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Introduction

Problem definition

Partial Differential Equations with Stochastic Coefficients

Examples:
Diffusion equations: =V - (a(x, ) Vu) =1
Convection-diffusion equations: vV - (a(x, {)Vu)+w - Vu=f
Posed on D C R with suitable boundary conditions
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Introduction

Problem definition

Partial Differential Equations with Stochastic Coefficients

Examples:
Diffusion equations: =V - (a(x, ) Vu) =1
Convection-diffusion equations: vV - (a(x, {)Vu)+w - Vu=f
Posed on D C R with suitable boundary conditions

Randomness:

@ An inherent irregularity in the phenomenon being observed e.g., the
kinetic theory of gas

@ The impossibility of an exhaustive deterministic description e.g.,
groundwater flow through a heterogeneous porous media

@ a(x, &) is a random process/ random field parameterized by a set of
random variables & = [¢1, ..., Em] T

@ The numerical solution u(x, &) can be described by £

Goal:
Efficient computation of the numerical solution u(x, £) and solution
statistics (e.g., E[u], Var(u)) using linear algebraic algorithms
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Introduction

Problem definition

Linear systems:

Large linear systems arise from discretizations of stochastic PDEs:

Au=f
@ High-dimensional problem: a large M in & = [&1, ..., ém] T
@ Linear systems with a special structure,
A=) G oK
i=1
where ® is the Kronecker-product:
guK e ginc K
G@K: : - : E]Rnfnxxnfnx7
gnflK gngngK

G eR™*" and K e R™*™
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Introduction

Problem definition

Low-rank solution of linear systems:

Solutions in the Kronecker-product structure:
Ky
u=> W@z,  yc€R™andz cR™
k=1

where k, is the rank of u

Kookjin Lee Prelim exam



Introduction

Problem definition

Low-rank solution of linear systems:

Solutions in the Kronecker-product structure:

Ku

u=> W@z,  yc€R™andz cR™
k=1

where k, is the rank of u

Low-rank approximations to solutions:
R
um =) ®%,  Jx €R™and 5 € R™
k=1

where k5 < Ky s.t. ||Ad — fl2/]|fll2 < €
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Model problem

Karhunen-Loéve expansion

Random field a(x, ¢): =V (a(x,§)Vu(x, §)) = f
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Model problem

Karhunen-Loéve expansion

Random field a(x, £): =V (a(x,&)Vu(x, &) =f
a(x, &) has affine dependence on {&}M,,

a(x, &) ~ a™(x, €) = ao(x) + Z 3i(x)&j
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Model problem bL expansion

T

Karhunen-Loéve expansion

Random field a(x, £): =V (a(x,&)Vu(x, &) =f
a(x, &) has affine dependence on {&}M,,

a(x, ) = a™M(x, &) = a0(x) + Y ai(x)é
In this study, a truncated Karhunen-Loéve expansion is considered,

M
a(x, &) =~ aM(x, €) = u + UZ Viai(x)&;
i=1

@ (p, 02) are mean and variance of a(x, ¢)

@ {(\i, a;)}M, are eigenvalue and eigenfunction pairs of an integral
operator of covariance function, C(x, y), x, y € D, of a(x, &)

e {&}M, are uncorrelated random variables (additional assumption:
i.i.d.)



KL expansion
Stochastic Galerkin method
or format

Model problem

Eigenpairs {(\;, a;)}M, can be obtained by solving:

The series converges in L2 sense:

lim <a(x7§)fa(M)(x7£)>2 =0

M—oco P

Mean function KL expansion eigenfunction number 1. KL expansion eigenfunction number 2 KL expansion eigenfunction number 4 KL expansion eigenfunction number &

Figure: Mean function and example eigenfunctions
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Solution u(x, &): -V - (a(x,§)Vu(x, &) =f
Generalized polynomial chaos expansion:
ne
U(X, f) ~ Z US(X)¢5(§)
s=1
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Model problem

Solution u(x, &): -V - (a(x,§)Vu(x, &) =f
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Solution u(x, &): -V - (a(x,§)Vu(x, &) =f
Generalized polynomial chaos expansion:
ne
U(X, f) ~ Z US(X)¢5(§)
s=1

@ Orthogonality basis: [ 1;(€)1;(€)p(€)dé = 6

@ Product form: t5(&) = a(s)(§) = Hf\il Tai(s) (&),
a(s) = (aa(s), ..., am(s))
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KL expansion
Stochastic Galerkin method
Tensor format

Model problem

Solution u(x, &): -V - (a(x,§)Vu(x, &) =f
Generalized polynomial chaos expansion:
ne
U(X, f) ~ Z US(X)¢5(§)
s=1

@ Orthogonality basis: [ 1;(€)1;(€)p(€)dé = 6

@ Product form: t5(&) = a(s)(§) = Hf\il Tai(s) (&),
a(s) = (aa(s), ..., am(s))

@ Total degree space:

AP ={a(s) € Ng': a(s) 1 < p},

where [[a(s)[l1 = 4Ly ax(s) and ne = dim(AM:P) = BB (DoFs

of stochastic domain)
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Model problem

ic C Galerkln method

If {&} are uniform random variables

{m;} are Legendre polynomials. \ T T
mo(&i) =1,
m (&) = o
m (&) = 5(352 -1, i
m3(&i) = %(55,3 —3¢)
ma(&) = §(35¢) — 3067 +3)
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Model problem Nl o

