# Low-rank Solution Algorithms for Stochastic Partial Differential Equations

#### Kookjin Lee

Department of Computer Science University of Maryland

klee@cs.umd.edu

March 9, 2016

(日) (同) (三) (三)

## Overview

- Introduction
  - Problem definition
- 2 Model problem
  - KL expansion
  - Stochastic Galerkin method
  - Tensor format

## Preliminary work

- Low-rank projection method in tensor format
- Truncation methods
- Numerical experiments

## Proposed work

- Nonlinear random fields
- Truncation based on randomized tensor decomposition
- Active subspace methods

イロト イポト イヨト イヨト 二日

#### Introduction

Model problem Preliminary work Proposed work

Problem definition

# Introduction Problem definition

## 2 Model problem

- KL expansion
- Stochastic Galerkin method
- Tensor format

## Preliminary work

- Low-rank projection method in tensor format
- Truncation methods
- Numerical experiments

## Proposed work

- Nonlinear random fields
- Truncation based on randomized tensor decomposition
- Active subspace methods

(日) (同) (三) (三)

Problem definition

# Partial Differential Equations with Stochastic Coefficients

#### Examples:

- Diffusion equations:  $-\nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi}) \nabla u) = f$ Convection-diffusion equations:  $\nu \nabla \cdot (\mathbf{a}(\mathbf{x}, \boldsymbol{\xi}) \nabla u) + \vec{w} \cdot \nabla u = f$

3

Posed on  $D \subset \mathbb{R}^d$  with suitable boundary conditions

Problem definition

# Partial Differential Equations with Stochastic Coefficients

#### Examples:

Diffusion equations:

 $-\nabla \cdot (\mathbf{a}(\mathbf{x}, \boldsymbol{\xi}) \nabla u) = f$ Convection-diffusion equations:  $\nu \nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi}) \nabla u) + \vec{w} \cdot \nabla u = f$ 

(日) (同) (目) (日) (日) (0) (0)

Posed on  $D \subset \mathbb{R}^d$  with suitable boundary conditions

#### **Randomness:**

Problem definition

# Partial Differential Equations with Stochastic Coefficients

#### Examples:

Diffusion equations:  $-\nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi})\nabla u) = f$ Convection-diffusion equations:  $\nu \nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi}) \nabla u) + \vec{w} \cdot \nabla u = f$ 

イロト イポト イヨト イヨト 二日

Posed on  $D \subset \mathbb{R}^d$  with suitable boundary conditions

#### **Randomness:**

• An inherent irregularity in the phenomenon being observed e.g., the kinetic theory of gas

Introduction Proposed work

Problem definition

# Partial Differential Equations with Stochastic Coefficients

#### Examples:

Convection-diffusion equations:  $\nu \nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi}) \nabla u) + \vec{w} \cdot \nabla u = f$ 

Diffusion equations:  $-\nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi}) \nabla u) = f$ 

(日) (同) (三) (三) (三) (○)

Posed on  $D \subset \mathbb{R}^d$  with suitable boundary conditions

#### **Randomness:**

- An inherent irregularity in the phenomenon being observed e.g., the kinetic theory of gas
- The impossibility of an exhaustive deterministic description e.g., groundwater flow through a heterogeneous porous media

Introduction Proposed work

Problem definition

# Partial Differential Equations with Stochastic Coefficients

### Examples:

Convection-diffusion equations:  $\nu \nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi}) \nabla u) + \vec{w} \cdot \nabla u = f$ 

Diffusion equations:  $-\nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi}) \nabla u) = f$ 

イロト イポト イヨト イヨト 二日

Posed on  $D \subset \mathbb{R}^d$  with suitable boundary conditions

### **Randomness:**

- An inherent irregularity in the phenomenon being observed e.g., the kinetic theory of gas
- The impossibility of an exhaustive deterministic description e.g., groundwater flow through a heterogeneous porous media
- $a(\mathbf{x}, \xi)$  is a random process/ random field parameterized by a set of random variables  $\xi = [\xi_1, \ldots, \xi_M]^T$
- The numerical solution  $u(\mathbf{x}, \xi)$  can be described by  $\xi$

Introduction Proposed work

Problem definition

# Partial Differential Equations with Stochastic Coefficients

### Examples:

Diffusion equations:

