corresponding to the eigenvalue λP . Then, by Lemma 18, it holds that SP uP

is an eigenvector of the preconditioned FETI-1 operator corresponding to the
eigenvalue λP , provided that SP uP 6= 0. So, assume that SP uP = 0. Then it
also must be true that SDSP uP = 0. Using (4.16) and (2.9), we get

0 = SDSP uP = SDPFETI−1BDSRuP

= PBDDSDBDSRuP = PBDDES+
HBT BDSRuP

= PBDDES+
H

(
I − ET RT

)
SRuP

= PBDDES+
HSRuP − PBDDES+

HET RT SRuP

= PBDDuP − PBDDES+
HET RT SRuP

= PBDDuP − PBDD
2uP ,

which is the same as

λP uP − λ2
P uP = λP (1 − λP ) uP = 0,

and therefore λP can be equal only to 0 or 1.
Finally, let λ 6= 0, 1 be an eigenvalue of the operator PBDD with the multi-

plicity m. From the previous arguments, the eigenspace corresponding to λ is
mapped by the operator SP into an eigenspace of PFETI−1 and since this map-
ping is one-to-one, the multiplicity of λ corresponding to PFETI−1 is n ≥ m.
By the same argument, we can prove the opposite inequality and the conclusion
follows.



5. ADAPTIVE FETI-DP AND BDDC PRECONDITIONERS

The action of the FETI-DP and BDDC preconditioners is defined on the space W̃ ,
which has been specified in Chapter 2 only by the condition (2.7). We note that
this condition ensures only that the preconditioners are well defined, but it does
not guarantee any of their approximation properties. So, if we would like to im-
prove convergence of both of these methods, the construction of some subspace
of W̃ needs to be studied. The detailed discussion of this space, respective a
construction of a restriction operator to a certain subspace, will be the main
topic of this chapter. It is based on our previous work [46, 47], but the algorithm
presented here is substantially simpler. Also, the formulation of the BDDC pre-
conditioner in Sections 5.1-5.3 is new, and it is a result of a joint research with
Jakub Š́ıstek. An efficient parallel implementation will be studied elsewhere.

As we wrote already in Sec. 2.3, the space W̃ is constructed using coarse de-
grees of freedom that can be, e.g., values at corners, or averages over edges/faces.
The space is then given by the requirement that the coarse degrees of freedom
on adjacent substructures coincide; for this reason, the terms coarse degree of
freedom and constraint may be used interchangeably. From now on, we will
preferably use the term constraint. Although the formulation of the adaptive
algorithm appears to be new and includes also an extension of the adaptive
algorithm into three spatial dimension, the basic idea remained the same as
in [46, 47]: we build on the algebraic bound from Theorem 9 and as in our
previous work, we make use of the fact that this bound can be computed as the
solution of a generalized eigenvalue problem. By restricting the eigenproblem
onto pairs of adjacent substructures, we obtain a heuristic condition number in-
dicator. Next, we show how to use the eigenvectors obtained from the solution of
the localized generalized eigenvalue problems, which are supported on the inter-
face shared by such pairs, to construct coarse degrees of freedom as constraints
in the definition of the space W̃ . Such procedure results in an optimal decrease
of the heuristic indicator. Finally, we illustrate on several numerical examples
in two and also three spatial dimensions that this indicator is quite close to the
actual condition number and that such approach can result in the identification
of troublesome parts of the problem and concentration of the computational
work, which leads to an improved convergence at a small additional cost.

This chapter differs from the previous in one aspect: we will need to make
substantially more references to substructuring (Sec. 2.3). Nevertheless, we
would like to emphasize that our adaptive algorithm is algebraic and it does not
rely on any specific properties of the problem.

The adaptive algorithm takes advantage of pairs of adjacent substructures:

Definition 20: A pair of substructures will be call adjacent if they share either:
(a) an edge in 2D, or (b) a face in 3D. The set of all adjacent substructures
{ij} is denoted by A and every pair {ij} ∈ A is represented only once.
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5.1 The preconditioners on a subspace

In this section, which does not contain any adaptivity yet, we will revisit the for-
mulation of the abstract preconditioners, FETI-DP from Sec. 3.1.3 and BDDC
from Algorithm 4. First, let us rewrite the hierarchy of spaces, cf. (2.6), as

Ŵ ⊂ W̃ avg ⊂ W̃ c ⊂ W, (5.1)

where W̃ c is the space already satisfying some initial constraints. This space is
actually considered from now on to replace W̃ in the hierarchy of spaces (2.6).

The first natural choice for W̃ c, used also in our implementation, is the space
constructed using a sufficient number of corner coarse degrees freedom. The
operators on W̃ c are then obtained by a subassembly of subdomain stiffness
matrices, cf. Sec. 2.3, in essentially the same way as by Li and Widlund [41].
Because of implementation related reasons that are discussed in detail later, we
assemble only the corner degrees of freedom (unlike [41]).

Both preconditioners are typically, especially in 3D, characterized by a re-
striction into some subspace of W̃ c satisfying additional constraints on functions:
such as equality of their average values across edges or faces. The purpose of
this choice is to obtain the scalability with subdomain size. Ideally, one can
prove the polylogarithmic condition number bound

κ ≤ const.

(
1 + log

H

h

)2

, (5.2)

where H is the subdomain size and h is the finite element size. We note that
the explanation of (5.2) is outside of the scope of this thesis, and we refer to
the detailed discussion, e.g., in the monograph [60]. Here we only note, that the
initial selection of constraints in the proposed adaptive approach (as well as in
our numerical experiments) has been done such that (5.2) is satisfied.

For the BDDC method, we will define this subspace as

W̃ avg =
{

w ∈ W̃ c : DT w = 0
}

. (5.3)

Each row of DT represents one constraint, the constraints are linearly indepen-
dent, so that D has full rank. The details of the construction of D will be the
main topic of this chapter, and the adaptive algorithm from [47] will be greatly
simplified – all additional constraints are added as new columns in the matrix D,
and as we will see, in a very simple way. In order to relate the preconditioners,
let us recall the definition of such subspace in the case of the FETI-DP method,
which we have used in our previous work on adaptivity, cf. [47, eq. (17)], as

W̃ avg =
{

w ∈ W̃ c : QT
DBw = 0

}
. (5.4)

Here, QD is a dual weight matrix, and B is the standard FETI operator enforcing
continuity across substructure interfaces. Comparing the two definitions (5.4)
and (5.3), we see that the matrices D and QD are closely related. And because
B is known, the entries of QD can be determined from the entries in D. In
Sec. 5.6 we will see that this is also true for the additional (adaptive) entries
in D, and so the forthcoming adaptive theory and algorithms can be easily
transferred in the standard case of the FETI-DP method.
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Let us now look more closely at the relation of the operators QD and D.
Assuming the block diagonal structure of operators as in (2.19), suppose we are
given a linear operator in a block-diagonal form as




Q1

. . .