Galerkin method

If {&} are uniform random variables

Legendre polynomials of degrees 1 through 5

{m;} are Legendre polynomials.
mo(&i) =1,
m (&) = o
m2 (&) = 5(352 - 1), o
m3(&) = 5(567 — 3¢&) "
ma (&) = (357 — 3067 + 3)

= {(aa(s), aa(s)}s2
={(0,0),(1,0),(2,0),(3,0),(0,1),(1,1),(2,1),(0,2), (1,2),(0,3)}



on
Galerkin method

Model problem

If {&} are uniform random variables

Legendre polynomials of degrees 1 through 5

{m;} are Legendre polynomials.
mo(&i) =1,
m(&) = o
m2 (&) = 5(352 - 1), o
m3(&) = 5(567 — 3¢&) "
ma (&) = (357 — 3067 + 3)

N3 = {(aa(s), aa(s)}:,
={(0,0),(1,0),(2,0),(3,0),(0,1),(1,1),(2,1),(0,2),(1,2),(0,3)}
1 = mo(&1)mo(&2), 2 = m1(&1)mo(&2), Y3 = m2(&1)m0(£2), - -

and ng = 10
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Model problem

ic Galerkin method
or format

Solution: u(x, &) ~ Y%, us(x)s(€)
Finite Element Methods:

ny
Us(x) ~ Z Urs¢r(x)
r=1
using piecewise linear “hat functions”

Qi finite element subdivision

# of nodes = n, (DoFs of deterministic domain)
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Model problem

The Stochastic Galerkin Method

Discrete solution:

@ Discretization in physical space (Finite Element Methods): basis
{¢r}7=, piecewise linear “hat functions”

@ Discretization in stochastic space (Polynomial Chaos Expansion):
basis {1s}.5,, M-variate polynomials in & of total degree p
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Model problem

The Stochastic Galerkin Method

Discrete solution:

@ Discretization in physical space (Finite Element Methods): basis
{¢r}7=, piecewise linear “hat functions”

@ Discretization in stochastic space (Polynomial Chaos Expansion):
basis {1s}.5,, M-variate polynomials in & of total degree p

(Sg) X 5 Z zx: Urs(br s )

s=1 r=1

The weak formulation leads to a large coupled system order of nyne
Au=f

_ T
where u = [u11 ... Up1 U2 ... Un2 ... Ulp - Unon]
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Model problem

The Stochastic Galerkin Method

Strong formulation: —V - (a(x, §)Vu(x, §)) =f

(Deterministic) weak formulation: find u € HE(D) s.t.

/aVqudx:/ fvdx, Yve& Hy(D)
D D
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Model problem

K
St
Te

The Stochastic Galerkin Method

Strong formulation: —V - (a(x, §)Vu(x, §)) =f

(Deterministic) weak formulation: find u € HE(D) s.t.
/ aVuVv dx :/ fvdx, Yve& Hy(D)
D D
Stochastic weak formulation: find u € HE(D) @ Ly(T) s.t.

/F/DaVqudxp(g)dfz/F/vadxp(f)dg, Vv € H}(D) ® Ly(T)

where ' = H I',~ and I',~ = f,(Q)

Kookjin Lee Prelim exam



KL e
Model problem St

oc| alerkin method
Tensc \

LHS:
Substituting the truncated KL expansion a(x, £) = ao(x)+z,’-\i1 a;i(x)&;:
M
/r / <ao(x) +3 a,-(x>s,-> V) (x, £)Vv dxp(€)de
i=1

Substituting u(*8) and v:

M ng  ny
I (ao(x) +Y a,-(x)a) v <ZZ u,s<z>r(x)ws(5)> Vei(x)5(€) dxp(€)de,

s=1r=1

i=1,....,n,j=1...,n

RHS:
Substituting v:

/r/D foi(x)wi(&) dxp(§)dE, i=1,...,n,j=1,...,n¢
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KL expansion
Stochastic Galerkin method
Tensor format

Model problem

Stochastic Galerkin systems in the Kronecker-product structure:

Au=f
M
A=Ga Ko+ Y GoK, f=gof
I=1
“Stochastic” matrices:
[Golij = (Wi()¥i(€)), - [Gili = (& vi(€)(€)),. I=1,.... M
Weighted stiffness matrices:

[Kolij = Jp 20V $i(x)V;(x)dx
[Kili = [, a(x)Voi(x)Voj(x)dx, [I=1,...,. M

Forcing term:

[fO i = fD f¢, dx [gO]I = W:(f))

Kookjin Lee Prelim exam



Model problem

Nonzero structures of matrices:

40
nz=42 nz=42

Stiffness matrices {K;}M,
Stochastic matrice {G;}3_,
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nsion
ic Galerkin method
or format

Model problem

Galerkin matrix A (each block has dimension ny x ny)
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KL expansion
Stochastic Galerkin method
Tensor format

Model problem

Solutions in tensor format:

Au="f

)

