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Partial Differential Equations with Stochastic Coefficients

Examples:

Diffusion equations: −∇ · (a(xxx , ξ)∇u) = f

Convection-diffusion equations: ν∇ · (a(xxx , ξ)∇u) + ~w · ∇u = f

Posed on D ⊂ R
d with suitable boundary conditions
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Partial Differential Equations with Stochastic Coefficients

Examples:

Diffusion equations: −∇ · (a(xxx , ξ)∇u) = f

Convection-diffusion equations: ν∇ · (a(xxx , ξ)∇u) + ~w · ∇u = f

Posed on D ⊂ R
d with suitable boundary conditions

Randomness:

An inherent irregularity in the phenomenon being observed e.g., the
kinetic theory of gas
The impossibility of an exhaustive deterministic description e.g.,
groundwater flow through a heterogeneous porous media
a(xxx , ξ) is a random process/ random field parameterized by a set of
random variables ξ = [ξ1, . . . , ξM ]T

The numerical solution u(xxx , ξ) can be described by ξ

Goal:

Efficient computation of the numerical solution u(xxx , ξ) and solution
statistics (e.g., E[u], Var(u)) using linear algebraic algorithms
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Problem definition

Linear systems:

Large linear systems arise from discretizations of stochastic PDEs:

Au = f

High-dimensional problem: a large M in ξ = [ξ1, . . . , ξM ]T

Linear systems with a special structure,

A =
∑

i=1

Gi ⊗ Ki

where ⊗ is the Kronecker-product:

G ⊗ K =















g11K · · · g1nξK

...
. . .

...

gnξ1K · · · gnξnξK















∈ R
nξnx×nξnx ,

G ∈ R
nξ×nξ and K ∈ R

nx×nx
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u =

κu
∑

k=1

yk ⊗ zk , yk ∈ R
nξ and zk ∈ R
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where κu is the rank of u
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Low-rank solution of linear systems:

Solutions in the Kronecker-product structure:

u =

κu
∑

k=1

yk ⊗ zk , yk ∈ R
nξ and zk ∈ R

nx

where κu is the rank of u

Low-rank approximations to solutions:

u ≈ ũ =

κũ
∑

k=1

ỹk ⊗ z̃k , ỹk ∈ R
nξ and z̃k ∈ R

nx

where κũ ≪ κu s.t. ‖Aũ − f ‖2/‖f ‖2 < ǫ
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Karhunen-Loéve expansion

Random field a(xxx , ξ): −∇ · (a(xxx , ξ)∇u(xxx , ξ)) = f

a(xxx , ξ) has affine dependence on {ξi}
M
i=1,

a(xxx , ξ) ≈ a(M)(xxx , ξ) = a0(xxx) +

M
∑

i=1

ai (xxx)ξi
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Karhunen-Loéve expansion

Random field a(xxx , ξ): −∇ · (a(xxx , ξ)∇u(xxx , ξ)) = f

a(xxx , ξ) has affine dependence on {ξi}
M
i=1,

a(xxx , ξ) ≈ a(M)(xxx , ξ) = a0(xxx) +

M
∑

i=1

ai (xxx)ξi

In this study, a truncated Karhunen-Loéve expansion is considered,

a(xxx , ξ) ≈ a(M)(xxx , ξ) = µ+ σ

M
∑

i=1

√

λiai(xxx)ξi

(µ, σ2) are mean and variance of a(xxx , ξ)

{(λi , ai)}
M
i=1 are eigenvalue and eigenfunction pairs of an integral

operator of covariance function, C (xxx , yyy), xxx , yyy ∈ D, of a(xxx , ξ)

{ξi}
M
i=1 are uncorrelated random variables (additional assumption:

i.i.d.)
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Eigenpairs {(λi , ai )}
M
i=1 can be obtained by solving:

∫

D

C (xxx , yyy)ai (yyy)dyyy = λiai(xxx), i = 1 . . . , M

The series converges in L2 sense:

lim
M→∞

〈

(

a(xxx , ξ)− a(M)(xxx , ξ)
)2
〉
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Figure: Mean function and example eigenfunctions
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Generalized polynomial chaos expansion:

u(xxx , ξ) ≈

nξ
∑
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Generalized polynomial chaos expansion:

u(xxx , ξ) ≈

nξ
∑

s=1

us(xxx)ψs(ξ)

Orthogonality basis:
∫

Γ ψi (ξ)ψj (ξ)ρ(ξ)dξ = δij
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Solution u(xxx , ξ): −∇ · (a(xxx , ξ)∇u(xxx , ξ)) = f

Generalized polynomial chaos expansion:

u(xxx , ξ) ≈

nξ
∑

s=1

us(xxx)ψs(ξ)

Orthogonality basis:
∫

Γ ψi (ξ)ψj (ξ)ρ(ξ)dξ = δij

Product form: ψs(ξ) = ψα(s)(ξ) =
∏M

i=1 παi (s)(ξi ),
α(s) = (α1(s), . . . , αM(s))
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Solution u(xxx , ξ): −∇ · (a(xxx , ξ)∇u(xxx , ξ)) = f

Generalized polynomial chaos expansion:

u(xxx , ξ) ≈

nξ
∑

s=1

us(xxx)ψs(ξ)

Orthogonality basis:
∫

Γ ψi (ξ)ψj (ξ)ρ(ξ)dξ = δij

Product form: ψs(ξ) = ψα(s)(ξ) =
∏M

i=1 παi (s)(ξi ),
α(s) = (α1(s), . . . , αM(s))

Total degree space:

ΛM, p = {α(s) ∈ N
M
0 : ‖α(s)‖1 ≤ p},

where ‖α(s)‖1 =
∑M

k=1 αk(s) and nξ = dim(ΛM, p) = (M+p)!
M!p! (DoFs

of stochastic domain)
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If {ξi} are uniform random variables,
{πi} are Legendre polynomials.