Convection-diffusion equations:  $\nu \nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi}) \nabla u) + \vec{w} \cdot \nabla u = f$ 

 $-\nabla \cdot (\mathbf{a}(\mathbf{x}, \boldsymbol{\xi}) \nabla u) = f$ 

Posed on  $D \subset \mathbb{R}^d$  with suitable boundary conditions

### **Randomness:**

- An inherent irregularity in the phenomenon being observed e.g., the kinetic theory of gas
- The impossibility of an exhaustive deterministic description e.g., groundwater flow through a heterogeneous porous media
- $a(\mathbf{x}, \xi)$  is a random process/ random field parameterized by a set of random variables  $\xi = [\xi_1, \ldots, \xi_M]^T$
- The numerical solution  $u(\mathbf{x}, \xi)$  can be described by  $\xi$

Goal:

Efficient computation of the numerical solution  $u(\mathbf{x}, \xi)$  and solution statistics (e.g.,  $\mathbb{E}[u]$ , Var(u)) using linear algebraic algorithms 

Problem definition

## Linear systems:

Large linear systems arise from discretizations of stochastic PDEs:

Au = f

イロン イ団 とくほと くほとう

= 990

Problem definition

## Linear systems:

Large linear systems arise from discretizations of stochastic PDEs:

$$Au = f$$

• High-dimensional problem: a large M in  $\xi = [\xi_1, \ldots, \xi_M]^T$ 

≡ nar

Problem definition

## Linear systems:

Large linear systems arise from discretizations of stochastic PDEs:

$$Au = f$$

- High-dimensional problem: a large M in  $\xi = [\xi_1, \ldots, \xi_M]^T$
- Linear systems with a special structure,

$$A=\sum_{i=1}G_i\otimes K_i$$

where  $\otimes$  is the Kronecker-product:

$$G \otimes K = \begin{bmatrix} g_{11}K & \cdots & g_{1n_{\xi}}K \\ \vdots & \ddots & \vdots \\ g_{n_{\xi}1}K & \cdots & g_{n_{\xi}n_{\xi}}K \end{bmatrix} \in \mathbb{R}^{n_{\xi}n_{x} \times n_{\xi}n_{x}},$$
$$G \in \mathbb{R}^{n_{\xi} \times n_{\xi}} \text{ and } K \in \mathbb{R}^{n_{x} \times n_{x}}$$

Problem definition

# Low-rank solution of linear systems:

#### Solutions in the Kronecker-product structure:

$$u = \sum_{k=1}^{\kappa_u} y_k \otimes z_k, \qquad y_k \in \mathbb{R}^{n_{\xi}} \text{ and } z_k \in \mathbb{R}^{n_x}$$

where  $\kappa_u$  is the rank of u

Problem definition

## Low-rank solution of linear systems:

#### Solutions in the Kronecker-product structure:

$$u = \sum_{k=1}^{\kappa_u} y_k \otimes z_k, \qquad y_k \in \mathbb{R}^{n_{\xi}} ext{ and } z_k \in \mathbb{R}^{n_{\chi}}$$

#### where $\kappa_u$ is the rank of u

Low-rank approximations to solutions:

$$u pprox ilde{u} = \sum_{k=1}^{\kappa_{ ilde{u}}} ilde{y}_k \otimes ilde{z}_k, \qquad ilde{y}_k \in \mathbb{R}^{n_{\xi}} ext{ and } ilde{z}_k \in \mathbb{R}^{n_x}$$

where  $\kappa_{\tilde{u}} \ll \kappa_u$  s.t.  $\|A\tilde{u} - f\|_2 / \|f\|_2 < \epsilon$ 

KL expansion Stochastic Galerkin method Tensor format

## Introduction

Problem definition

## 2 Model problem

- KL expansion
- Stochastic Galerkin method
- Tensor format

## Preliminary work

- Low-rank projection method in tensor format
- Truncation methods
- Numerical experiments

## Proposed work

- Nonlinear random fields
- Truncation based on randomized tensor decomposition
- Active subspace methods

(日) (同) (三) (三)

KL expansion Stochastic Galerkin method Tensor format

# Karhunen-Loéve expansion

Random field  $a(\mathbf{x}, \xi)$ :

$$-\nabla \cdot (\mathbf{a}(\mathbf{x},\xi)\nabla u(\mathbf{x},\xi)) = f$$

イロト イヨト イヨト イヨト

ъ.