QN


 ,

such that each block Qi defines constraints localized to a substructure i and each
row k of Qi defines a constraint Qk,i. We note that typically we constrain just
one glob at a time, but in general we can constrain the same glob several times;
the only requirement is that the constraints must be linearly independent. If
we want to prescribe (average) value of a function w ∈ W̃ c on a glob shared by
neighboring substructures i and j, we need to satisfy

Qk,iwi = Ql,jwj , (5.5)

where wi = w|Ωi
, wj = w|Ωj

and k, l denote the rows of Qi, Qj , respectively,
with entries containing the weights of the constrained equation (5.5), which
defines the shared constraint. Since Qk,i and Ql,j correspond to the shared
constraint on the shared glob, they have the same entries and hence, we can
identify the rows k and l. Next, because the operator B in (5.4) has entries
+1, 0,−1 and it constrains a pair of interface degrees of freedom at a time, we
introduce the operators QD and D by rewriting (5.5) as

Qk,iw|Ωi
− Ql,jw|Ωj

= 0 ⇒ QT
DBw = DT w = 0,

which relates the two definitions of the space W̃ avg in (5.3) and (5.4). We
remark that each additional row of DT represents one additional constraint.

Construction of the operator D is illustrated by a simple example, shown on
Figure 5.1. Consider a domain Ω partitioned into two subdomains Ωi, i = 1, 2,

Fig. 5.1: Partition of the domain Ω into two subdomains, sharing an edge Γ.

sharing three nodes on an edge Γ. For simplicity we do not consider corners. The
subdomain Ω2 is floating and in the scalar case we need to enforce at least one
average over the shared edge. Such constraint would appear in as a single row in
the matrix DT given in this case as DT =

[
1 1 1 −1 −1 −1

]
. We note

that, e.g., for elasticity in 2D it is natural to split DT into two independent rows,
each corresponding to displacements in the direction of principal axes. Also, we
need to be careful in coupling edge averages in 3D that belong to more than
just two substructures and use nonredundant constraint in the same sense as,
e.g., [60, Section 6.3.1], so that DT has a full (row) rank. The necessity of this
property of the matrix D will become obvious in the following section.
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5.2 Projected BDDC preconditioner

Because the description of the FETI-DP on the subspace defined by (5.4) would
now proceed in a much similar way as in [45], we will rather focus on the
formulation of the BDDC preconditioner on the subspace defined by (5.3), which
appears to be new. In particular, we will restrict the preconditioner in the
subspace W̃ avg using a projection on the nullspace of DT . We begin by restating
the abstract BDDC preconditioner from Algorithm 4 as follows:

Algorithm 21: The abstract BDDC preconditioner MBDDC from Algorithm 4
restricted to the space W̃ avg is defined by

MBDDC : r 7−→ u = Ew, w ∈ W̃ avg : a (w, z) = 〈r, Ez〉 , ∀z ∈ W̃ avg.

The action of the abstract BDDC preconditioner (3.33), respective (3.34),

restricted in the space W̃ avg consists of two steps: solving the system

w ∈ W̃ c : S̃w = ET r, subject to DT w = 0, (5.6)

followed by computation of the approximate solution u ∈ Ŵ as u = Ew.

One way of restricting the action of the preconditioner in the space W̃ avg is
to introduce the orthogonal projection P onto the nullspace of DT as

P = I − D
(
DT D

)−1
DT . (5.7)

The system (5.6) can now be written as

PS̃Pw = PET r. (5.8)

The two main steps in the construction of the projection P defined by (5.7)
are: (1) inverting the system DT D with the size determined by the number
of constraints, and (2) scattering the inverse by action of D. Due to a block
structure of D, where each block corresponds to a different glob and because by
definition each degree of freedom belongs to at most one glob, the construction
of P can be performed in parallel. At this stage of our approach we keep the
original degrees of freedom, which gives rise to dense off-diagonal blocks in the
projection P and also in the projected operator PS̃P (for “communication”
between the degrees of freedom that belong to the same glob). The structure of
both operators is illustrated in Fig. 5.2. This issue will be resolved in the next
section by a generalized change of variables.

Because PS̃P can be singular for nontrivial D (then nullDT is a proper

subspace of W̃ c), we suggest to solve instead of (5.8) a modified system

[
PS̃P + t(I − P )

]
w = PET r, (5.9)

where t > 0 is some scaling constant. Now, the operator PS̃P + t(I − P ) is
regular, while the solutions of the systems (5.6) and (5.9) are the same.
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Fig. 5.2: The projections P (top) and the projected operators PS̃P +t(I−P ) (bottom)
for Laplace equation in 2D and four substructures: two pairs of substructures
are coupled by one edge average. The left side corresponds to the represen-
tation by the original degrees of freedom and the operators on the right side
were constructed using the change of variables.

5.3 Generalized change of variables

We have seen that the operator PS̃P + t(I − P ) suffers from a loss of sparsity.
For this reason, we generalize the change of variables by Li and Widlund [41],
so that we could prescribe as constraints quite general edge or face averages and
also preserve a more favorable fill-in of the projected operator. We note that
any change of variables causes in general some fill-in, but the main idea here is
to allow this only in the diagonal blocks and minimize the creation of (dense)
off-diagonal blocks. In this section, we will show how to transform the operator
S̃ associated with the bilinear form a on the space W̃ c into a different basis,
in which all averages would be represented by explicit degrees of freedom. The
dual coupling by the matrix D is then done between these individual degrees
of freedom, resulting in much smaller (and thus more desirable) fill-in of the

projected system operator PS̃P + t(I − P ) as illustrated by Fig. 5.2.
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Remark 22: We could treat the degrees of freedom corresponding to averages
after the change of variables as corners and assemble them, as advocated in [41].
This would give us no additional fill-in beyond the one caused by the change of
variables. We do not adopt such approach here, mainly because of implementa-
tion related reasons: different dimensioning of arrays and matrices which is in
fact a-priori unknown due to our adaptive construction of constraints.

The new variables are introduced via the transformation w = Bw, where B
is some regular matrix containing the weights of averages over globs we intend
to prescribe; the construction of B is discussed in detail later in this section.
We will denote B−1 = T , so then w = T w. Now, using the change of basis we
can further modify Algorithm 21 as follows:

Algorithm 23: The BDDC preconditioner MBDDC : Ŵ ′ → Ŵ is defined as

MBDDC : r 7−→ u = ET w, w ∈ W̃ avg : a (T w, T z) = 〈r, ET z〉 , ∀z ∈ W̃ avg.

We remark that in the action of the preconditioner, defined by the previous
algorithm, we in fact do not use the matrix B, but only its inverse B−1 = T .
The Algorithm 23 consists of two steps: solving the system

T T S̃T w = T T ET r, subject to D
T
w = 0, (5.10)

followed by computation of the approximate solution u ∈ Ŵ as u = ET w. We
would like to emphasize that the operator D used in (5.6) is different from the

operator D in (5.10); they are related as D
T

= DTT and D is much sparser
because it couples only the selected pairs of interface degrees of freedom. In fact,
the construction of D is similar to the construction of the operator B used in
the FETI methods. In computations, it can be constructed directly without
using either D or T , knowing only which pairs of the interface degrees of freedom
have to be coupled after the change of basis.