π0(ξi ) = 1,

π1(ξi ) = ξi ,

π2(ξi ) =
1
2 (3ξ

2
i − 1),

π3(ξi ) =
1
2 (5ξ

3
i − 3ξi )

π4(ξi ) =
1
8 (35ξ

4
i − 30ξ2i + 3)

x
-1.5 -1 -0.5 0 0.5 1 1.5

π
n
(x

)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Legendre polynomials of degrees 1 through 5

0
1
2
3
4

Kookjin Lee Prelim exam



Introduction
Model problem

Preliminary work
Proposed work

KL expansion
Stochastic Galerkin method
Tensor format

If {ξi} are uniform random variables,
{πi} are Legendre polynomials.

π0(ξi ) = 1,

π1(ξi ) = ξi ,

π2(ξi ) =
1
2 (3ξ

2
i − 1),

π3(ξi ) =
1
2 (5ξ

3
i − 3ξi )

π4(ξi ) =
1
8 (35ξ

4
i − 30ξ2i + 3)

x
-1.5 -1 -0.5 0 0.5 1 1.5

π
n
(x

)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Legendre polynomials of degrees 1 through 5

0
1
2
3
4

Λ2, 3 = {(α1(s), α2(s)}
10
s=1

= {(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (0, 3)}



Introduction
Model problem

Preliminary work
Proposed work

KL expansion
Stochastic Galerkin method
Tensor format

If {ξi} are uniform random variables,
{πi} are Legendre polynomials.

π0(ξi ) = 1,

π1(ξi ) = ξi ,

π2(ξi ) =
1
2 (3ξ

2
i − 1),

π3(ξi ) =
1
2 (5ξ

3
i − 3ξi )

π4(ξi ) =
1
8 (35ξ

4
i − 30ξ2i + 3)

x
-1.5 -1 -0.5 0 0.5 1 1.5

π
n
(x

)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Legendre polynomials of degrees 1 through 5
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Λ2, 3 = {(α1(s), α2(s)}
10
s=1

= {(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (0, 3)}

ψ1 = π0(ξ1)π0(ξ2), ψ2 = π1(ξ1)π0(ξ2), ψ3 = π2(ξ1)π0(ξ2), . . .

and nξ = 10
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Solution: u(xxx , ξ) ≈
∑nξ

s=1 us(xxx)ψs(ξ)

Finite Element Methods:

us(xxx) ≈

nx
∑

r=1

ursφr (xxx)

using piecewise linear “hat functions”
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The Stochastic Galerkin Method

Discrete solution:

Discretization in physical space (Finite Element Methods): basis
{φr}

nx
r=1, piecewise linear “hat functions”

Discretization in stochastic space (Polynomial Chaos Expansion):
basis {ψs}

nξ
s=1, M-variate polynomials in ξ of total degree p
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The Stochastic Galerkin Method

Discrete solution:

Discretization in physical space (Finite Element Methods): basis
{φr}

nx
r=1, piecewise linear “hat functions”

Discretization in stochastic space (Polynomial Chaos Expansion):
basis {ψs}

nξ
s=1, M-variate polynomials in ξ of total degree p

u(sg)(xxx , ξ) =

nξ
∑

s=1

nx
∑

r=1

ursφr (xxx)ψs(ξ)

The weak formulation leads to a large coupled system order of nxnξ

Au = f

where u = [u11 . . . unx1 u12 . . . unx2 . . . u1nξ . . . unxnξ ]
T
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The Stochastic Galerkin Method

Strong formulation: −∇ · (a(xxx , ξ)∇u(xxx , ξ)) = f

(Deterministic) weak formulation: find u ∈ H1
E (D) s.t.

∫

D

a∇u∇v dxxx =

∫

D

fv dxxx, ∀v ∈ H1
0 (D)
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The Stochastic Galerkin Method

Strong formulation: −∇ · (a(xxx , ξ)∇u(xxx , ξ)) = f

(Deterministic) weak formulation: find u ∈ H1
E (D) s.t.

∫

D

a∇u∇v dxxx =

∫

D

fv dxxx, ∀v ∈ H1
0 (D)

Stochastic weak formulation: find u ∈ H1
E (D)⊗ L2(Γ) s.t.

∫

Γ

∫

D

a∇u∇v dxxxρ(ξ)dξ =

∫

Γ

∫

D

fv dxxxρ(ξ)dξ, ∀v ∈ H1
0 (D) ⊗ L2(Γ)

where Γ =
∏

Γi and Γi = ξi(Ω)
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LHS:

Substituting the truncated KL expansion a(xxx , ξ) = a0(xxx)+
∑M

i=1 ai (xxx)ξi :

∫

Γ

∫

D

(

a0(xxx) +

M
∑

i=1

ai(xxx)ξi

)

∇u(sg)(xxx , ξ)∇v dxxxρ(ξ)dξ

Substituting u(sg) and v :

∫

Γ

∫

D

(

a0(xxx) +

M
∑

i=1

ai (xxx)ξi

)

∇

(

nξ
∑

s=1

nx
∑

r=1

ursφr (xxx)ψs(ξ)

)

∇φi (xxx)ψj(ξ) dxxxρ(ξ)dξ,

i = 1, . . . , nx , j = 1, . . . , nξ

RHS:

Substituting v :

∫

Γ

∫

D

f φi (xxx)ψj(ξ) dxxxρ(ξ)dξ, i = 1, . . . , nx , j = 1, . . . , nξ
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Stochastic Galerkin systems in the Kronecker-product structure:

Au = f

A = G0 ⊗ K0 +

M
∑

l=1

Gl ⊗ Kl , f = g0 ⊗ f0

“Stochastic” matrices:

[G0]ij = 〈ψi (ξ)ψj (ξ)〉ρ , [Gl ]ij = 〈ξl ψi(ξ)ψj (ξ)〉ρ , l = 1, . . . , M

Weighted stiffness matrices:

[K0]ij =
∫

D
a0∇φi (xxx)∇φj (xxx)dxxx ,

[Kl ]ij =
∫

D
al(xxx)∇φi (xxx)∇φj (xxx)dxxx , l = 1, . . . , M

Forcing term:

[f0]i =
∫

D
f φi (xxx)dxxx , [g0]i = 〈ψi(ξ)〉ρ
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Nonzero structures of matrices:

nz = 625
0 10 20 30 40 50 60 70 80
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Stiffness matrices {Ki}
M
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Galerkin matrix A (each block has dimension nx × nx)
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Solutions in tensor format:

Au = f ,

u =

κu
∑

k=1

zk ⊗ yk , zk ∈ R
nξ and yk ∈ R

nx ,

or, equivalently,

U =

κu
∑

k=1

ykz
T
k = Yκu

ZT
κu

where
Yκu

= [y1, . . . , yκu
] ∈ R

nx×κu , Zκu
= [z1, . . . , zκu

] ∈ R
nξ×κu

Isomorphism between R
nx×nξ and R

nxnξ defined by two operators:
u = vec(U) and U = mat(u)
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







































u11
...

unx1
u12
...

unx2
...

u1nξ
...

unxnξ









































∈ R
nxnξ ⇔















u11 u12 · · · u1nξ

...
...

...

unx1 unx2 · · · unxnξ















∈ R
nx×nξ

=













| | |
y1 y2 · · · yκu

| | |























− zT1 −
− zT2 −

...
− zTκu

−










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Linear systems in tensor format: Au = f

(

M
∑

l=0

Gl ⊗ Kl

)(

κu
∑

k=1

zk ⊗ yk

)

= g0 ⊗ f0
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Linear systems in tensor format: Au = f

(

M
∑

l=0
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Linear systems in tensor format: Au = f

(

M
∑

l=0

Gl ⊗ Kl

)(
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∑
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zk ⊗ yk

)

= g0 ⊗ f0
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Matricizing

M
∑

l=0

κu
∑

k=1

(Klyk ) (Glzk)
T =

M
∑

l=0

κu
∑

k=1

Klykz
T
k GT
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M
∑

l=0

KlUG
T
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M
∑

l=0

(KlYκu
) (GlZκu
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= f0g

T
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Stochastic Galerkin system:

Exploiting the properties of the Kronecker product structure:

Au =

(

M
∑

l=0

Gl ⊗ Kl

)(

κu
∑

k=1

zk ⊗ yk

)

=

M
∑

l=0

κu
∑

k=1

(Glzk )⊗ (Klyk)

Operation counts of matrix operations are additive
O(nnz(G) + nnz(K )) instead of O(nnz(G) × nnz(K ))

This motivates the use of Krylov subspace methods in tensor format
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Basic operations in tensor notation

Two essential operations for Krylov subspace methods: matrix-vector
product and linear combination

MVP: κu 7→ (M + 1)κu

Au =
M
∑

l=0

κu
∑

k=1

(Glzk)⊗ (Klyk ) =

(M+1)κu
∑

i=1

z̃i ⊗ ỹi

Addition/subtraction: (κu, κv ) 7→ (κu + κv )

u + v =

κu
∑

i=1

zi ⊗ yi +

κv
∑

j=1

ẑj ⊗ ŷj =

κu+κv
∑

i=1

zi ⊗ yi

where yi+κu
= ŷi and zi+κu

= ẑi , i = 1, . . . , κv

Two of the fundamental operations used in Krylov subspace
methods tend to increase the rank of the quantities produced
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u ⇒ ũ

Rank : κu ⇒ κũ

Y :













| | |
y1 y2 · · · yκu

| | |













⇒













| | | |
ỹ1 ỹ2 · · · ỹκu

· · · ỹκũ

| | | |













Z :





| | |
z1 z2 · · · zκu

| | |



 ⇒





| | | |
z̃1 z̃2 · · · z̃κu

· · · z̃κũ

| | | |




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The GMRES method

The generalized minimum residual method

Compute an approximate solution um ∈ u0 +Km(A, v1) on mth Krylov

subspace, Km = span{v1, Av1, . . . , A
m−1v1}

u0 is an initial vector with residual r0 = f − Au0, v1 = r0/‖r0‖2

Algorithm 1 GMRES method without restarting

set the initial solution u0
r0 := f − Au0
ṽ1 := r0
v1 := ṽ1/‖ṽ1‖
for j = 1, . . . , m do

wj := Avj
solve (V T

j Vj)α = V T
j wj

ṽj+1 := wj −
∑j

i=1 αivi
vj+1 := ṽj+1/‖ṽj+1‖

end for

solve (WT
m AVm)y = WT

m r0 (Wm = AVm)
u1 := u0 + Vmy
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Low-rank projection method

Goal: compute a low-rank solution of rank κ satisfying
‖f − Aũ‖2/‖f ‖2 < ǫ
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Low-rank projection method

Goal: compute a low-rank solution of rank κ satisfying
‖f − Aũ‖2/‖f ‖2 < ǫ (and maintain rank of all vectors to be κ)
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Low-rank projection method

Goal: compute a low-rank solution of rank κ satisfying
‖f − Aũ‖2/‖f ‖2 < ǫ (and maintain rank of all vectors to be κ)

1 Construct a new basis vector wj = Avj
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Low-rank projection method

Goal: compute a low-rank solution of rank κ satisfying
‖f − Aũ‖2/‖f ‖2 < ǫ (and maintain rank of all vectors to be κ)

1 Construct a new basis vector wj = Avj
2 Orthogonalize wj with respect to the previously generated basis

vectors {vi}
j
i=1 (i.e., ŵj = wj −

∑j

i=1 αivi where V T
j Vjα = V T

j wj)
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Low-rank projection method

Goal: compute a low-rank solution of rank κ satisfying
‖f − Aũ‖2/‖f ‖2 < ǫ (and maintain rank of all vectors to be κ)

1 Construct a new basis vector wj = Avj
2 Orthogonalize wj with respect to the previously generated basis

vectors {vi}
j
i=1 (i.e., ŵj = wj −

∑j

i=1 αivi where V T
j Vjα = V T

j wj)