KL expansion Stochastic Galerkin method Tensor format

# Karhunen-Loéve expansion

**Random field**  $a(\mathbf{x}, \xi)$ :  $-\nabla \cdot (\mathbf{a}(\mathbf{x}, \xi) \nabla u(\mathbf{x}, \xi)) = f$  $a(\mathbf{x}, \xi)$  has affine dependence on  $\{\xi_i\}_{i=1}^M$ ,

$$a(oldsymbol{x},\,\xi)pprox a^{(M)}(oldsymbol{x},\,\xi)=a_0(oldsymbol{x})+\sum_{i=1}^Ma_i(oldsymbol{x})\xi_i$$

KL expansion Stochastic Galerkin method Tensor format

# Karhunen-Loéve expansion

**Random field**  $a(\mathbf{x}, \xi)$ :  $-\nabla \cdot (a(\mathbf{x}, \xi)\nabla u(\mathbf{x}, \xi)) = f$  $a(\mathbf{x}, \xi)$  has affine dependence on  $\{\xi_i\}_{i=1}^M$ ,

$$a(\mathbf{x}, \xi) pprox a^{(M)}(\mathbf{x}, \xi) = a_0(\mathbf{x}) + \sum_{i=1}^M a_i(\mathbf{x})\xi_i$$

In this study, a truncated Karhunen-Loéve expansion is considered,

$$a(\mathbf{x}, \xi) \approx a^{(M)}(\mathbf{x}, \xi) = \mu + \sigma \sum_{i=1}^{M} \sqrt{\lambda_i} a_i(\mathbf{x}) \xi_i$$

- $(\mu, \sigma^2)$  are mean and variance of  $a(\mathbf{x}, \xi)$
- $\{(\lambda_i, a_i)\}_{i=1}^{M}$  are eigenvalue and eigenfunction pairs of an integral operator of covariance function,  $C(\mathbf{x}, \mathbf{y}), \mathbf{x}, \mathbf{y} \in D$ , of  $a(\mathbf{x}, \xi)$
- $\{\xi_i\}_{i=1}^M$  are uncorrelated random variables (additional assumption: i.i.d.)

Model problem

KL expansion

Eigenpairs  $\{(\lambda_i, a_i)\}_{i=1}^M$  can be obtained by solving:

$$\int_D C(\mathbf{x}, \mathbf{y}) a_i(\mathbf{y}) d\mathbf{y} = \lambda_i a_i(\mathbf{x}), \quad i = 1 \dots, M$$

#### The series converges in $L^2$ sense:

$$\lim_{M \to \infty} \left\langle \left( a(\boldsymbol{x}, \xi) - a^{(M)}(\boldsymbol{x}, \xi) \right)^2 \right\rangle_{\rho} = 0$$



#### Figure: Mean function and example eigenfunctions

(ロ) (四) (三) (三) (三)

KL expansion Stochastic Galerkin method Tensor format

## 1 Introduction

Problem definition

## 2 Model problem

- KL expansion
- Stochastic Galerkin method
- Tensor format

## Preliminary work

- Low-rank projection method in tensor format
- Truncation methods
- Numerical experiments

## Proposed work

- Nonlinear random fields
- Truncation based on randomized tensor decomposition
- Active subspace methods

(日) (同) (三) (三)

KL expansion Stochastic Galerkin method Tensor format

**Solution**  $u(\mathbf{x}, \xi)$ :  $-\nabla \cdot (a(\mathbf{x}, \xi)\nabla u(\mathbf{x}, \xi)) = f$ Generalized polynomial chaos expansion:

$$u(\mathbf{x}, \xi) \approx \sum_{s=1}^{n_{\xi}} u_s(\mathbf{x}) \psi_s(\xi)$$

KL expansion Stochastic Galerkin method Tensor format

**Solution**  $u(\mathbf{x}, \xi)$ :  $-\nabla \cdot (a(\mathbf{x}, \xi)\nabla u(\mathbf{x}, \xi)) = f$ Generalized polynomial chaos expansion:

$$u(\mathbf{x}, \xi) \approx \sum_{s=1}^{n_{\xi}} u_s(\mathbf{x}) \psi_s(\xi)$$

• Orthogonality basis:  $\int_{\Gamma} \psi_i(\xi) \psi_j(\xi) \rho(\xi) d\xi = \delta_{ij}$ 