We will now describe the construction of the operators B and T . So, to
use Algorithm 23, we need to transform S̃ into the system given by (5.10).
The vector w represents the “new” degrees of freedom, such that some of them
explicitly represent the weighted average(s) of the original degrees of freedom
over globs, and the matrix B contains in some of its rows the coefficients of the
averages assigned to the original degrees of freedom over individual globs.

To illustrate this, let us return to our simple example from Fig. 5.1. Let us
say that we would like to prescribe an arithmetic average in the first degree of
freedom on the edge Γ. The matrices B, T and D are in this case given as

B =




1 1 1
0 1 0
0 0 1


 , T = B−1 =




1 −1 −1
0 1 0
0 0 1


 , (5.11)

D
T

=
[

1 0 0 −1 0 0
]
.

The matrix B consists of the following submatrices: the top row(s) prescribing
average(s), zero block and an identity block of an appropriate size. The matrix D
couples then the first degree of freedom in the two substructures sharing this
glob. Clearly, we could select any other degree(s) of freedom on a glob to
prescribe average(s) in, but for construction of B as above we will be able to
find its inverse in a particularly efficient way even for quite general weights.
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Remark 24: The matrix T in (5.11) is a particular case of the matrix TE

considered in [41, Section 3.3] for the case of arithmetic averages over globs.

The global operator B for the transformation of the system operator S̃ has a
block structure, where each block corresponds to a different glob. Because, by
definition, each degree of freedom belongs to at most one glob, the construction
of B respective finding its inverse T can be carried out glob by glob cf. [41],
in parallel. For this reason and for simplicity, we will describe the generalized
change of variables on a block of the global transformation matrix corresponding
to only one glob and one substructure. We have already mentioned that the
averages can be quite general: their number is limited by the number of degrees
of freedom on this glob and also we require their linear independence. More
precisely, we would like to guarantee the matrix B to have a stable inverse T .
Let us denote by BAV G a block, corresponding to one glob and one substructure,
that prescribes the averages, i.e.,

BAV G =




vT
1
...

vT
n


 ,

where v1, . . . , vn are constraint vectors that will be specified in later sections.
Now, let us just assume that the vectors v1, . . . , vn are linearly independent.
Then, we can write

B =

[
BAV G

0 I

]
=

[
U V
0 I

]
. (5.12)

Above, we have schematically split the block BAV G =
[
U V

]
for the only

reason: the inverse B−1 = T can be found more effectively by inverting only
the much smaller block U , with the size given by the number of averages, as

T =

[
U−1 −U−1V
0 I

]
, (5.13)

However, the invertibility of U is far from obvious and it might not be possible.
In fact, to be complete at this point, we need to mention another issue, that

will become clear in the adaptive context once the reader finishes reading the
remaining sections. Let us consider, for simplicity, a group of vectors in Rn

that are linearly independent or possibly even orthogonal. Considering these
vectors to be nonzero only at the a-priori selected set of slots clearly destroys the
orthogonality, but unfortunately it can destroy also the linear independence of
the nonzero pieces of vectors - as we will see later, this is the case of eigenvectors
restricted to individual globs.

In our context, we would like to guarantee: (1) the linear independence of the
rows in BAV G and (2) the existence of a stable inverse of some square submatrix
of BAV G. Because we need at least to closely approximate the rangeBT

AV G,
we can look equivalently for the basis of nullBAV G. In our implementation,
we have successfully used the full QR algorithm with column pivoting. This
algorithm in Matlab 7.5 uses LAPACK routine DGEQP3. It allows us to factor
BAV G = QR with a column permutation PE so that the absolute values on the
diagonal of R are decreasing. Eventually, we can drop the rows of R where the
diagonal entry is less than some threshold value. Then nullBAV G is (at least



5. Adaptive FETI-DP and BDDC preconditioners 39

closely approximated by) nullR, the existence of linearly independent rows of R
implies the existence of the same number of linearly independent columns of R,
and the permutation PE helps us to find a reasonable set of such columns. Using
this approach, the matrix BAV G in (5.12) is replaced by the matrix R and the
block U is then given as the left triangular block of the matrix R. We compute
the inverse as in (5.13) followed by a multiplication by PE from the left to obtain
the final transformation matrix. Denoting R = [RU RV ], this can be done as

T = PE

(
I +

[
R−1

U − I −R−1
U RV

0 0

])
.

Let us now relate the general matrix B from (5.12) with the one used for one
arithmetic average, as in (5.11), for a glob of general size given as B in (5.14).
The general block BAV G is in such case reduced into the first row of the matrix B
in (5.14), and the block U from (5.12) is reduced just to the diagonal entry of 1.
It is also remarkable that in this case, the inverse of transformation matrix for
glob of any size is explicitly known. It is given as

B =




1 1 . . . 1
1

. . .

1


 , T = B−1 =




1 −1 . . . −1
1

. . .

1


 . (5.14)

Let us return for the last time to the formulation of the BDDC preconditioner
on the space W̃ avg, this time including the generalized change of variables. As

explained in Section 5.2, one way of enforcing the constraint D
T
w = 0 is to

introduce the orthogonal projection P onto the nullspace of D
T

as

P = I − D
(
D

T
D

)−1

D
T
.

The projected system (5.10) has the form

PT T S̃T Pw = PT T ET r. (5.15)

Again, the operator PT T S̃T P is singular for nontrivial D (then nullD
T

is a

proper subspace of W̃ c), and so we suggest to solve instead of (5.15) a system
[
PT T S̃T P + t(I − P )

]
w = PT T ET r, (5.16)

where t > 0 is some scaling constant. Now, the operator PT T S̃T P + t(I − P )
is regular and also, the solutions of the systems (5.10) and (5.16) are the same.

Finally, let us rewrite the Algorithm 23 in an algebraic form as:

Algorithm 25: The action of the BDDC preconditioner MBDDC : Ŵ ′ → Ŵ
projected in the space W̃ avg with the generalized change of variables consists of
the two steps: solving the system

[
PT T S̃T P + t(I − P )

]
w = PT T ET r,

followed by the computation of the approximate solution u ∈ Ŵ as u = ET w.
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5.4 Eigenvalue formulation of the condition number bound

From now on we will focus on the method of selecting the constraints used
in the adaptive construction of the space W̃ avg, that is, the the construction
of the matrix D. We begin by restating of the condition number bound from
Theorem 9 as

ω = sup
w∈W̃ c

∥∥BT
DBw

∥∥2

S̃

‖w‖2
S̃

= sup
w∈W̃ c

‖(I − RE)w‖2
S̃

‖w‖2
S̃

. (5.17)

Note that in the present context, Theorem 9 and hence (5.17) should be in fact

formulated on the space W̃ avg, cf. (5.1) and (5.3)-(5.4). Here, the formulation

of the condition number bound on W̃ c serves only as a point of departure for
the adaptive method, our main interest in this chapter. Clearly, the condition
number bound (5.17) can be written as a generalized eigenvalue problem on W̃ c.