3 Truncate the new vector ṽj+1 = Tκ(ŵj) and orthonormalize
vj+1 = ṽj+1/‖ṽj+1‖2
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Low-rank projection method

Goal: compute a low-rank solution of rank κ satisfying
‖f − Aũ‖2/‖f ‖2 < ǫ (and maintain rank of all vectors to be κ)

1 Construct a new basis vector wj = Avj
2 Orthogonalize wj with respect to the previously generated basis

vectors {vi}
j
i=1 (i.e., ŵj = wj −

∑j

i=1 αivi where V T
j Vjα = V T

j wj)

3 Truncate the new vector ṽj+1 = Tκ(ŵj) and orthonormalize
vj+1 = ṽj+1/‖ṽj+1‖2

4 Compute the iterate (ũ1 = ũ0 + Vmβ) by projecting the residual
r0 = b − Au0 onto the subspace Wm = span{w1, . . . , wm}
(WT

m AVm)β = WT
m r0
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Low-rank projection method

Goal: compute a low-rank solution of rank κ satisfying
‖f − Aũ‖2/‖f ‖2 < ǫ (and maintain rank of all vectors to be κ)

1 Construct a new basis vector wj = Avj
2 Orthogonalize wj with respect to the previously generated basis

vectors {vi}
j
i=1 (i.e., ŵj = wj −

∑j

i=1 αivi where V T
j Vjα = V T

j wj)

3 Truncate the new vector ṽj+1 = Tκ(ŵj) and orthonormalize
vj+1 = ṽj+1/‖ṽj+1‖2

4 Compute the iterate (ũ1 = ũ0 + Vmβ) by projecting the residual
r0 = b − Au0 onto the subspace Wm = span{w1, . . . , wm}
(WT

m AVm)β = WT
m r0

Truncation operator Tκ compresses a tensor of higher rank into one
of a desired rank κ

Due to truncation, Vm = span{v1, . . . , vm} is not a Krylov subspace

If κ is the full rank, the algorithm is the restarted GMRES method

Kookjin Lee Prelim exam



Introduction
Model problem

Preliminary work
Proposed work

Low-rank projection method in tensor format
Truncation methods
Numerical experiments

Algorithm 2 Restarted low-rank projection method in tensor format

1: set the initial solution ũ0
2: for k = 0, 1, . . . do
3: rk := f − Aũk
4: if ‖rk‖/‖f ‖ < ǫ then
5: return ũk
6: end if

7: ṽ1 := Tκ(rk )
8: v1 := ṽ1/‖ṽ1‖
9: for j = 1, . . . , m do

10: wj := Avj
11: solve (V T

j Vj)α = V T
j wj

12: ṽj+1 := Tκ

(

wj −
∑j

i=1 αivi

)

13: vj+1 := ṽj+1/‖ṽj+1‖
14: end for

15: solve (WT
m AVm)β = WT

m rk
16: ũk+1 := Tκ(ũk + Vmβ)
17: end for
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Truncation of a tensor

Truncation operator:

Tκ : κ′ 7→ κ

where κ≪ κ′
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Truncation of a tensor

Truncation operator:

Tκ : κ′ 7→ κ

where κ≪ κ′













| |
y1 · · · yκ′

| |







































− zT1 −

...

− zTκ′−



























≈













| |
y1 · · · yκ
| |























− zT1 −
...

− zTκ −










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Truncation based on singular values:

Given U = Yκ′ZT
κ′ of rank κ′ where Yκ′ ∈ R

nx×κ′

and Zκ′ ∈ R
nξ×κ′

,
compute the singular value decomposition (SVD) of U .
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Truncation based on singular values:

Given U = Yκ′ZT
κ′ of rank κ′ where Yκ′ ∈ R

nx×κ′

and Zκ′ ∈ R
nξ×κ′

,
compute the singular value decomposition (SVD) of U .

An efficient way to compute the SVD of U = Yκ′ZT
κ′ ,

1 Compute QR factorizations of Yκ′ and Zκ′ :
Yκ′ = QYRY ∈ R

nx×κ′

, Zκ′ = QZRZ ∈ R
nξ×κ′

,

2 Compute the SVD of RYR
T
Z :

RYR
T
Z = Ûκ′Σ̂κ′ V̂ T

κ′ =
∑κ′

k=1 σ̂k ûk v̂
T
k ,

3 Truncate the sum with the κ terms to produce Ỹκ and Z̃κ,
Ỹκ = QY ÛκΣ̂κ ∈ R

nx×κ, Z̃κ = QZ V̂κ ∈ R
nξ×κ.

Computationally expensive and an appropriate κ is unknown
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Truncation based on multilevel rank-reduction

A coarse-spatial grid solution uc(xxx , ξ):

uc(xxx , ξ) = (Φc(xxx))T Uc Ψ(ξ) =
(

(Y c)TΦc(xxx)
)T (

(Z c)TΨ(ξ)
)

Recall that usg (xxx , ξ) =
(

Y T
κu
Φ(xxx)

)T (

ZT
κu
Ψ(ξ)

)
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Truncation based on multilevel rank-reduction

Mutlilevel rank-reduction strategy

Define a truncation operator based on the information obtained from
a coarse spatial grid computation: Given U = Yκ′ZT

κ′ of rank κ′,

Tκ(U) ≡
(

Yκ′ZT
κ′Z c

κ

)

(Z c
κ)

T
= Ũ

where Ũ = ỸκZ̃
T
κ , Ỹκ = Yκ′ZT

κ′Z c
κ ∈ R

nx×κ and Z̃κ = Z c
κ ∈ R

nξ×κ
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Truncation based on multilevel rank-reduction

Mutlilevel rank-reduction strategy

Define a truncation operator based on the information obtained from
a coarse spatial grid computation: Given U = Yκ′ZT

κ′ of rank κ′,

Tκ(U) ≡
(

Yκ′ZT
κ′Z c

κ

)

(Z c
κ)

T
= Ũ

where Ũ = ỸκZ̃
T
κ , Ỹκ = Yκ′ZT

κ′Z c
κ ∈ R

nx×κ and Z̃κ = Z c
κ ∈ R

nξ×κ

Identify a desired rank κ s.t.