KL expansion Stochastic Galerkin method Tensor format

**Solution**  $u(\mathbf{x}, \xi)$ :  $-\nabla \cdot (a(\mathbf{x}, \xi)\nabla u(\mathbf{x}, \xi)) = f$ Generalized polynomial chaos expansion:

$$u(\mathbf{x}, \xi) \approx \sum_{s=1}^{n_{\xi}} u_s(\mathbf{x}) \psi_s(\xi)$$

- Orthogonality basis:  $\int_{\Gamma} \psi_i(\xi) \psi_j(\xi) \rho(\xi) d\xi = \delta_{ij}$
- Product form:  $\psi_s(\xi) = \psi_{\alpha(s)}(\xi) = \prod_{i=1}^M \pi_{\alpha_i(s)}(\xi_i),$  $\alpha(s) = (\alpha_1(s), \ldots, \alpha_M(s))$

KL expansion Stochastic Galerkin method Tensor format

**Solution**  $u(\mathbf{x}, \xi)$ :  $-\nabla \cdot (a(\mathbf{x}, \xi)\nabla u(\mathbf{x}, \xi)) = f$ Generalized polynomial chaos expansion:

$$u(\mathbf{x}, \xi) \approx \sum_{s=1}^{n_{\xi}} u_s(\mathbf{x}) \psi_s(\xi)$$

- Orthogonality basis:  $\int_{\Gamma} \psi_i(\xi) \psi_j(\xi) \rho(\xi) d\xi = \delta_{ij}$
- Product form:  $\psi_s(\xi) = \psi_{\alpha(s)}(\xi) = \prod_{i=1}^M \pi_{\alpha_i(s)}(\xi_i),$  $\alpha(s) = (\alpha_1(s), \ldots, \alpha_M(s))$
- Total degree space:

$$\Lambda^{M, p} = \{ \alpha(s) \in \mathbb{N}_0^M : \|\alpha(s)\|_1 \le p \},$$

where  $\|\alpha(s)\|_1 = \sum_{k=1}^{M} \alpha_k(s)$  and  $n_{\xi} = \dim(\Lambda^{M, p}) = \frac{(M+p)!}{M!p!}$  (DoFs of stochastic domain)

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の Q ()

KL expansion Stochastic Galerkin method Tensor format

# If $\{\xi_i\}$ are uniform random variables $\{\pi_i\}$ are Legendre polynomials.

$$\begin{aligned} \pi_0(\xi_i) &= 1, \\ \pi_1(\xi_i) &= \xi_i, \\ \pi_2(\xi_i) &= \frac{1}{2}(3\xi_i^2 - 1), \\ \pi_3(\xi_i) &= \frac{1}{2}(5\xi_i^3 - 3\xi_i) \\ \pi_4(\xi_i) &= \frac{1}{8}(35\xi_i^4 - 30\xi_i^2 + 3) \end{aligned}$$



イロン イ団 とくほと くほとう

ъ.

KL expansion Stochastic Galerkin method Tensor format

# If $\{\xi_i\}$ are uniform random variables $\{\pi_i\}$ are Legendre polynomials.

$$\begin{aligned} \pi_0(\xi_i) &= 1, \\ \pi_1(\xi_i) &= \xi_i, \\ \pi_2(\xi_i) &= \frac{1}{2}(3\xi_i^2 - 1), \\ \pi_3(\xi_i) &= \frac{1}{2}(5\xi_i^3 - 3\xi_i) \\ \pi_4(\xi_i) &= \frac{1}{8}(35\xi_i^4 - 30\xi_i^2 + 3) \end{aligned}$$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{split} \Lambda^{2,3} &= \{ (\alpha_1(s), \, \alpha_2(s) \}_{s=1}^{10} \\ &= \{ (0,0), (1,0), (2,0), (3,0), (0,1), (1,1), (2,1), (0,2), (1,2), (0,3) \} \end{split}$$