The stationary points of the Rayleigh quotient ‖(I − RE)w‖2
S̃

/ ‖w‖2
S̃

are the
eigenvectors and the values of the Rayleigh quotient at the stationary points
are the eigenvalues of the generalized eigenvalue problem

(I − RE)
T

S̃ (I − RE)w = λS̃w. (5.18)

The maximization problem (5.17) thus becomes the problem to find the maximal
eigenvalue of (5.18). The matrix on the left-hand side is symmetric positive

semidefinite, the matrix S̃ is symmetric positive definite, and the eigenvalues λk

can be ordered, with no loss of generality, as λ1 ≥ λ2 ≥ . . . ≥ 0. We note that
we do not advocate solving (5.18) numerically in practice; this section serves as
a preparation for the development of a local condition number indicator.

Lemma 26 ([47, Lemma 10]): Let d (·, ·) be symmetric positive semidefinite
bilinear form on a linear space V of dimension n and e (·, ·) symmetric positive
definite bilinear form on that space. Then the generalized eigenvalue problem in
variational form

u ∈ V : d (u, v) = λe (u, v) , ∀v ∈ V

has n linearly independent eigenvectors uk and the corresponding eigenvalues
λk ≥ 0. Order λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. Then for any subspace Vk ⊂ V of
dimension k,

max
u∈Vk,u 6=0

d (u, u)

e (u, u)
≥ λk+1,

with equality if

Vk = {u ∈ V : d(ul, u) = 0, ∀l = 1, . . . , k} . (5.19)

We can use Lemma 26 to show an optimal construction of the space W̃ avg.
Each row of DT is constructed using the eigenvectors from the solution of (5.18):

Theorem 27: Let wi be the eigenvectors and λi the eigenvalues from (5.18),
without loss of generality ordered as λ1 ≥ λ2 ≥ . . . ≥ 0. Take k ≥ 0 and let us
define the operator D by

dT
i = wT

i (I − RE)
T

S̃ (I − RE) , i = 1, . . . , k

D =
[

d1 d2 . . . dk

]
. (5.20)

Then ω = λk+1 and ω ≥ λk+1 for other construction of DT by at most k rows.
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Proof. Apply Lemma 26 with V = W̃ c, u = w, and

d (u, u)

e (u, u)
=

‖(I − RE)w‖2
S̃

‖w‖2
S̃

=
wT (I − RE)

T
S̃ (I − RE)w

wT S̃w
.

The orthogonality conditions in (5.19) become

wT
i (I − RE)

T
S̃ (I − RE)︸ ︷︷ ︸

dT
i

w = 0, i = 1, . . . , k, (5.21)

and Vk becomes W̃ avg.
Next, we will formalize an immediate intuitive result that enforcing a con-

straint “by parts” can only improve the condition number bound (5.17). In par-
ticular, we will enforce constraints by parts of the global eigenvector restricted
to one glob at a time. We remark that a glob is understood to be relatively open
and any two distinct globs are disjoint. We will identify a glob with the set of
degrees of freedom associated with it. The set of all globs will be denoted by KG .

For a glob G ∈ KG we define a glob projection RG : w ∈ W̃ c → RGw ∈ W̃ c,
where RGw is the vector that has the same values as w for all degrees of freedom
in G, and all other degrees of freedom are set to zero. so for G = 1, . . . , NG , the
glob projection can be written as

RG =




R1

...
RNG


 ,

∑

G∈KG

RG = I. (5.22)

Now, we can define the matrix DG as in (5.20) by imposing each constraint
restricted to one glob at a time as a new column of DG , i.e.,

DG =
[

RGd1 RGd2 . . . RGdk

]
. (5.23)

It is easy now to show that constraining each glob separately can only improve
the condition number bound (5.17):

Lemma 28: Let us define the spaces W̃ avg
G and W̃ avg as the nullspaces of DT

G

from (5.23) and DT from (5.20), respectively. Let us also define by (5.17) the
respective condition number bounds ωG and ω. Then, the bounds satisfy

ωG ≤ ω.

Proof. Let us define DG by (5.23) and consider, for simplicity, just one vector
of constraints, i.e., let k = 1. The extension for k > 1 is straightforward. Then,
for any w ∈ W̃ avg

G , we have

0 = DT
G w = (RGd1)

T
w ⇒


 ∑

G∈KG

RGd1




T

w = DT w = 0,

so W̃ avg
G ⊂ W̃ avg and the conclusion follows.

As we have already mentioned, computation of global eigenvectors is compu-
tationally expensive and therefore not convenient for practical implementation.
Numerical experiments also indicate that when there are just several trouble-
some parts in the global problem, it is sufficient to impose the additional con-
straints only locally.
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5.5 Local indicator of the condition number bound

From now on, we need to assume the full substructuring framework from Sec. 2.3.
We need to define local versions of some spaces and operators from Section 2.2.
So, for each pair {ij} ∈ A of substructures, we define a space Wij = Wi × Wj ,

similarly as (2.18), by considering only the pair {ij}. Next, we define W̃ c
ij

as the subspace of all functions from Wij that satisfy the initial constraints

on the interface Γij = ∂Ωi∩ ∂Ωj and the system operator S̃ij is obtained by
subassembly of the system operators corresponding to substructures i and j.
Finally, we define Ŵij as the subspace of all functions from Wij such that the
values of all degrees of freedom on the interface between substructures i and j
coincide. We need to define two more operators as analogy to (2.2) and (2.8).

The operator Eij is a projection onto Ŵij ,

Eij : Wij → Ŵij , E2
ij = Eij , range Eij = Ŵij ,

and Rij is the natural injection from Ŵij to Wij ,

Rij : Ŵij → Wij , Rij : wij ∈ Ŵij 7−→ wij ∈ Wij ,

Clearly, in analogy to (2.9),

EijRij = I
Ŵij

.

We will assume, in addition to (2.7), that the selection of corner degrees of
freedom as initial constraints has been made in such a way that:

Assumption 29: Let us assume that the initial constraints (those present be-
fore the selection of additional ones) are already sufficient to prevent relative
rigid body motions of any pair of adjacent substructures, so

∀wij ∈ W̃ c
ij : S̃ijwij = 0 ⇒ (I−RijEij) wij = 0,

i.e., the coarse degrees of freedom are sufficient to constrain the rigid body modes
of the two substructures into a single set of rigid body modes, which are then
continuous across the interface Γij.

Finally, let Rij : W̃ c → W̃ c
ij be the 0 − 1 matrix that restrict global vectors

of degrees of freedom to the intersection of substructures i and j. The global
vector of degrees of freedom w can be obtained from a local wij as

w = RT
ijwij ,

where w ∈ W̃ c has zero entries everywhere outside of the subset Sij , which is
defined as the set of entries corresponding to the interface Γij .