‖f c − Acuc, κ‖2/‖f
c‖2 ≤ ǫ

where uc, κ is a κ-term approximation to uc

The κ-term approximation on a coarse spatial grid can be computed
efficiently using the Proper Generalized Decomposition method
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Preconditioning

Preconditioned system:

AM−1û = f , û = Mũ

Mean-based preconditioner: M = G0 ⊗ K0

Preconditioned system in tensor notation:

AM−1û =

M
∑

l=0

κû
∑

k=1

Gl ẑk ⊗ KlK
−1
0 ŷk

Practical application of the preconditioner: the action of K−1
0 is

replaced by an application of a single V-cycle of an algebraic
multigrid method

With right preconditioning and the AMG preconditioner, the strategy
for handling tensor rank is largely unaffected by preconditioning
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Algorithm 3 Preconditioned low-rank projection method with the multi-
level rank-reduction

1: Compute uc, κ which satisfies ‖f c−Acuc, κ‖2

‖f c‖2
< ǫ using the PGD method

2: Compute Z c
κ such that Uc, κ = Y c

κ (Z
c
κ)

T and define Tκ(U) ≡

(UZ c
κ) (Z

c
κ)

T

3: Run Algorithm 2 with L = AM−1, f , and Tκ
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Stochastic diffusion problems

Steady-state diffusion problems with homogeneous Dirichlet boundary
condition:

{

−∇ · (a(xxx , ξ)∇u(xxx , ξ)) = f (xxx , ξ) in D × ξ,
u(xxx , ξ) = 0 on ∂D × Γ,

with f (xxx , ξ) = 1.
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Covariance function of a(xxx , ξ):

C (xxx , yyy) = σ2 exp

(

−
|x1 − y1|

c
−

|x2 − y2|

c

)

The truncated KL-expansion:

a(xxx , ξ) = µ+ σ

M
∑

i=1

√

λiai (xxx)ξi

µ = 1, σ = 0.05, and M is chosen to capture 95% of the total variance
of the random field (i.e.,

∑M

i=1 λi/
∑nx

i=1 λi > 95%)
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Coarse spatial grid computation:

Table: Rank (κ) of coarse-grid solutions satisfying a specified tolerance ǫ for
the PGD computation, and for varying c and M

ǫ = 10−5 ǫ = 10−6

c 4 3 2.5 2 4 3 2.5 2

M, nξ 5, 56 7, 120 10, 286 15, 816 5, 56 7, 120 10, 286 15, 816

ncx 152 152 312 312 152 152 312 312

Rank(κ) 25 40 65 115 35 65 100 210

nξ: DoFs of stochastic domain
ncx : DoFs of coarse spatial domain
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Fine spatial grid computation:

Table: CPU time to compute approximate solutions satisfying ǫ = 10−5, 10−6

using the preconditioned low-rank projection method with the multilevel
rank-reduction. Here, tf is the time to compute the fine-grid solution, tf , and,
t is the total time, t = tf + tc

nx
ǫ = 10−5 ǫ = 10−6

M 5 7 10 15 5 7 10 15

1292
tf 5.87 8.96 20.53 87.07 7.21 14.28 36.85 235.34

t 8.35 12.43 28.88 132.15 10.14 19.32 51.69 398.06

2572
tf 22.69 34.90 84.85 340.51 27.61 56.36 148.07 1014.97

t 25.17 38.37 93.20 385.59 30.55 61.41 162.90 1177.68

5132
tf 144.69 194.41 445.36 2809.54 163.31 310.14 1318.79 OoM

t 147.17 197.87 453.71 2854.62 166.24 315.18 1333.63 OoM

nx : DoFs of fine spatial domain
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Comparison to a truncation operator based on singular values:

Table: CPU time to compute approximate solutions satisfying ǫ = 10−5, 10−6

using the preconditioned low-rank projection (LRP) methods with the
multilevel rank-reduction and the singular value based truncation on the level 8
spatial grid (nx = 2572)

Solver M 5 7 10 15 20

ǫ = 10−5
LRP-SVD t 55.04 108.11 284.27 1280.65 5691.19

LRP-Multilevel t 25.17 38.37 93.20 385.59 1943.49

ǫ = 10−6
LRP-SVD t 76.03 198.20 564.12 5131.32 OoM

LRP-Multilevel t 30.55 61.41 162.90 1177.68 OoM
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PGD as a solver on a finer spatial grid:

Table: Computation time to obtain approximate solutions satisfying ǫ = 10−5

using the PGD method and the preconditioned low-rank projection method on
the level 8 spatial grid (nx = 2572)

Solver M 5 7 10 15 20

ǫ = 10−5

PGD
κ 25 45 65 125 195

t 43.78 109.72 228.73 940.69 3066.87

LRP-Multilevel
κ 25 40 65 115 180

t 25.17 38.37 93.20 385.59 1943.49

ǫ = 10−6

PGD
κ 40 70 110 225 OoM

t 74.43 214.82 533.10 2713.70 OoM

LRP-Multilevel
κ 35 65 100 210 OoM

t 30.55 61.41 162.90 1177.68 OoM
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Stochastic convection-diffusion problems

Steady-state convection-diffusion problems with non-homogeneous
boundary condition:

{

ν∇ · (a(xxx , ξ)∇u(xxx , ξ)) + ~w · ∇u(xxx , ξ) = f (xxx , ξ) in D × Γ,

u(xxx , ξ) = gD(xxx) on ∂D × Γ,

where gD(xxx) is determined by

gD(xxx) =

{

gD(x , −1) = x , gD(x , 1) = 0,
gD(−1, y) ≈ −1, gD(1, y) ≈ 1,

where the latter two approximations hold except near y = 1, and ν is the
viscosity parameter.
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The solution has exponential boundary layer near y = 1
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Figure: Mean solutions (top) and their contour plots (bottom) for varying ν
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Stochastic Galerkin system:

(

G0 ⊗ νK0 +

M
∑

l=1

Gl ⊗ νKl + G0 ⊗ N + G0 ⊗ S

)

u = g0 ⊗ f0

- the convection term N : [N ]ij =
∫

D
~w · ∇φi (xxx)φj (xxx)dxxx

- the streamline-diffusion term S : [S ]ij =
∑ne

l=1 δl
∫

D
(~w · ∇φi )(~w · ∇φj)dxxx

where ne : the number of element in the finite element discretization

and δk = hk
2‖~w‖2

(

1− 1
Pk

)

if Pk > 1

Preconditioned system:

Mean-based preconditioner: M = G0 ⊗ (K0 + N + S)

the action of (K0 + N + S) is replaced by an application of a single
V-cycle of an algebraic multigrid method
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Comparison to a truncation operator based on singular values:

Table: CPU time to compute approximate solutions satisfying ǫ = 10−5, 10−6

using the preconditioned low-rank projection (LRP) methods with the
multilevel rank-reduction and the singular value based truncation on the level 8
spatial grid (nx = 2572)

ν = 1/600 ν = 1/20

ǫ Solver M 5 7 10 15 5 7 10 15

10−5
LRP-SVD t 90.33 103.44 218.35 484.08 68.45 100.83 201.34 448.25

LRP-Multilevel t 65.48 73.28 142.46 321.99 51.50 67.24 128.45 291.46

10−6
LRP-SVD t 122.44 231.07 421.76 1208.88 132.08 234.15 570.56 2055.44

LRP-Multilevel t 81.93 107.84 186.56 530.89 83.43 136.69 341.32 1266.53
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Table: Computation time and the number of cycles (k) to compute
approximate solutions with ǫ = 10−5 and 10−6 using the preconditioned
low-rank projection methods with the multilevel rank-reduction method for
varying ν

ǫ = 10−5 ǫ = 10−6

ν ncx M = 5 M = 7 M = 10 M = 5 M = 7 M = 10
1
20

172 25 35 55 35 50 75
1

100
172 20 25 45 30 40 65

1
200

332 20 25 45 25 40 60
1

400
332 20 20 35 25 35 55

1
600

652 20 20 35 30 35 45

ncx : DoFs of coarse spatial grid
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Nonlinear random fields

Log-normal random field:

a(xxx , ξ) = eg(xxx, ξ), g(xxx , ξ) = g0(xxx , ξ) +

M
∑

i=1

gi(xxx)ξi

where g(xxx, ξ) is a truncated KL expansion and {ξi}
M
i=1 are independent

normal random variables

Polynomial approximation of a random field:

a(xxx , ξ) =
∑

α∈Λ

aα(xxx)ψα(ξ)

where Λ is a multi-index set
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Stochastic Galerkin system

Stochastic Galerkin solution: u(sg)(xxx , ξ) =
∑nξ

s=1

∑nx
r=1 ursφr (xxx)ψs(ξ)

Stochastic weak formulation:

∫

Γ

∫

D

(

∑

α∈Λ

aα(xxx)ψα(ξ)

)

∇

(

nξ
∑

s=1

nx
∑

r=1

ursφr (xxx)ψs(ξ)

)

∇φi (xxx)ψj (ξ) dxxxρ(ξ)dξ,

i = 1, . . . , nx , j = 1, . . . , nξ

Stiffness matrices and “stochastic matrices”:

[Kl ]ij =

∫

D

alφiφjdxxx , [Gl ]ij = 〈ψlψiψj〉ρ.
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Total degree space for approximating u(sg)(xxx , ξ):

ΛM, p = {α(s) ∈ N
M
0 : ‖α(s)‖0 ≤ M , ‖α(s)‖1 ≤ p}

Polynomial expansion is implicitly truncated with polynomials of total
degree ≤ 2p:

a(xxx , ξ) ≈
∑

α∈ΛM, 2p

aα(xxx)ψα(ξ)

because

〈ψlψiψj〉ρ = 0 ∀ i , j s.t. α(i), α(j) ∈ ΛM, p if
∑

k

αk (l) > 2p,

na = dim(ΛM, 2p) = (M+2p)!
M!(2p)!

Special case: na = M + 1

a(xxx , ξ) ≈

M
∑

k=0

ak(xxx)ξk
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Block sparse linear system, A:

linear RF

nz = 441
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Block sparse linear system, A:

linear RF
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Two potential directions of the study:

Use a randomized tensor Interpolative Decomposition as a
truncation operator

- to replace costly SVD
- when efficient coarse grid computation is impossible
- ID provides means to approximate a matrix/ tensor in efficient way

Reduce dimensions of problem using active subspace methods

- the number of terms in the polynomial expansion of a(xxx, ξ) is large
- Active subspace methods represents a dimension-reduction method
that can be used to reduce the number of terms in the expansion
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Matrix Interpolative Decomposition

Matrix approximation by a column subset:

A ≈ ACS [I |T ]PT

G matrices are rank-deficient

w = Av where mat(v) = YvZ
T
v , mat(w) = YwZ

T
w
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Matrix Interpolative Decomposition

Matrix approximation by a column subset:

A ≈ ACS [I |T ]PT

G matrices are rank-deficient

w = Av where mat(v) = YvZ
T
v , mat(w) = YwZ

T
w

Yv ∈ R
nx×κ, Zv ∈ R

nξ×κ, Yw ∈ R
nx×κ′

, and Zw ∈ R
nξ×κ′

- W = mat(w) is rank deficient
- Zw =

[

G0Zv |G1Zv | · · · |GnaZv

]

, each block is rank deficient
In tensor format, y ⊗ x + z ⊗ x = (y + z)⊗ x

Interpolative decomposition:

W ≈ WCS[I |T ]PT

(GiZv ) ≈ GCS[I |T ]PT

Randomization makes the computation efficient without losing too much
accuracy
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Active subpace methods

Applying active subspace methods on a nonlinear random field:

a(xxx , ξ) = exp

(

g0(xxx , ξ) +

M
∑

k=1

gk(xxx)ξk

)

≈
∑

α∈ΛM, 2p

aα(xxx)ψα(ξ)

The gradient of a(xxx , ξ):

∇ξa(xxx , ξ) =

[

∂a

∂ξ1
, . . . ,

∂a

∂ξM

]T

where

∂a

∂ξi
= exp

(

g0(xxx , ξ) +

M
∑

k=1

gk(xxx)ξk

)

gi(xxx).