Model problem

Stochastic Galerkin method

## If $\{\xi_i\}$ are uniform random variables $\{\pi_i\}$ are Legendre polynomials.

$$\pi_{0}(\xi_{i}) = 1,$$
  

$$\pi_{1}(\xi_{i}) = \xi_{i},$$
  

$$\pi_{2}(\xi_{i}) = \frac{1}{2}(3\xi_{i}^{2} - 1),$$
  

$$\pi_{3}(\xi_{i}) = \frac{1}{2}(5\xi_{i}^{3} - 3\xi_{i}),$$
  

$$\pi_{4}(\xi_{i}) = \frac{1}{8}(35\xi_{i}^{4} - 30\xi_{i}^{2} + 3),$$



・ロト ・回ト ・ヨト ・ヨト

= 990

$$\Lambda^{2,3} = \{ (\alpha_1(s), \alpha_2(s) \}_{s=1}^{10} \\ = \{ (0,0), (1,0), (2,0), (3,0), (0,1), (1,1), (2,1), (0,2), (1,2), (0,3) \} \\ \psi_1 = \pi_0(\xi_1)\pi_0(\xi_2), \ \psi_2 = \pi_1(\xi_1)\pi_0(\xi_2), \ \psi_3 = \pi_2(\xi_1)\pi_0(\xi_2), \ \dots$$

and  $n_{\xi} = 10$ 

KL expansion Stochastic Galerkin method Tensor format

## **Solution:** $u(\mathbf{x}, \xi) \approx \sum_{s=1}^{n_{\xi}} u_s(\mathbf{x}) \psi_s(\xi)$

Finite Element Methods:

$$u_s(\mathbf{x}) \approx \sum_{r=1}^{n_x} u_{rs} \phi_r(\mathbf{x})$$

using piecewise linear "hat functions"



# of nodes =  $n_x$  (DoFs of deterministic domain)

э

KL expansion Stochastic Galerkin method Tensor format

# The Stochastic Galerkin Method

### Discrete solution:

- Discretization in physical space (Finite Element Methods): basis  $\{\phi_r\}_{r=1}^{n_x}$ , piecewise linear "hat functions"
- Discretization in stochastic space (Polynomial Chaos Expansion): basis  $\{\psi_s\}_{s=1}^{n_{\xi}}$ , *M*-variate polynomials in  $\xi$  of total degree *p*

Model problem Preliminary work Proposed work Stochastic Galerkin method

# The Stochastic Galerkin Method

### Discrete solution:

- Discretization in physical space (Finite Element Methods): basis  $\{\phi_r\}_{r=1}^{n_x}$ , piecewise linear "hat functions"
- Discretization in stochastic space (Polynomial Chaos Expansion): basis  $\{\psi_s\}_{s=1}^{n_{\xi}}$ , *M*-variate polynomials in  $\xi$  of total degree p

$$u^{(sg)}(\boldsymbol{x},\,\xi) = \sum_{s=1}^{n_{\xi}} \sum_{r=1}^{n_{x}} u_{rs} \phi_{r}(\boldsymbol{x}) \psi_{s}(\xi)$$

The weak formulation leads to a large coupled system order of  $n_x n_x$ 

$$Au = f$$

where  $u = [u_{11} \dots u_{n_*1} u_{12} \dots u_{n_*2} \dots u_{1n_{\epsilon}} \dots u_{n_*n_{\epsilon}}]^T$ 

イロト 不得 とくき とくき とうき

KL expansion Stochastic Galerkin method Tensor format

# The Stochastic Galerkin Method

Strong formulation:  $-\nabla \cdot (a(\mathbf{x}, \xi)\nabla u(\mathbf{x}, \xi)) = f$ 

(Deterministic) weak formulation: find  $u \in H^1_E(D)$  s.t.

$$\int_D a \nabla u \nabla v \, d\boldsymbol{x} = \int_D f v \, d\boldsymbol{x}, \quad \forall v \in H^1_0(D)$$

KL expansion Stochastic Galerkin method Tensor format

# The Stochastic Galerkin Method

Strong formulation:  $-\nabla \cdot (a(\mathbf{x}, \xi) \nabla u(\mathbf{x}, \xi)) = f$ 

(Deterministic) weak formulation: find  $u \in H^1_E(D)$  s.t.

$$\int_D a \nabla u \nabla v \, d\boldsymbol{x} = \int_D f v \, d\boldsymbol{x}, \quad \forall v \in H^1_0(D)$$

Stochastic weak formulation: find  $u \in H^1_E(D) \otimes L_2(\Gamma)$  s.t.