Remark 30: It is notable that the local spaces and operators arise naturally in
exactly the same way as the analogical global spaces and operators defined in
Sec. 2.2-2.3 by considering only one pair of adjacent substructures at a time.
This is, in particular, very convenient for practical implementation of adaptive
constraints: we can use the same routines to obtain local versions of operators.
Moreover, the local problems can be solved completely in parallel.
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We note that the construction of local problems is not a restriction in the
usual sense, and in fact

W̃ c  RT
ijW̃

c
ij  W, ∀ {ij} ∈ A,

because in general any (initial) constraint can be shared by more substructures
than just by a considered pair {ij} ∈ A. Typical examples are corners, and also
edges in three dimensions - if they are constrained a-priori.

In analogy to [47], we propose as the indicator of the condition number
bound to use the maximum of the bounds ωij from (5.17) computed for pairs
of adjacent substructures. So, we define the condition number indicator ω̃ by

ω̃ = max
{ij}∈A

ωij , ωij = sup
wij∈W̃ c

ij

‖(I − RijEij) wij‖2
S̃ij

‖wij‖2
S̃ij

. (5.24)

Similarly to (5.18), finding ω̃ is equivalent to finding the largest eigenvalue from
the set of local generalized eigenvalue problems

(I − RijEij)
T

S̃ij (I−RijEij) wij = λijS̃ijwij . (5.25)

To guarantee that each ωij is finite, we need

∀wij ∈ W̃ c
ij : S̃ijwij = 0 ⇒ (I−RijEij) wij = 0,

which is satisfied when a pair of adjacent substructures i and j linked by only
the coarse degrees of freedom do not form a mechanism. In our settings it holds
automatically due to Assumption 29. Still, the matrices on both sides of (5.25)
are typically singular regardless of Assumption 29, because of rigid body modes
that move adjacent substructures i and j as a whole.

Remark 31: The operators S̃ij are symmetric, but in general only positive
semidefinite. Also, the nullspaces of operators in (5.25) are related as

null S̃ij ⊂ null (I − RijEij)
T

S̃ij (I−RijEij) . (5.26)

In the numerical experiments we have used Matlab function eig with Choleski
decomposition, and also Matlab version of lobpcg developed by Knyazev [31].

Both algorithms worked despite of singular of S̃ij due to property (5.26), because
in this case they pass to factorspace on which the problem (5.25) is defined with

S̃ij positive definite. We note, that if lobpcg is used with a preconditioner, one

must make sure that it is invariant on the null S̃ij. Also, unless the component
the solution in the direction of the nullspace is small, the errors will accumulate,
which may eventually result in instability of the code at the Rayleigh-Ritz step,
but only after a large number of steps [32]. In our experience, it was sufficient
to use lobpcg without preconditioner, and also since we need to compute the
eigenvectors only approximately, cf. Sec. 5.7, with only a modest number of
iterations. For the sake of generality, we will continue as this was not the case
and we would need to compute with S̃ij positive definite.

To reduce (5.25) to a problem with the matrix on the right-hand side positive
definite, we use matrices Zi, Zj that generate a superspace of rigid body modes
of the two substructures:

nullSi ⊂ range Zi, nullSj ⊂ range Zj (5.27)
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The matrices Zi and Zj are often available from finite element software, or,
based on the type of the problem, the kernels of local stiffness matrices are
known explicitly, cf., e.g., [11, 26]. Let

Zij =

[
Zi

Zj

]
.

Then
null S̃ij ⊂ range Zij , (5.28)

and because S̃ij is non-negative, it holds that ZT
ijS̃ijZijy = 0 ⇔ Zijy ⊂ null S̃ij .

So, we can find a basis of null S̃ij by computing first the nullspace of a much
smaller symmetric positive semidefinite matrix,

null
(
ZT

ijS̃ijZij

)
= range Kij , (5.29)

and applying the QR decomposition

ZijKij = QijRij , QT
ijQij = I,

which gives
range Qij = null S̃ij .

Consequently,
Πij = I − QijQ

T
ij (5.30)

is the orthogonal projection onto range S̃ij . We will use the following result:

Lemma 32: Let S, T , Π be square matrices of the same size, Π an orthogonal
projection, t 6= 0, and λ 6= 0 scalars, and u a vector. Then

1. It holds that
ΠTΠw = λΠSΠw and w ∈ range Π (5.31)

if and only
ΠTΠw = λ (ΠSΠ + t (I − Π))w. (5.32)

2. If S is symmetric and positive definite on range Π and t > 0, then ΠSΠ+
t (I − Π) is symmetric positive definite.

Proof.

1. Assume that (5.31) holds. Then (I − Π) w = 0, and (5.32) follows. On
the other hand, if (5.32) holds, then (I − Π) w ∈ range Π because t 6= 0
and λ 6= 0, so (I − Π) w = 0, and, consequently, (5.31) holds.

2. Let S be symmetric and positive definite on range Π and v = w + z,
w ∈ rangeΠ, z ∈ null Π. Then

vT (ΠSΠ + t (I − Π)) v = wT ΠSΠw + tzT (I − Π) z

= wT Sw + tzT z > 0,

unless w = z = 0.
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Theorem 33: Let t > 0 and let Πij be defined by (5.30). Then the nonzero
eigenvalues and the eigenvectors of (5.25) are same as those of the following
generalized eigenvalue problem

(I − RijEij)
T

S̃ij (I−RijEij) wij = λij

(
ΠijS̃ijΠij + t (I − Πij)

)
wij . (5.33)

The matrix on the left-hand side of (5.33) is symmetric positive semidefinite
and the matrix on the right-hand side is symmetric positive definite. In partic-
ular, the upper bound ωij on the condition number from (5.24) is the maximal
eigenvalue of (5.33).

Proof. The equivalence of (5.25) and (5.33) follows from Lemma 32 (1). Pos-

itive definiteness of the matrix ΠijS̃ijΠij+t (I − Πij) follows from Lemma 32 (2)

and the assumption that S̃ij is positive definite on range Πij .
If no boundary conditions were applied to subdomain stiffness matrices,

we can adopt more elegant approach. In such case we get equality in equa-
tion (5.28), so that null S̃ij = range Zij , and the projections Πij are simply

Πij = I − ZijZ
T
ij .

We note that similar idea lies behind the Total FETI by Dostál et. al. [11].

Remark 34: The matrices in the generalized eigenvalue problems (5.29) and
(5.33) are dense. If it is more efficient to represent the matrices as dense or to
use an eigensolver that requires only matrix-vector multiplications depends on
the size of the substructures and the dimension of the problem.