Ky
u= sz ® yk, zx € R"™ and y, € R™,

k=1
or, equivalently,
Ku
U= Zyksz = YKUZ;
k=1
where
Yo, =W, -0y Yo, ] ERPXSv Z =z, ..., z,,] € RMe*Hu

Isomorphism between R™*" and R™" defined by two operators:
u = vec(U) and U = mat(u)
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KL expansion
Model problem Stochastic Galerkin method

Tensor format

Uil
Un,1
uyo u11 U2 e U1n5
E RNXNE PEN E Rnxxns
Un.2
Up,1 Un2 -+ Uneng
Ulng
_u"xng_
T
— 7zl
1
| | —z -
2
= (Y1 Y2 Yiu
—T -
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Model problem

hastic Galerkin method

Tensor format

Linear systems in tensor format: Au=f

M Ku
ZG/@K/ sz®}0< =g®f
1=0 k=1



Model problem

lerkin method

Linear systems in tensor format: Au=f

M Ku
Y GeK sz®Yk =g ®f

Z Z (Gizie) @ (Kiyk) = g0 ® fo

I=0 k=1
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Model problem

)
Tenso rmat

Linear systems in tensor format: Au=f

M Ku
<Z G ® K/) <sz ®}/k> =8 ®f
=0

k=1
ZZ (Gizx) @ (Kiyk) = go ® fo
1=0 k=1
Matricizing
M Kk, M Ky
Z (Kiyi) (Gizi) T = Z Kiykzi G = fogy
1=0 k=1 1=0 k=1
M M
Y KUGT =% (KiYe,)(GZ:,)" = fogg
1=0 1=0
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KL expansion
Stochastic Galerkin method
Tensor format

Model problem

Stochastic Galerkin system:

Exploiting the properties of the Kronecker product structure:

M Ky
Au = <Z G ® K/) <Z Zk @ }/k> Z Z (Grzi) ® (Kiyk)
k=1

1=0 I=0 k=1

@ Operation counts of matrix operations are additive
O(nnz(G) + nnz(K)) instead of O(nnz(G) x nnz(K))
@ This motivates the use of Krylov subspace methods in tensor format
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Two essential operations for Krylov subspace methods: matrix-vector
product and linear combination

@ MVP: k, = (M + 1)k,

M Kk (M‘l‘l)Hu
Au = Z (Gizi) ® (Kiyk) = Z Zi ®Yi
=0 k=1 i=1

@ Addition/subtraction: (ky, &y) — (kuy + Ky)

Ky Ky KutKy
U+V:E Zi®}/i+§ i@y = E Zi QY
i=1 j=1 i=1
where yit,, =Viand zip, =2, i =1, ..., Ky

Two of the fundamental operations used in Krylov subspace
methods tend to increase the rank of the quantities produced
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Model problem

<
3
<
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Low-rank projection method in tensor format
Truncation me

Preliminary work Nur

The GMRES method

The generalized minimum residual method

Compute an approximate solution upy, € ug + Km(A, v1) on mth Krylov
subspace, Km = span{vi, Avy, ..., A" 1y}
up is an initial vector with residual rp = f — Aug, vi = ro/||ro0]|2

Algorithm 1 GMRES method without restarting
set the initial solution ug

rp:=fFf—Au
\71 =n
vi o= 0 /|||
forj=1,..., mdo
w; = Ay
solve (V" Vj)a = V/Tw;

Goa 1= wj — S v
Vit1 = Vi1 /|| V|
end for
solve (WTAV,,)y = W] (W = AV,y)
uy = ug + me
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Low-rank projection method in tensor format
Tru

Preliminary work Nu

Low-rank projection method

Goal: compute a low-rank solution of rank & satisfying
If — Adll2/|fll2 < e
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Low-rank projection method in tensor format
Tru

Preliminary work Nu

Low-rank projection method

Goal: compute a low-rank solution of rank & satisfying
[If — Adll2/|Ifll2 < € (and maintain rank of all vectors to be k)
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Low-rank projecti nethod in tensor format
Truncation

Preliminary work
4 Nume

Low-rank projection method

Goal: compute a low-rank solution of rank & satisfying
[If — Adll2/|Ifll2 < € (and maintain rank of all vectors to be k)

Q@ Construct a new basis vector w; = Ay;
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nethod in tensor format

Preliminary work

Low-rank projection method

Goal: compute a low-rank solution of rank & satisfying
[If — Adll2/|Ifll2 < € (and maintain rank of all vectors to be k)
Q@ Construct a new basis vector w; = Ay;
@ Orthogonalize w; with respect to the previously generated basis

Y e wi=w —SY aiv TVia=VTw
vectors {v;}i_; (i.e., Wj = w; — > i, a;v; where V! Via = V" wj;)
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nethod in tensor format

Preliminary work

Low-rank projection method

Goal: compute a low-rank solution of rank & satisfying
[If — Adll2/|Ifll2 < € (and maintain rank of all vectors to be k)
Q@ Construct a new basis vector w; = Ay;
@ Orthogonalize w; with respect to the previously generated basis
vectors {v;}i_ (i.e., W = wj — Y1_; a;v; where V[T Via = V] w))
@ Truncate the new vector V11 = 7,.(W;) and orthonormalize

Vit1 = Vi1 /| V1l
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Low-rank projection method in tensor format