$$\int_{\Gamma} \int_{D} a \nabla u \nabla v \, d\mathbf{x} \rho(\xi) d\xi = \int_{\Gamma} \int_{D} f v \, d\mathbf{x} \rho(\xi) d\xi, \quad \forall v \in H_0^1(D) \otimes L_2(\Gamma)$$
  
where  $\Gamma = \prod \Gamma_i$  and  $\Gamma_i = \xi_i(\Omega)$ 

KL expansion Stochastic Galerkin method Tensor format

## **LHS:** Substituting the truncated KL expansion $a(\mathbf{x}, \xi) = a_0(\mathbf{x}) + \sum_{i=1}^{M} a_i(\mathbf{x})\xi_i$ :

$$\int_{\Gamma}\int_{D}\left(a_{0}(\boldsymbol{x})+\sum_{i=1}^{M}a_{i}(\boldsymbol{x})\xi_{i}\right)\nabla u^{(sg)}(\boldsymbol{x},\,\xi)\nabla v\,d\boldsymbol{x}\rho(\xi)d\xi$$

## Substituting $u^{(sg)}$ and v:

$$\int_{\Gamma} \int_{D} \left( a_0(\mathbf{x}) + \sum_{i=1}^{M} a_i(\mathbf{x})\xi_i \right) \nabla \left( \sum_{s=1}^{n_{\xi}} \sum_{r=1}^{n_{x}} u_{rs} \phi_r(\mathbf{x}) \psi_s(\xi) \right) \nabla \phi_i(\mathbf{x}) \psi_j(\xi) \, d\mathbf{x} \rho(\xi) d\xi,$$
$$i = 1, \ldots, n_x, j = 1, \ldots, n_{\xi}$$

# **RHS:** Substituting *v*:

$$\int_{\Gamma}\int_{D}f\phi_{i}(\mathbf{x})\psi_{j}(\xi)\,d\mathbf{x}\rho(\xi)d\xi,\quad i=1,\,\ldots,\,n_{x},\,j=1,\,\ldots,\,n_{\xi}$$

∃ 900

Model problem Preliminary work Stochastic Galerkin method

#### Stochastic Galerkin systems in the Kronecker-product structure:

$$\begin{aligned} & A u = f \\ A = G_0 \otimes K_0 + \sum_{l=1}^M G_l \otimes K_l, \quad f = g_0 \otimes f_0 \end{aligned}$$

"Stochastic" matrices:

$$[G_0]_{ij} = \langle \psi_i(\xi)\psi_j(\xi)\rangle_{\rho}, \ [G_I]_{ij} = \langle \xi_I \psi_i(\xi)\psi_j(\xi)\rangle_{\rho}, \ I = 1, \ldots, M$$

Weighted stiffness matrices:

$$\begin{split} & [K_0]_{ij} = \int_D a_0 \nabla \phi_i(\boldsymbol{x}) \nabla \phi_j(\boldsymbol{x}) d\boldsymbol{x}, \\ & [K_l]_{ij} = \int_D a_l(\boldsymbol{x}) \nabla \phi_i(\boldsymbol{x}) \nabla \phi_j(\boldsymbol{x}) d\boldsymbol{x}, \quad l = 1, \dots, M \end{split}$$

Forcing term:

$$[f_0]_i = \int_D f \phi_i(\mathbf{x}) d\mathbf{x}, [g_0]_i = \langle \psi_i(\xi) \rangle_\rho$$

Model problem

Stochastic Galerkin method

#### Nonzero structures of matrices:



Stiffness matrices  $\{K_i\}_{i=0}^M$ 



<ロ> <同> <同> < 回> < 回>

2

## Stochastic matrice $\{G_i\}_{i=1}^3$

KL expansion Stochastic Galerkin method Tensor format



## Galerkin matrix A (each block has dimension $n_x \times n_x$ )

2

<ロト <回ト < 回ト < 回ト
KL expansion Stochastic Galerkin method Tensor format

#### Solutions in tensor format:

$$A_{\boldsymbol{u}} = f$$
,

$$u = \sum_{k=1}^{\kappa_u} z_k \otimes y_k, \ \ z_k \in \mathbb{R}^{n_\xi} \ \text{and} \ y_k \in \mathbb{R}^{n_\chi},$$

or, equivalently,

$$U = \sum_{k=1}^{\kappa_u} y_k z_k^T = Y_{\kappa_u} Z_{\kappa_u}^T$$

#### where

$$Y_{\kappa_u} = [y_1, \ldots, y_{\kappa_u}] \in \mathbb{R}^{n_x \times \kappa_u}, \quad Z_{\kappa_u} = [z_1, \ldots, z_{\kappa_u}] \in \mathbb{R}^{n_\xi \times \kappa_u}$$