5.6 Adaptive selection of constraints

We define, in analogy to (5.3), the subspace W̃ avg
ij ⊂ W̃ c

ij as

W̃ avg
ij =

{
w ∈ W̃ c

ij : DT
ijwij = 0

}
. (5.34)

We note that the space W̃ avg
ij is defined only for the theoretical purposes in

Theorem 35. The definition (5.34) allows us now to guarantee that ωij does not
exceed a given target value τ by adding a minimal number of coarse degrees of
freedom. We formulate an analog to Theorem 27 and also to [47, Theorem 11]:

Theorem 35: Let wij,k be the eigenvectors and λij,k the eigenvalues from (5.25),
without loss of generality ordered as λij,1 ≥ λij,2 ≥ . . . ≥ 0 . Take kij ≥ 0 and
let us define the operator Dij by

dT
ij,ℓ = wT

ijℓ (I − RijEij)
T

S̃ij (I − RijEij) , ℓ = 1, . . . , kij , (5.35)

Dij =
[

dij,1 dij,2 . . . dij,kij

]
. (5.36)

Then ωij = λij,kij+1, and ωij ≥ λij,kij+1 for any other construction of DT
ij

by at most kij rows. In particular, if λij,kij+1 ≤ τ for all pairs of adjacent
substructures {ij} ∈ A, then ω̃ = max{ij}∈A λij,kij+1 ≤ τ .
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Proof. Apply Lemma 26 with V = W̃ c
ij , u = wij , and

d (u, u)

e (u, u)
=

‖(I − RijEij) wij‖2
S̃ij

‖wij‖2
S̃ij

=
wT

ij (I − RijEij)
T

S̃ij (I − RijEij) wij

wT
ijS̃ijwij

.

The orthogonality conditions in (5.19) become

wT
ijℓ (I − RijEij)

T
S̃ij (I − RijEij)︸ ︷︷ ︸

dT
ij,ℓ

wij = 0, ℓ = 1, . . . , kij ,

and Vk becomes W̃ avg
ij .

The additional constraints in D are constructed from the columns of Dij in a
very simple way: all constraints obtained from the solution of local subproblem
corresponding to a pair {ij} ∈ A are extended by zero outside of the subset of
degrees of freedom Sij corresponding to Γij and inserted as new columns in D,
i.e., schematically

D =
[

. . . RT
ijDij,ℓ . . .

]
, ∀ {ij} ∈ A, ℓ = 1, . . . , kij . (5.37)

Note that such construction is much simpler compared to our approach in [47].

Now, Theorem 35 allows us to add constraints that decrease the indicator ωij

in an optimal manner, and the proposed adaptive algorithm follows:

Algorithm 36: To add coarse degrees of freedom to guarantee that ωij ≤ τ ,
for a given a target value τ :

1. Compute the eigenvalues and eigenvectors of (5.33), starting from the
largest eigenvalues, until the first ℓij is found such that λij,ℓij+1 ≤ τ .

2. Use eigenvectors from above to obtain local constraints dij,ℓ by (5.35).

3. Add in the matrix D the additional columns obtained from dij,ℓ by (5.37).

Remark 37: We have confirmed that after the new coarse degrees of freedom
are added, the values of new indicators ωij are equal to the eigenvalues λij,ℓij+1.

So far, we have described the construction of the operator D used in the
definition of the BDDC preconditioner in Section 5.1. As the starting point, we
have used the right-hand side of equation (5.17), and exclusively the operators
from the definition of the BDDC method. We note that, as a direct consequence
of Theorem 9, we could have equivalently used the left-hand side of (5.17) and
the operators from the definition of the FETI-DP method, as in our previous
work [47]. So, our current work is in a sense “dual” to [47]. To be complete
at this point, it remains to construct the augmentation of the dual constraint
matrix QD from the augmentation of D. In particular, we will show that the
additional entries in QD can be obtained by “tearing” the matrix D into two
parts and using one part, simply as it is, to define the additional columns in QD.
Comparing the two definitions of the space W̃ avg by (5.3) and (5.4), we see that

DT = QT
DB.
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The matrix B enforces continuity across substructure interface and contains in
each row exactly one +1 and one −1 entry; each row of B thus constraints one
degree of freedom shared by two substructures at a time. The key observations
are: (1) each degree of freedom in the local problem belongs to at most two
substructures at a time and (2) each constraint constructed as in (5.35) using a
local eigenvector w, can be written (dropping for simplicity all subscripts) as

dT = wT (I − RE)
T

S̃ (I − RE) ⇒ d = (I − RE)
T

S̃ [w−w] , (5.38)

where w = REw is the average of vector w across interface. We immediately
see, that the entries in d corresponding to the degrees of freedom present in only
one substructure are zero. The entry in d corresponding to a degree of freedom
on the interface Γij can be computed, for a single degree of freedom x with
entries xi, xj in vector w, and E being an arithmetic average x = (xi + xj) /2,
as

xi − x =
xi − xj

2
=, x2 − x =

−xi + xj

2
= −xi − xj

2
,

so the entries in d corresponding to x have the same abs. value but opposite sign.

The implementation of both preconditioners can follow Sections 5.1-5.3.
We also remark, that an interesting approach to implementation of the BDDC
preconditioner, based on the original formulation of the method [9, 44], capable
of handling general averages, has been described by Š́ıstek et al. [61].

5.7 Numerical results

We have successfully tested the proposed adaptive algorithm on several exam-
ples of linear elasticity in two and three spatial dimensions. The averaging
operator was constructed with weights proportional to the diagonal entries of
the substructure matrices before elimination of interiors. The computations
were done in Matlab. The generalized eigenproblems on pairs of substructures
were solved using the function eig with Choleski decomposition, and we have
also successfully tested Matlab version of the lobpcg algorithm by Knyazev [31].
Both methods worked despite of singularities of local stiffness matrices, cf. Re-
mark 31, and the technique described in Theorem 33 was in fact not necessary.

5.7.1 Two-dimensional linear elasticity

The method was tested on plane elasticity, discretized by Lagrange bilinear
elements on a rectangular mesh decomposed into 16 substructures, with one
edge between the substructures jagged (Fig. 5.3). The initial set of coarse
degrees of freedom consisted of all corner degrees of freedom. The set A of
all pairs of adjacent substructures to compute the condition number indicator ω̃
by (5.24) was chosen as the set of all pairs of substructures with a common
edge. The subsets Sij to define new coarse degrees of freedom were taken as
edges (excluding corners).