The covariance matrix C (xxx):

[C (xxx)]ij = E

[

∂a

∂ξi

∂a

∂ξj

]

= exp

(

2g0(xxx , ξ) +
M
∑

k=1

2g 2
k (xxx)

)

gi(xxx)gj(xxx).
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An eigendecomposition of Ci = C (xi ) ∈ R
M×M :

Ci = WiΛiW
T
i

A new set of random variable {η
(i)
j }Mj=1:

η(i) = WT
i ξ ⇔ Wiη

(i) = WiW
T
i ξ = ξ,

and {η(i)} are also independent normal random variables:

E

[

η
(i)
j

]

= E
[

wwwT
j ξ
]

= 0,

E

[

(η
(i)
j )2

]

= E
[

(wwwT
j ξ)

2
]

= ‖www j‖
2
2 = 1,

E

[

(

η
(i)
j

)(

η
(i)
j

)T
]

= E
[

WT
i ξξ

TWi

]

= WT
i E

[

ξξT
]

Wi = I .
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Change of variable:

a(xi , ξ) = exp

(

g0(xi ) +

M
∑

k=1

gk(xi )ξk

)

= exp

(

g0(xi ) +

M
∑

k=1

gk(xi )

(

M
∑

l=1

wklη
(i)
l

))

= exp

(

g0(xi ) +

M
∑

k=1

g̃k(xi )η
(i)
k

)

,

(

g̃k(xi ) =

M
∑

l=1

gl(xi )wik

)

,

= a(xi , η
(i))

A new linear expansion for a(xxx , ξ):

a(xi , ξ) = â(xi , η
(i)) =

∑

α∈ΛM, 2p

âα(xi )ψα(η
(i))

Kookjin Lee Prelim exam



Introduction
Model problem

Preliminary work
Proposed work

Nonlinear random fields
Truncation based on randomized tensor decomposition
Active subspace methods

0 50 100 150 200 250 300 350 400 450 500
-120

-100

-80

-60

-40

-20

0

20

η(1)

ξ

At spatial point x1, log10(|aα(x1)|) v.s. log10(|âα(x1)|)
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Coarse Spatial Grid Computation

The Proper Generalized Decomposition method:
Computes the separated representation of a coarse-grid solution:
uc, κ(xxx , ξ) =

∑κ
i=1 ỹi (xxx)z̃i (ξ)

- Discretization in physical space: ỹi (xxx) =
∑nx

k=1 ỹ
(i)
k φc

k(xxx)

- Discretization in stochastic space: z̃i (ξ) =
∑nξ

l=1 z̃
(i)
l ψl(ξ)
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Coarse Spatial Grid Computation

The Proper Generalized Decomposition method:
Computes the separated representation of a coarse-grid solution:
uc, κ(xxx , ξ) =

∑κ
i=1 ỹi (xxx)z̃i (ξ)

- Discretization in physical space: ỹi (xxx) =
∑nx

k=1 ỹ
(i)
k φc

k(xxx)

- Discretization in stochastic space: z̃i (ξ) =
∑nξ

l=1 z̃
(i)
l ψl(ξ)

Identifies the function pairs (ỹi (xxx), z̃i (ξ)) incrementally until the
relative residual of the computed solution satisfies a given tolerance,
‖f c − Acuc, κ‖2/‖f

c‖2 < ǫ
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Coarse Spatial Grid Computation

The Proper Generalized Decomposition method:
Computes the separated representation of a coarse-grid solution:
uc, κ(xxx , ξ) =

∑κ
i=1 ỹi (xxx)z̃i (ξ)

- Discretization in physical space: ỹi (xxx) =
∑nx

k=1 ỹ
(i)
k φc

k(xxx)

- Discretization in stochastic space: z̃i (ξ) =
∑nξ

l=1 z̃
(i)
l ψl(ξ)

Identifies the function pairs (ỹi (xxx), z̃i (ξ)) incrementally until the
relative residual of the computed solution satisfies a given tolerance,
‖f c − Acuc, κ‖2/‖f

c‖2 < ǫ
Once i such pairs have been computed, (ỹi+1, z̃i+1) is sought in
Xh × SM by imposing Galerkin orthogonality with respect to the
tangent manifold of the set of rank-one elements at ỹi+1z̃i+1, which
is {ỹi+1ζ + υz̃i+1; υ ∈ Xh, ζ ∈ SM}: find ỹi+1z̃i+1 s.t.

〈
∫

D

a(xxx, ξ)∇(uc, i + ỹi+1z̃i+1) · ∇(ỹi+1ζ + υz̃i+1)

〉

=

〈
∫

D

f (ỹi+1ζ + υz̃i+1)

〉

,

∀(υ, ζ) ∈ Xh × SM
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Two coupled problems: a deterministic problem and a stochastic
problem

- Deterministic problem: given z̃i+1, find ỹi+1 ∈ Xh s.t.
〈
∫

D

a(xxx , ξ)∇(uc, i + ỹi+1z̃i+1) · ∇(φc
j z̃i+1)

〉

=

〈
∫

D

f φ
c
j z̃i+1

〉

, j = 1, . . . , nc
x

- Stochastic problem: given ỹi+1, finds z̃i+1 ∈ SM s.t.
〈
∫

D

a(xxx , ξ)∇(uc, i + ỹi+1z̃i+1) · ∇(ỹi+1ψj )

〉

=

〈
∫

D

f ỹi+1ψj

〉

, j = 1, . . . , nξ

Enhances accuracy of the κ-term approximation by solving a set of κ
coupled equations

- Update problem: given {ỹi}
κ
i=1, find {z̃i}

κ
i=1 s.t.