Isomorphism between  $\mathbb{R}^{n_x \times n_{\xi}}$  and  $\mathbb{R}^{n_x n_{\xi}}$  defined by two operators: u = vec(U) and U = mat(u)





KL expansion Stochastic Galerkin method Tensor format

### Linear systems in tensor format: Au = f

$$\left(\sum_{l=0}^{M} G_{l} \otimes K_{l}\right) \left(\sum_{k=1}^{\kappa_{u}} z_{k} \otimes y_{k}\right) = g_{0} \otimes f_{0}$$

KL expansion Stochastic Galerkin method Tensor format

#### Linear systems in tensor format: Au = f

$$\begin{pmatrix} \sum_{l=0}^{M} G_{l} \otimes K_{l} \end{pmatrix} \left( \sum_{k=1}^{\kappa_{u}} z_{k} \otimes y_{k} \right) = g_{0} \otimes f_{0} \\ \sum_{l=0}^{M} \sum_{k=1}^{\kappa_{u}} (G_{l} z_{k}) \otimes (K_{l} y_{k}) = g_{0} \otimes f_{0} \end{cases}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

KL expansion Stochastic Galerkin method Tensor format

#### Linear systems in tensor format: Au = f

$$\begin{pmatrix} \sum_{l=0}^{M} G_{l} \otimes K_{l} \end{pmatrix} \left( \sum_{k=1}^{\kappa_{u}} z_{k} \otimes y_{k} \right) = g_{0} \otimes f_{0}$$
$$\sum_{l=0}^{M} \sum_{k=1}^{\kappa_{u}} (G_{l} z_{k}) \otimes (K_{l} y_{k}) = g_{0} \otimes f_{0}$$

Matricizing

$$\sum_{l=0}^{M} \sum_{k=1}^{\kappa_{u}} (K_{l} y_{k}) (G_{l} z_{k})^{T} = \sum_{l=0}^{M} \sum_{k=1}^{\kappa_{u}} K_{l} y_{k} z_{k}^{T} G_{l}^{T} = f_{0} g_{0}^{T}$$
$$\sum_{l=0}^{M} K_{l} U G_{l}^{T} = \sum_{l=0}^{M} (K_{l} Y_{\kappa_{u}}) (G_{l} Z_{\kappa_{u}})^{T} = f_{0} g_{0}^{T}$$

KL expansion Stochastic Galerkin method **Tensor format** 

#### Stochastic Galerkin system:

Exploiting the properties of the Kronecker product structure:

$$Au = \left(\sum_{l=0}^{M} G_{l} \otimes K_{l}\right) \left(\sum_{k=1}^{\kappa_{u}} z_{k} \otimes y_{k}\right) = \sum_{l=0}^{M} \sum_{k=1}^{\kappa_{u}} (G_{l} z_{k}) \otimes (K_{l} y_{k})$$

- Operation counts of matrix operations are additive
   O(nnz(G) + nnz(K)) instead of O(nnz(G) × nnz(K))
- This motivates the use of Krylov subspace methods in tensor format

Model problem Preliminary work

Tensor format

# Basic operations in tensor notation

Two essential operations for Krylov subspace methods: matrix-vector product and linear combination

• MVP: 
$$\kappa_u \mapsto (M+1)\kappa_u$$

$$Au = \sum_{l=0}^{M} \sum_{k=1}^{\kappa_u} (G_l z_k) \otimes (K_l y_k) = \sum_{i=1}^{(M+1)\kappa_u} \tilde{z}_i \otimes \tilde{y}_i$$