In Table 5.1, we show that the eigenvalues λij,k associated with edges be-
tween substructures clearly distinguish between the problematic edge and the
others. Table 5.2 demonstrates that the addition of the coarse degrees of free-
dom created from the associated eigenvectors according to Theorem 35 decreases
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Fig. 5.3: Mesh with H/h = 16, 4 × 4 substructures, and one jagged edge between
substructures 2 and 6. Zero displacement is imposed on the left edge. For
compressible elasticity (Tables 5.1 and 5.2) and tolerance τ = 10, 7 coarse
degrees of freedom at the jagged edge and 1 coarse degree of freedom at an
adjacent edge are added automatically.

i j λij,1 λij,2 λij,3 λij,4 λij,5 λij,6 λij,7 λij,8

1 2 3.7 2.3 1.4 1.3 1.1 1.1 1.1 1.1
1 5 5.8 3.2 2.3 1.4 1.2 1.1 1.1 1.1
2 3 6.0 2.5 1.7 1.3 1.2 1.1 1. 1.1
2 6 21.7 19.5 17.8 14.9 14.5 11.7 11.2 9.7
3 4 3.3 2.3 1.4 1.3 1.1 1.1 1.1 1.1
3 7 7.1 5.1 3.2 1.8 1.4 1.3 1.2 1.1
4 8 5.9 3.4 2.6 1.4 1.2 1.1 1.1 1.1
5 6 12.0 4.9 4.4 1.8 1.6 1.3 1.3 1.2
5 9 5.9 3.4 2.6 1.4 1.3 1.3 1.1 1.1
6 7 8.7 4.9 3.9 1.8 1.5 1.3 1.2 1.1
6 10 7.3 4.8 3.4 1.8 1.4 1.3 1.2 1.1

Tab. 5.1: Several largest eigenvalues λij,k for several edges for the elasticity problem
from Fig. 5.3 with H/h = 16. (i, j) = (2, 6) is the jagged edge.
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H/h Ndof τ Nc ω̃ κ it
4 578 42 10.3 5.6 19

10 43 5.2 4.0 18
3 44 3.0 4.0 18
2 58 2.0 2.8 15

16 8450 42 22 20 37
10 50 8.7 9.9 29
3 77 3.0 4.6 22
2 112 2.0 2.6 15

64 132098 42 87 40 55
10 89 9.8 9.9 36
3 151 3.0 4.7 22
2 174 2.0 2.9 17

Tab. 5.2: BDDC results for plane elasticity on a square with one jagged edge. The
Lamé coefficients are λ = 1 and µ = 2. H/h is the number of elements
per substructure in one direction, Ndof the number of degrees of freedom
in the problem, τ the condition number tolerance as in Theorem 35, Nc
the number of coarse degrees of freedom, ω̃ the a-priori condition number
indicator from (5.24), κ the approximate condition number computed from
the Lanczos sequence in conjugate gradients, and it the number of BDDC
iterations for relative residual tolerance 10−8.

H/h Ndof τ Nc ω̃ κ it
4 578 42 284.7 208.4 65

10 68 8.2 8.6 28
5 89 5.0 4.6 22
3 114 2.9 2.6 16

16 8450 42 1012.0 1010.0 157
10 87 9.9 9.6 29
5 94 4.9 4.4 22
3 126 3.0 2.9 19

64 132098 42 6909.8 1470.9 15
10 183 9.8 9.7 37
5 213 5.0 4.9 26
3 274 3.0 3.0 20

Tab. 5.3: BDDC results for almost incompressible plane elasticity on a square with one
jagged edge. The Lamé coefficients are λ = 1000 and µ = 2. The headings
are same as in Table 5.2.
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the condition number of the preconditioned system to approximately the pre-
scribed value τ . Tables 5.3 and 5.4 contain the results of the same test for almost
incompressible elasticity; here the iterations converge poorly or not at all with-
out the additional coarse degrees of freedom, but adding the coarse degrees of
freedom again decreases the condition number of the preconditioned system to
approximately the prescribed value τ , and, in particular, the convergence of
the iterations is recovered. This incompressible elasticity problem is particu-
larly hard for an iterative method because standard bilinear elements were used
instead of stable elements or reduced integration. The number of the added
coarse degrees of freedom grows as the material approaches incompressibility.
Nevertheless, we do not advocate the present method or the elements used for
the solution of almost incompressible problems. The purpose of this test was
to show that the method can identify the problematic part of the problem and
deal with it. The study of the adaptive FETI-DP and BDDC preconditioners
for nearly incompressible elasticity [10], or Stokes problem [39, 40], would be of
independent interest.

We have also simulated the effect of approximate eigensolvers. The eigenvec-
tor wij from (5.33) was replaced by w̃ij = wij + εr, where r is a random vector
with independent normally distributed entries, and ε was determined from the
condition |Yijεr| = 0.5 |Yijwij |, where |·| is the Euclidean norm. The eigenval-
ues λij were replaced by the Rayleigh-Ritz values w̃T

ijXijw̃
T
ij/w̃T

ijYijw̃
T
ij . The

approximate eigenvectors and eigenvalues were then used in all computations
instead of the exact ones. The results were essentially identical within display
accuracy to those in Table 5.3.

5.7.2 Three-dimensional linear elasticity

The method was also tested on a realistic three-dimensional problem of linear
elasticity, a nozzle box of a ŠKODA steam turbine 28 MW for the electric power
plant Nováky, Slovakia, loaded by steam pressure∗. The body of the nozzle box
was discretized using isoparametric quadratic finite elements with 40 254 degrees
of freedom and decomposed into 16 substructures, see Figs. 5.4-5.5. The initial
set of coarse degrees of freedom consisted of all corner degrees of freedom and
three arithmetic averages over each edge (one for each spatial dimension). The
set A of all pairs of adjacent substructures to compute the condition number
indicator ω̃ by (5.24) was chosen as the set of all pairs of substructures with
a common face. The subsets Sij to define new coarse degrees of freedom were
taken as faces (i.e., open sets excluding edges and corners). We note, that in
fact the eigenvectors were computed over the whole set of degrees of freedom
shared by the pairs of adjacent substructures, i.e., over faces and shared edges,
and restricted on the faces. We have used this approach for the following rea-
sons: (1) initial set of constraints is sufficient to guarantee the polylogarithmic
condition number bound (5.2) cf., e.g., [60, Section 6.4], (2) corners and faces
alone are not suitable for elasticity in 3D, cf. [44, Remark 4], (3) if we use
the generalized change of variables, because edges are typically shared by more
than one pair of adjacent substructures, there might not be in general enough
degrees of freedom on the edges to prescribe the averages in. We note, that the

∗ Courtesy of Jaroslav Novotný, Institute of Thermomechanics, Czech Academy of Sciences,

and Jakub Š́ıstek, Faculty of Mechanical Engineering, Czech Technical University in Prague.
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restriction of eigenvectors on the faces might violate the requirement of linear
independence of constraints, discussed in Section 5.3. The generalized change
of variables using QR with column pivoting should be able to resolve such sit-
uations. Moreover, the proposed adaptive algorithm seems to be robust, and
in our examples we have observed essentially the same performance (number of
iterations and condition number estimate) of the two implementations of the
BDDC preconditioner: with and without the change of variables.