〈∫

D

a(xxx , ξ)∇(u(κ)) · ∇(ỹiψj )

〉

=

〈∫

D

f ỹiψj

〉

, i = 1, . . . , κ, j = 1, . . . , nξ.
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Matrix Interpolative Decomposition

QR factorization:

AP = QR =

[

Q11 Q12

Q21 Q22

] [

R11 R12

0 R22

]

=

[

Q11

Q21

]

[R11|R12] +

[

Q12

Q22

]

[0|R22]

=

[

Q11R11

Q21R11

]

[I |R−1
11 R12] +

[

0 Q12R22

0 Q22R22

]

= ACS[I |T ] + XP

where

ACS =

[

Q11R11

Q21R11

]

, T = R−1
11 R12, X =

[

0 Q12R22

0 Q22R22

]

PT

Kookjin Lee Prelim exam



Introduction
Model problem

Preliminary work
Proposed work

Nonlinear random fields
Truncation based on randomized tensor decomposition
Active subspace methods

A ≈ Â = ACS[I |T ]PT ,

‖A− Â‖2 = ‖X‖2 ≤ σk+1(A)
√

1 + k(n − k).

R =

[

R11 R12

0 R22

]

σ1(R22) ≤ σk+1(A)
√

1 + k(n− k).
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Randomized Matrix Interpolative Decomposition

Randomized scheme for approximating the range A ∈ R
m×n:

Draw an n × l Gaussian random matrix Ω

Form the matrix product Y = AΩ

Construct a matrix Q whose columns form an orthonormal basis for
the range of Y

Intuition:

y (i) = Aω(i), i = 1, 2, . . . , k

Consider A = B + E , where B is a rank-k matrix and E is a small
perturbation, then

y (i) = (B + E )ω(i) = Bω(i) + Eω(i), i = 1, 2, . . . , k + p

where p is a small number
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Randomized Matrix Interpolative Decomposition

Algorithm 4 Randomized matrix interpolative decomposition

Input: An m × n matrix A and integer l > k

Output: Indices set Lk of the k columns, the permutation matrix P , and
the column subset matrix ACS

1: Draw an n × l Gaussian random matrix, Ω.
2: Form m× l matrix Y = AΩ.
3: Construct an m × k orthonormal matrix Q for approximate the range

of Y via the QR factorization, Y = QR .
4: Construct Lk , P , and ACS from the QR of Y .
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Randomized Tensor Interpolative Decomposition

Tensor notation:

U =

κU
∑

l=1

d
⊗

j=1

uuu
(l)
j =

κU
∑

l=1

U (l), U (l) =

d
⊗

j=1

uuu
(l)
j .

where uuuj ∈ R
Mj for j = 1, . . . , d and κU is the rank

A matricized tensor U :

U =





| |
U (1) · · · U (κU )

| |





The inner product between two tensors U and V :

〈U ,V〉 =

κU
∑

l=1

κV
∑

m=1

d
∏

j=1

〈uuu
(l)
j , vvv

(m)
j 〉
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Randomized Tensor Interpolative Decomposition

Algorithm 5 Randomized tensor interpolative decomposition

Input: A rank κ′ tensor U and integer l > κ
Output: A rank κ tensor Ũ

1: Draw a random tensor R of rank l .
2: Form l × κ′ matrix Y = RTU .
3: Compute an ID of Y and, as a result, a κ× κ′ permutation matrix P ,

and a column index set Lk .

4: Compute Ũ (l) =
∑κ′

m=1 PmlU
(lm) where lm ∈ Lk
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Active subspace methods

A general multivariate function f : Rm 7→ R

f = f (ξ), ξ ∈ R
m

Active subspace method

1 Compute the gradient of f :

∇ξf (ξ) =

[

∂f

∂ξ1
, . . . ,

∂f

∂ξm

]T

2 Construct a covariance matrix C :

C = E
[

(∇ξf (ξ))(∇ξ f (ξ))
T
]
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3 Compute an eigendecomposition of C :

C = WΛWT , Λ = diag(λ1, . . . , λm),

where λ1 ≥ λ2 ≥ · · · ≥ λm
4 Partition W and Λ:

Λ =

[

Λ1

Λ2

]

, W = [W1, W2]

where Λ1 = diag(λ1, . . . , λn) with n < m and W1 ∈ R
m×n

5 Rotate ξ:

y = WT
1 ξ, z = WT

2 ξ

where y ∈ R
n and z ∈ R

m−n

Kookjin Lee Prelim exam



Introduction
Model problem

Preliminary work
Proposed work

Nonlinear random fields
Truncation based on randomized tensor decomposition
Active subspace methods

0 50 100 150 200 250 300 350 400 450 500
-120

-100

-80

-60

-40

-20

0

20

η(1)

ξ

At spatial point x1, log10(|aα(x1)|) v.s. log10(|âα(x1)|)
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Group nset sets of spatial points

Construct the Jacobian of a(xxx , ξ) at a set of spatial points

xxx (k) = {x
(k)
i }

n′x
i=1, n

′
x = nx/nset and k = {1, . . . , nset}:

J(xxx (k)) =













∂a(x
(k)
1 , ξ)

∂ξ1
· · ·

∂a(x
(k)

n′x
, ξ)

∂ξ1
...

...

∂a(x
(k)
1 , ξ)

∂ξM
· · ·

∂a(x
(k)

n′x
, ξ)

∂ξM













Compute the covariance matrix:

C (xxx (k)) = E

[

J(xxx (k))J(xxx (k))T
]

.

Rotate ξ:

ηxxx
(k)

= WT
xxx (k)ξ ∈ R

M×1
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