P Trunc
Preliminary work

Low-rank projection method

Goal: compute a low-rank solution of rank & satisfying
[If — Adll2/|Ifll2 < € (and maintain rank of all vectors to be k)

Q@ Construct a new basis vector w; = Ay;

Orthogonalize w; with respect to the previously generated basis
vectors {v;}i_ (i.e., W = wj — Y1_; a;v; where V[T Via = V] w))

Vit1 = Vi1 /[ Va2
Compute the iterate ({; = o + Vi) by projecting the residual

ro = b — Aug onto the subspace Wy, = span{w, ..., wpy}
(WTAV,,)3 = W r

Q
@ Truncate the new vector V11 = 7,.(W;) and orthonormalize
o
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Low-rank projection method in tensor format

P Trunc
Preliminary work

Low-rank projection method

Goal: compute a low-rank solution of rank & satisfying
[If — Adll2/|Ifll2 < € (and maintain rank of all vectors to be k)

Q@ Construct a new basis vector w; = Ay;

Orthogonalize w; with respect to the previously generated basis
vectors {v;}i_ (i.e., W = wj — Y1_; a;v; where V[T Via = V] w))

Vit1 = Vi1 /[ Va2
Compute the iterate ({; = o + Vi) by projecting the residual

ro = b — Aug onto the subspace Wy, = span{w, ..., wpy}
(WTAV,,)3 = W r

Q
@ Truncate the new vector V11 = 7,.(W;) and orthonormalize
o

@ Truncation operator 7, compresses a tensor of higher rank into one
of a desired rank &

@ Due to truncation, V, = span{vi, ..., v} is not a Krylov subspace
@ If k is the full rank, the algorithm is the restarted GMRES method

Kookjin Lee Prelim exam



Low-rank projection method in tensor format

Trun:

Preliminary work
4 Num:

Algorithm 2 Restarted low-rank projection method in tensor format

1: set the initial solution iy
2: for k=0,1,... do

3: re == f— Al

4: if ||rc]|/|If]| < € then

5: return

6: end if

7: v = 7;(!’;()

8: vy = \71/“\71”

9: forj=1,..., mdo

10: w;j = Ay;

11: solve (\/J-T\/j)a = VJ-TWJ'
12: Vi1 :="Tx (Wj -3 a,-v,->
13: Vit = Vi /|| Gl

14: end for

15: solve (WTAV,,)8 = W]
16: ﬁk+1 = 7;([7[( + Vmﬁ)
17: end for
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Preliminary work
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© Proposed work

Kookjin Lee Prelim exam



Low-rank p
Truncation

Preliminary work Nur

Truncation of a tensor

Truncation operator:

where kK < K’
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Low-rank
Truncation methods

Preliminary work !
M Numeri periments

Truncation of a tensor

Truncation operator:

T.: Kk =k
where kK < K’
[ =z = ] -
| | | |
i Vi’ 1 Vi

Q
|
N
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Preliminary work

Truncation based on singular values:
Given U = YKrZ,I of rank k' where Y,,, € R™*% and Z,. € R"*%
compute the singular value decomposition (SVD) of U.
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ion method in tensor format

Preliminary work

Truncation based on singular values:
Given U = YKrZ,I of rank k' where Y,,, € R™*% and Z,. € R"*%
compute the singular value decomposition (SVD) of U.

An efficient way to compute the SVD of U = Y, Z],
@ Compute QR factoriza,tions of Y. and Z.: )
Yo = QyRy e R™** | Z = QzRz € R"e*"
@ Compute the SVD of RyRZT'
RyR}_ = U,i/i,{/\/ ) = Zk lokukvk ,
Q Truncate the sum with the k terms to produce Y and Z,.C,
Y. =QyU.5, e R™*" Z, = QzV, € Rme*r,

Computationally expensive and an appropriate x is unknown
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Preliminary work

Truncation based on multilevel rank-reduction

A coarse-spatial grid solution u¢(x, &):

u(x, €) = (9°())T U W(E) = ((Y©)To¢(x)) " ((29)Tw(¢))
Recall that u¥8(x, &) = (YT (x)) " (ZT W(¢))

Finer spatial grid Coarser spatial grid
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Preliminary work

Truncation based on multilevel rank-reduction

Mutlilevel rank-reduction strategy

@ Define a truncation operator based on the information obtained from
a coarse spatial grid computation: Given U = Y,/ ZT of rank #’,

To(U) = (Yo ZTZE) (29T = U

where U = Y, 2T, Y, = Y Z1ZS € R™*" and 7. =Z7¢ € RMexr

Kookjin Lee Prelim exam



hod in tensor format

Preliminary work

Truncation based on multilevel rank-reduction

Mutlilevel rank-reduction strategy

@ Define a truncation operator based on the information obtained from
a coarse spatial grid computation: Given U = Y,/ ZT of rank #’,

T(U) = (YwZlZz)(25)" =0
where U = Y, ZT, Y. = Y Z],Z¢ € R™*% and Z,, = Z¢ € Re*¥
@ Identify a desired rank  s.t.