Table 5.5 shows the convergence of the BDDC algorithm using standard
arithmetic averages over edges and faces. Note, that the number of corner coarse
degrees of freedom was not sufficient to guarantee the convergence. Comparing
Tables 5.5 and 5.6, we actually see that when we add additional constraints the
improvement in number of iterations and condition number is relatively small.
This indicates that for this problem three arithmetic averages per face already
work well enough as there are no interfaces that would require extra work - the
quality of the decomposition is uniform, as also seen in Figs. 5.4-5.5. However,
we can still improve the condition number as well as the number by iterations.
First, we have tried to add three eigenvectors on each face instead of simple
arithmetic averages - comparing first row in Table 5.6 with the last row in Ta-
ble 5.5 we see, that the eigenvectors obtained from the local eigenproblems work
better than just arithmetic averages. Our explanation is that such constraints
might approximate better the direction of global eigenvectors corresponding to
the extreme eigenvalues. The remaining rows in the Table 5.6 correspond to the
different thresholds τ so that all eigenvectors of the local problems correspond-
ing to eigenvalues greater or equal to τ are added as a new constraints restricted
to corresponding faces. We see that such method leads to a redistribution of
number of prescribed averages on different faces and that, e.g., with τ = 20
the total number of prescribed constraints is still lower compared to arithmetic
averages, but the number of iterations is improved by almost 25% and the condi-
tion number estimate κ is improved by more than 50%. This results, also with
regard to the results of the numerical experiments in the two spatial dimen-
sions, lead to a conjecture that we would be able to demonstrate robustness of
the presented algorithm in the three spatial dimensions also on problems where
properties of the mesh decomposition would be much more unfavorable.
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H/h Ndof τ Nc ω̃ κ it
4 578 42 2743.9 1875.04 158

10 118 4.6 3.5 17
5 118 4.6 3.5 17
3 120 2.9 2.7 16

16 8450 42 9483.5 9389.9 113
10 97 9.6 10.1 33
5 120 5.0 5.0 24
3 280 3.0 2.9 18

64 132098 42 29680.6 NA ∞
10 218 9.8 9.6 40
5 269 4.9 4.2 25
3 313 3.0 2.9 18

Tab. 5.4: BDDC results for almost incompressible plane elasticity on a square with
one jagged edge. The Lamé coefficients are λ = 10000 and µ = 2. The
headings are same as in Table 5.2.

constraints nglobs Nc it κ
corners 37 111 NA NA

corners+edges 56 168 106 1021.9
corners+faces 69 207 53 49.8

corners+edges+faces 88 264 47 40.3

Tab. 5.5: BDDC results for the turbine nozzle box problem, nonadaptive approach
with corner constraints and arithmetic averages over edges/faces, nglob is
the number of such constrained entities and each one of them generates three
constraints (one for each spatial dimension), Nc is the total number of coarse
degrees of freedom, it is the number of BDDC iterations for relative residual
tolerance 10−8 and κ is the approximate condition number computed from
the Lanczos sequence in conjugate gradients.

τ ω̃ Nc it κ
- 69.5 264 40 26.6

50 48.9 209 50 44.9
40 39.0 216 45 29.6
20 19.6 247 36 17.3
10 10.0 311 28 12.7
5 5.0 434 22 9.2

Tab. 5.6: BDDC results for the turbine nozzle box problem using the adaptive ap-
proach. First row corresponds to the case when three eigenvectors are added
on each face. Remaining rows correspond to varying τ as the condition num-
ber tolerance as in Theorem 35, ω̃ the a-priori condition number indicator
from (5.24), The remaining headings are same as in Table 5.5.
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Fig. 5.4: Domain decomposition for the turbine nozzle box problem.
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Fig. 5.5: Domain decomposition for the turbine nozzle box problem.



6. CONCLUSION

Theoretical analysis of the preconditioners used in iterative substructuring is
very important. It helps us with better understanding of these methods, to find
possible simplifications of their formulations, to establish connections between
different versions of algorithms or with tools improving their performance, esp.
in presence of adverse circumstances. We have addressed all of these aspects.
Most results have been already published in journal articles [47, 48], confer-
ence proceedings [46], and a technical report [58] (submitted for publication).
The main results of this thesis can be summarized as follows:

• Identification of a minimalist set of assumptions necessary to formulate the
most popular methods from FETI and BDD families in Section 2.2, based
on our recent work on BDDC and FETI-DP under such assumptions [48].

• Derivation of the following methods: FETI-1, FETI-DP, their primal vari-
ants denoted respectively as P-FETI-1 and P-FETI-DP (derivation has
been omitted by Fragakis and Papadrakakis in [21]) in Section 3.1, and of
BDD and BDDC in Section 3.2 – all under minimalist assumptions [48, 58].

• A proof that the P-FETI-DP and BDDC preconditioners are the same,
and also that the preconditioner by Cros [8] can be interpreted as either
of them [48, 58], formulated here in Section 3.2.2 as Theorems 5 and 6.

• Derivation of the condition number bound for BDDC and FETI-DP, and
a proof showing that the spectra (except possibly of eigenvalues equal to
one) of these two preconditioned operators are the same [48], formulated
here in Section 4.1 as Theorems 9 and 12, respectively.

• Translation of the ideas of Fragakis and Papadrakakis [20, 21] into the
framework usual in the domain decomposition community and, in partic-
ular, showing in Section 4.2 by Theorem 15 that a particular version of
P-FETI-1 gives the same algorithm as BDD, and by Theorem 19 that the
spectra (except eigenvalues equal to zero and one) of the preconditioned
operators of BDD and this version of FETI-1 are the same [58].

• Formulation of the BDDC preconditioner using a projection on a subspace,
and a generalization of the change of variables by Li and Widlund [41].
This work appears here for the first time in Sections 5.1-5.3. It is based
on a joint research with Jakub Š́ıstek from the Faculty of Mechanical
Engineering, Czech Technical University in Prague.

• An adaptive algorithm that aims heuristically to achieve a predetermined
convergence rate of FETI-DP and BDDC by adding constraints using the
solutions of eigenproblems associated with pairs of adjacent substructures.
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The method is based on our previous work in two dimensions [46, 47],
however the formulation presented here in Chapter 5 and, in particular,
in Sections 5.4-5.6 appears to be new. It uses the formulation of the
preconditioners on a subspace and the generalized change of variables.

• The adaptive algorithm has been here for the first time extended into
three spatial dimensions. The description of the 3D adaptive algorithm is
given in Section 5.7.2. Also, for the solution of the generalized eigenvalue
problems that the adaptive algorithm needs to solve, we have successfully
tested the lobpcg algorithm developed by Knyazev [31], which is incorpo-
rated in the HYPRE and also available as an external block to the PETSc.
The use of lobpcg allows to increase substantially the efficiency of the
method, because the eigenvalue problems need to be solved only approxi-
mately, and the fact that they are singular is not an issue any more. We
have used only function eig built in Matlab in our previous work [46, 47].

• Numerical examples in Section 5.7 illustrate the effectiveness of the pro-
posed adaptive method and, in particular, that the algorithm successfully
achieves a predetermined convergence rate of the FETI-DP and BDDC
methods by adding constraints using the solutions of eigenproblems as-
sociated with pairs of adjacent substructures. The results in two spatial
dimensions (Section 5.7.1) are the same as the results published in [47],
and the results in three spatial dimensions (Section 5.7.2) are new.

Future developments include an efficient parallel implementation of the adap-
tive method, and further tests on industrial problems. An extensions of the
adaptive approach to the case of Multilevel BDDC [49] would be also impor-
tant to make possible the solution of problems that are both very large and
numerically difficult.
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