1€ = Au®" /][> < €

where u© " is a k-term approximation to u¢

@ The k-term approximation on a coarse spatial grid can be computed
efficiently using the Proper Generalized Decomposition method
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Preliminary work

Preconditioning

Preconditioned system:

AM™Yo=f G4=Mi

@ Mean-based preconditioner: M = Gy ® Ky
@ Preconditioned system in tensor notation:

M Ki
AM™Y o =Y "N " Gz @ KiKy i
1=0 k=1

@ Practical application of the preconditioner: the action of KO_1 is
replaced by an application of a single V-cycle of an algebraic
multigrid method

With right preconditioning and the AMG preconditioner, the strategy
for handling tensor rank is largely unaffected by preconditioning
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n method in tensor format

Preliminary work

Algorithm 3 Preconditioned low-rank projection method with the multi-
level rank-reduction

1: Compute u® " which satisfies W < € using the PGD method
2. Compute Z¢ such that US* = Y<(ZS)T and define T, (U) =

(Uze)(z9)'
3: Run Algorithm 2 with £ = AM™1, f, and 7
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Low-rank n method in tensor format
Truncation methods

Preliminary work ! !
Y Numerical experiments

© Introduction

© Model problem

© Preliminary work

@ Numerical experiments

© Proposed work
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Stochastic diffusion problems

Steady-state diffusion problems with homogeneous Dirichlet boundary
condition:

{ -V (a(x, §)Vu(x, f)) = f(xa f) in D x fa
ulx, &) =0 on 9D xT,

with £(x,£) = 1.
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Covariance function of a(x, &):

C(X, y) _ a2exp (_ |X1 —J/1| . |X2 —}/2|>
C C

The truncated KL-expansion:

M
a(x, &) = p+ UZ V\iai(x)E;

i =1,0=0.05 and M is chosen to capture 95% of the total variance
of the random field (i.e., M, i/ 2, A\ > 95%)
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Coarse spatial grid computation:

Table: Rank (k) of coarse-grid solutions satisfying a specified tolerance ¢ for
the PGD computation, and for varying ¢ and M

e=10"3 e=10"6

c 4 3 2.5 2 4 3 25 2
M, ng |5,56 7,120 10, 286 15, 8165, 56 7, 120 10, 286 15, 816
ng 152 152 312 312 152 152 312 312
Rank(k)| 25 40 65 115 35 65 100 210

n¢: DoFs of stochastic domain
ng: DoFs of coarse spatial domain
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Preliminary work

Fine spatial grid computation:

Table: CPU time to compute approximate solutions satisfying e = 107, 107°
using the preconditioned low-rank projection method with the multilevel

rank-reduction. Here, tr is the time to compute the fine-grid solution, tr, and,

t is the total time, t = tr + t

n e=10"3 e=10"6
M| 5 7 10 15 5 7 10 15
1og? tr| 5.87 896 2053 87.07 || 7.21 1428 36.85 23534
t| 835 12.43 28.88 13215 | 10.14 19.32 51.69 398.06
o572 tr| 22.60 3490 84.85 340.51 || 27.61 56.36 148.07 1014.97
t | 2517 3837 93.20 38559 || 30.55 61.41 162.90 1177.68
5132 tr | 144.69 194.41 44536 2809.54 || 163.31 310.14 1318.79 OoM
t | 147.17 197.87 453.71 2854.62 | 166.24 315.18 1333.63 OoM

ny: DoFs of fine spatial domain
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Comparison to a truncation operator based on singular values:

Table: CPU time to compute approximate solutions satisfying e = 107>, 107
using the preconditioned low-rank projection (LRP) methods with the
multilevel rank-reduction and the singular value based truncation on the level 8
spatial grid (n, = 257%)

Solver M| 5 7 10 15 20
¢ —10-5 LRP-SVD t | 55.04 108.11 284.27 1280.65 5691.19
LRP-Multilevel | t |25.17 38.37 93.20 385.59 1943.49
¢ — 106 LRP-SVD t | 76.03 198.20 564.12 5131.32 OoM

LRP-Multilevel | t | 30.55 61.41 162.90 1177.68 OoM
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PGD as a solver on a finer spatial grid:

Table: Computation time to obtain approximate solutions satisfying € = 107>
using the PGD method and the preconditioned low-rank projection method on
the level 8 spatial grid (n, = 257°)

Solver M 5 7 10 15 20
k| 25 45 65 125 195
PGD
10-5 43.78 109.72 228.73 940.69 3066.87
€ =
. k| 25 40 65 115 180
LRP-Multilevel
t |25.17 38.37 93.20 385.59 1943.49
k| 40 70 110 225 OoM
PGD
10-6 t | 74.43 214.82 533.10 2713.70 OoM
€ =
. k| 35 65 100 210 OoM
LRP-Multilevel
30.55 61.41 162.90 1177.68 OoM
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Preliminary work

Stochastic convection-diffusion problems

Steady-state convection-diffusion problems with non-homogeneous
boundary condition:

{ vV - (a(x, )Vu(x, £))+w - Vu(x, £) =f(x,€) inDxT,
u(x, &) = gp(x) on 9D x T,

where gp(x) is determined by

gD(X7 _1) =X, gD(Xa 1) = Oa
X) =
gD( ) { gD(_17 .y) ~ _17 gD(la .y) ~ 17

where the latter two approximations hold except near y =1, and v is the
viscosity parameter.
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The solution has exponential boundary layer near y =1

v =1/20 v =1/200 v =1/600
mean solution mean solution mean solution

i conloun:p\at i contour plot i contour plot
05 05 0.5
0 0 0
05 05 05
1 -1 -1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure: Mean solutions (top) and their contour plots (bottom) for varying v
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Stochastic Galerkin system:

M
<Go®I/Ko+ZG/®I/K/+G0®N+Go®5> u=go® fh
1=1

- the convection term N: [N]; = [, W - V;(x)p;(x)dx
- the streamline-diffusion term S: [S]; = Y71 6 [, (W - Vi) (W - V)dx
where ne: the number of element in the finite element discretization
and 0 = gittr (1= &) if P> 1
Preconditioned system:
Mean-based preconditioner: M = Gy ® (Ko + N + S)

the action of (Ko + N + S) is replaced by an application of a single
V-cycle of an algebraic multigrid method
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Comparison to a truncation operator based on singular values:

Table: CPU time to compute approximate solutions satisfying e = 107°, 10°°
using the preconditioned low-rank projection (LRP) methods with the
multilevel rank-reduction and the singular value based truncation on the level 8

spatial grid (n, = 257%)

v =1/600 v=1/20
e Solver  |M| 5 7 10 15 5 7 10 15
1o-5| LRP-SVD | t|9033 10344 21835 484.08 || 68.45 100.83 201.34 448.25
LRP-Multilevel | t | 65.48 73.28 142.46 321.99 || 51.50 67.24 128.45 201.46
Lo-6| LRP-SVD |t |122.44 231,07 42176 1208.88/132.08 234.15 570.56 2055.44
LRP-Multilevel | t | 81.93 107.84 186.56 530.89 || 83.43 136.69 341.32 1266.53
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Table: Computation time and the number of cycles (k) to compute
approximate solutions with € = 107 and 107 using the preconditioned
low-rank projection methods with the multilevel rank-reduction method for

varying v
e=10"° e=10"°
v |nS|[M=5 M=7 M=10||M=5 M=7 M=10
% |172| 25 35 55 35 50 75
o5 | 172 20 25 45 30 40 65
75 |332| 20 25 45 25 40 60
55 | 332| 20 20 35 25 35 55
55 1 65%| 20 20 35 30 35 45

nS: DoFs of coarse spatial grid
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© Proposed work
@ Nonlinear random fields
@ Truncation based on randomized tensor decomposition
@ Active subspace methods
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Nonlinear random fields

Log-normal random field:

M
a(x, 5) = eg(x,ﬁ)’ g(X, 5) = go(X, 5) + Zg,'(X)f,'

i=1

where g(x, &) is a truncated KL expansion and {¢;}¥, are independent
normal random variables

Polynomial approximation of a random field:

a(x, £) = > aa(X)ta(§)

a€el

where A is a multi-index set
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Stochastic Galerkin system

Stochastic Galerkin solution: u(8)(x, &) = 3" S°™ | s, (x)1s(€)

Stochastic weak formulation:

/ /D (Z aa<x>wa<f>> v (Zij ursa;,(x)ws(g)) Vi (x)05(€) dxpl€)de

r s=1 r=1
i=1....,n,j=1...,n

Stiffness matrices and “stochastic matrices”:

[Kilij = /Da/¢i¢jdx’ (Gl = (W) p.
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Total degree space for approximating u(%8)(x, ¢):

AP = {a(s) e NI - [|a(s)llo < M, [la(s)[l1 < p}

Polynomial expansion is implicitly truncated with polynomials of total
degree < 2p:

alx, &)~ Y aalx)tal()
a€eNM: 2p

because

(Wi, =0 Vi, j st a(i), a) € AMPif > () > 2p,
k

o n, = dim(AM-20) = {2R)

@ Special case: n,=M+1

a(x, &) ~ Z ak(x)&k

k=0

Kookjin Lee Prelim exam



Nonlinear random fields
Truncation based on randomized tensor decomposition

ds

Proposed work

Block sparse linear system, A:

linear RF nonlinear RF
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Block sparse linear system, A:

. ‘\\\
: NN
: AN

S Each block
is sparse

linear RF nonlinear RF
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Proposed work

Two potential directions of the study:

@ Use a randomized tensor Interpolative Decomposition as a
truncation operator
- to replace costly SVD
- when efficient coarse grid computation is impossible
- ID provides means to approximate a matrix/ tensor in efficient way
@ Reduce dimensions of problem using active subspace methods
- the number of terms in the polynomial expansion of a(x, &) is large
- Active subspace methods represents a dimension-reduction method
that can be used to reduce the number of terms in the expansion
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Matrix Interpolative Decomposition

Matrix approximation by a column subset:
A~ Acs[I|TIPT

G matrices are rank-deficient
w = Av where mat(v) = Y, Z], mat(w) = Y,,Z]
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Proposed work

Matrix Interpolative Decomposition

Matrix approximation by a column subset:
A~ Acs[I|TIPT
G matrices are rank-deficient
w = Av where mat(v) = Y, Z], mat(w) = Y,,Z]
Y, € R™*%, Z, e Re** Y, € R™** and Z, € R7X~

- W = mat(w) is rank deficient
- Zy=[GoZ,|G1Z,| -+ | G, Z,], each block is rank deficient
In tensor format, y @ x + z@x = (y + z) ® x

Interpolative decomposition:
W~ Wes[l| TIPT
(GiZ,) =~ Ges[l| TIPT

Randomization makes the computation efficient without losing too much
accuracy
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Active subpace methods

Applying active subspace methods on a nonlinear random field:

a(x, §) = exp ( )+ ng ) ~ Z aa(X)¥a(§)

a€NM; 2p

The gradient of a(x, &):

Oa Oa }T

vﬁa(x7£) = |:a_§17 RN 3§—M

where

9

The covariance matrix C(x):

Oa Oa
Wl =E | 52 ag]exp<2go +Zzgk ) X)g;(x).
i 0Gj

da -
— = exp <g0(x, &)+ ng(x)£k> 8i(x).



Proposed work

An eigendecomposition of C; = C(x;) €

Ci = WiNW.T

A new set of random variable {n}i)}j"ilz
= WTg e Win' = WiwTe = ¢,
and {n{)} are also independent normal random variables:
E[rf] =E[w]¢] =0,
E|0"?] = E [(w] 7] = Iwjl = 1,

B[ () (47)"| =2 (wee” W) = wTE [T w1
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Change of variable:

a(xi, §) = exp (gO(Xi) + ng(x;)§k>

= exp (go(x;) + ng(x;) (Z ka/(i)>>
= exp (go(x,-) + Z@(X;)nfﬁ) ’ <§k(x1) = ZgI(XI)Wik> ;
k=1 I=1

= a(Xi’ ﬂ(i))

A new linear expansion for a(x, &):

a(xi,€) = a0, ") = > da(xi)ba(n®)

aEM; 2p
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@ o @o @o
60 |-
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80
@O0 o @o o o
-100 |-
@0 o o
120 1 1 1 1 1 1 1 1 1 |
0 50 100 150 200 250 300 350 400 450 500

At spatial point x1, log;o(|aa(x1)]) v.s. logio(lda(x1)])

Kookjin Lee Prelim exam



Nonlinear random field
Truncation based on randomized tensor decomposition
Active subspace methods

Proposed work

Thank you!
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Coarse Spatial Grid Computation

The Proper Generalized Decomposition method:
@ Computes the separated representation of a coarse-grid solution:
ue"(x, §) = 2L, Fi(x)%(€)
- Discretization in physical space: yi(x) = > 7 lyk “(x)
- Discretization in stochastic space: %(£) = 3,5, Efi)wl(f)
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Proposed work

Coarse Spatial Grid Computation

The Proper Generalized Decomposition method:
@ Computes the separated representation of a coarse-grid solution:
ue"(x, §) = 2L, Fi(x)%(€)
- Discretization in physical space: yi(x) = > 7 lyk “(x)
- Discretization in stochastic space: %(£) = 3,5, , wl(f)

@ Identifies the function pairs (¥;(x), Zi(£€)) incrementally until the
relative residual of the computed solution satisfies a given tolerance,
[f€ = AU [l2/[[F)l2 <€
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Proposed work

Coarse Spatial Grid Computation

The Proper Generalized Decomposition method:
@ Computes the separated representation of a coarse-grid solution:
ue"(x, §) = 2L, Fi(x)%(€)
- Discretization in physical space: yi(x) = > 7 lyk “(x)
- Discretization in stochastic space: %(£) = 3,5, , wl(f)

@ Identifies the function pairs (¥;(x), Zi(£€)) incrementally until the
relative residual of the computed solution satisfies a given tolerance,
IF€ = Acu 2/ [[F<lz < e

@ Once i such pairs have been computed, (¥i11, Zit+1) is sought in
Xp x Sm by imposing Galerkin orthogonality with respect to the
tangent manifold of the set of rank-one elements at ¥;11Z; 1, which
is {)7,'+1C +vZii1;, v E Xp, (€ SM}Z find )7,'+12,'+1 s.t.

</ a(x, OV(uS "+ Ji1Zi1) - V(Fial + vfi+1)> = </ f(JiraC + ’Ufi+1)> ,
D D
(v, ¢) € X X Sw
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@ Two coupled problems: a deterministic problem and a stochastic
problem

- Deterministic problem: given Zii1, find yi1 € X s.t.

</ a(x, E)V(u®" + Fir1Zi11) - V(¢f2‘+1)> = </ f¢ffi+1> =1
D D

- Stochastic problem: given yi.1, finds Zi;1 € Sp s.t.
</ a(x, )V(u© '+ JiraZi) - V()7i+11b/)> = </ fyi+1wj> J=1, ..., n¢
D D
@ Enhances accuracy of the x-term approximation by solving a set of x

coupled equations
- Update problem: given {y;}%,, find {Z}7; s.t.

</ a(x, 5)V(u(”))~V(y,~wj)> = </ fy,.w,.>, i=1,...,K j=1 ..., ne.
JD JD
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Matrix Interpolative Decomposition

QR factorization:

e | Qu| Qu Ru | Riz ]
AP_QR_{QzMQn}[ 0 | R
{Sn] [Ri1|Ri2] + {812] [0]Ra22]

_ [QuRu ~1 0| Qu2Ra2
N {Qlen} 1Ry Rial + [ 0| QuRo }

= Acs[!|T] + XP

Q11R11] 1 [ 0| Q2R ] T
Acs = . T=RIR, X= p
© [ Qo1 Ru1 e 0| QR
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A~ A= Acs[l|T]PT,

|A—=Al2 = X2 < oks1(A)V/1 + k(n — k).

R— { Ru1 R12:|

0 | R

01(R22) < oks1(A)V/ 1+ k(n— k).
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Randomized Matrix Interpolative Decomposition

Randomized scheme for approximating the range A € R™*":
@ Draw an n x | Gaussian random matrix Q
@ Form the matrix product Y = AQ

@ Construct a matrix @ whose columns form an orthonormal basis for
the range of Y

Intuition:
vy =A0 =12 ... k

Consider A = B + E, where B is a rank-k matrix and E is a small
perturbation, then

v =B+ E)w) = Bu) + ELD =12 ... k+p

where p is a small number
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Randomized Matrix Interpolative Decomposition

Algorithm 4 Randomized matrix interpolative decomposition

Input: An m X n matrix A and integer | > k
Output: Indices set L, of the k columns, the permutation matrix P, and
the column subset matrix Acs

1. Draw an n x | Gaussian random matrix, €.

2: Form m x [ matrix Y = AQ.

3: Construct an m x k orthonormal matrix @ for approximate the range

of Y via the QR factorization, Y = QR.
4: Construct Ly, P, and Acs from the QR of Y.
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Randomized Tensor Interpolative Decomposition

Tensor notation:

Ky d KU
(N _ 0 0 (N
U=> Qu’=> ud u"=Q
=1 j=1 =1 j=1
where / € RMi for j =1, ..., d and Ky is the rank

A matricized tensor U:

The inner product between two tensors U and V:

Ku Ry

DRI

I=1 m=1 j=1
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Randomized Tensor Interpolative Decomposition

Algorithm 5 Randomized tensor interpolative decomposition

Input: A rank ' tensor U and integer | > &
Output: A rank « tensor I
1: Draw a random tensor R of rank /.
2: Form | x k' matrix Y = R7U.
3: Compute an ID of Y and, as a result, a k X ¥’ permutation matrix P,
and a column index set L.
4: Compute U\) = 3% _ P4 where I, € Ly
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Active subspace methods

A general multivariate function f : R” — R
f=17(), £€R”

Active subspace method
@ Compute the gradient of f:

of ﬁr
R

V(o) - |

@ Construct a covariance matrix C:

C=E[(VeF(€)(Vef(€)']
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© Compute an eigendecomposition of C:
C=WAWT, A=diag(\s, ..., Am),

where)\l 2)\22 Z)\m
Q Partition W and A:

A
/\—[ 1 /\2}’ W = [Wy, Ws]

where A; = diag(\1, ..., Ap) with n < m and Wy € R™*"
@ Rotate &:
y = W1T£a zZ= W2T§

where y € R" and z € R™™"
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At spatial point x1, log;o(|aa(x1)]) v.s. logio(lda(x1)])

Kookjin Lee Prelim exam



Nonlinear random fi
Truncation based on randomized tensor decomposition
Active subspace methods

Proposed work

20
o x
o %
0 X3
X4
200 o
@ ®
a0 @ ® ®
@o O
o @o ®o
60 |-
@0 o @0 o ®oo
80
@O0 o @o o o
-100 |-
@0 o o
120 1 1 1 1 1 1 1 1 1 |
0 50 100 150 200 250 300 350 400 450 500

At spatial points x;, i =1, 2, 3, 4, logyo(]4a

Kookjin Lee Prelim exam



Nonlinear ra
Truncation based on randomized tensor decomposition
Active subspace methods

Proposed work

Group nget sets of spatial points

Construct the Jacobian of a(x, &) at a set of spatial points
x(k) = {x,.(k)}nx = ny/nset and k= {1, ..., Nget}:

i=1" "'x
0¢1 061
Sy =1 :
82(X§k)’ £) . Ba(xiz)7 €)
85/\4 B‘EM

Compute the covariance matrix:
C(xW)=E [J(x<k>)J(x<k>)T .
Rotate &:

x4 _

7 W, i€ € R
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Proposed work Active subspace methods

o X
2
o EEE)EEE g ° % ®
E‘E‘go %%g%i% EIE‘BQ E‘\\EIE‘E‘Q o
B
g% %@q@a% @g% @ﬁ%% 9
Bgihoch &  ogugl otk g Mg . ©
%% %% @ %O ‘%% I°) @ %
T eney
80 [ %Q%% %%%%%Q‘E%
L XY ?
71000 5‘0 1(‘)0 1;0 250 2;0 360 3é0 4(‘)0 4;0 550

Kookjin Lee Prelim exam



	Introduction
	Problem definition

	Model problem
	KL expansion
	Stochastic Galerkin method
	Tensor format

	Preliminary work
	Low-rank projection method in tensor format
	Truncation methods
	Numerical experiments

	Proposed work
	Nonlinear random fields
	Truncation based on randomized tensor decomposition
	Active subspace methods