• Addition/subtraction:  $(\kappa_u, \kappa_v) \mapsto (\kappa_u + \kappa_v)$ 

$$u+v=\sum_{i=1}^{\kappa_u}z_i\otimes y_i+\sum_{j=1}^{\kappa_v}\hat{z}_j\otimes \hat{y}_j=\sum_{i=1}^{\kappa_u+\kappa_v}z_i\otimes y_i$$

where  $y_{i+\kappa_{ii}} = \hat{y}_i$  and  $z_{i+\kappa_{ii}} = \hat{z}_i$ ,  $i = 1, \ldots, \kappa_v$ 

Two of the fundamental operations used in Krylov subspace methods tend to increase the rank of the quantities produced

| Introduction<br>Model problem<br>Preliminary work<br>Proposed work | KL expansion<br>Stochastic Galerkin method<br><b>Tensor format</b> |
|--------------------------------------------------------------------|--------------------------------------------------------------------|
|--------------------------------------------------------------------|--------------------------------------------------------------------|

$$\begin{array}{rcl} u \Rightarrow \tilde{u} \\ \text{Rank} \cdot \kappa_{\mu} \Rightarrow \kappa_{\mu} \end{array}$$



《曰》 《圖》 《글》 《글》 \_ 글 \_ \_

Low-rank projection method in tensor format Truncation methods Numerical experiments

(日) (同) (三) (三)

3

### 1 Introduction

Problem definition

### 2 Model problem

- KL expansion
- Stochastic Galerkin method
- Tensor format

### OPRESENTING PRESENT OF A CONTRUCT OF A CONTRUCTA CO

### Low-rank projection method in tensor format

- Truncation methods
- Numerical experiments

## Proposed work

- Nonlinear random fields
- Truncation based on randomized tensor decomposition
- Active subspace methods

Low-rank projection method in tensor format Truncation methods Numerical experiments

▲□▶ ▲□▶ ▲■▶ ▲■▶ = ののの

# The GMRES method

#### The generalized minimum residual method

Compute an approximate solution  $u_m \in u_0 + \mathcal{K}_m(A, v_1)$  on *m*th *Krylov* subspace,  $\mathcal{K}_m = \text{span}\{v_1, Av_1, \ldots, A^{m-1}v_1\}$  $u_0$  is an initial vector with residual  $r_0 = f - Au_0$ ,  $v_1 = r_0/||r_0||_2$ 

#### Algorithm 1 GMRES method without restarting

set the initial solution  $u_0$   $r_0 := f - Au_0$   $\tilde{v}_1 := r_0$   $v_1 := \tilde{v}_1/\|\tilde{v}_1\|$ for  $j = 1, \dots, m$  do  $w_j := Av_j$ solve  $(V_j^T V_j)\alpha = V_j^T w_j$   $\tilde{v}_{j+1} := w_j - \sum_{i=1}^j \alpha_i v_i$   $v_{j+1} := \tilde{v}_{j+1}/\|\tilde{v}_{j+1}\|$ end for solve  $(W_m^T A V_m)y = W_m^T r_0$   $(W_m = A V_m)$  $u_1 := u_0 + V_m y$ 

Low-rank projection method in tensor format Truncation methods Numerical experiments

# Low-rank projection method

**Goal:** compute a low-rank solution of rank  $\kappa$  satisfying  $\|f - A\tilde{u}\|_2 / \|f\|_2 < \epsilon$ 

Low-rank projection method in tensor format Truncation methods Numerical experiments

(日) (同) (目) (日) (日) (0) (0)

# Low-rank projection method

Low-rank projection method in tensor format Truncation methods Numerical experiments

(日) (同) (目) (日) (日) (0) (0)

# Low-rank projection method

**Goal:** compute a low-rank solution of rank  $\kappa$  satisfying  $\|f - A\tilde{u}\|_2 / \|f\|_2 < \epsilon$  (and maintain rank of all vectors to be  $\kappa$ )

• Construct a new basis vector  $w_j = Av_j$ 

Low-rank projection method in tensor format Truncation methods Numerical experiments

イロト イポト イヨト イヨト 二日

# Low-rank projection method

- Construct a new basis vector  $w_j = Av_j$
- Orthogonalize  $w_j$  with respect to the previously generated basis vectors  $\{v_i\}_{i=1}^{j}$  (i.e.,  $\hat{w}_j = w_j \sum_{i=1}^{j} \alpha_i v_i$  where  $V_j^T V_j \alpha = V_j^T w_j$ )

Low-rank projection method in tensor format Truncation methods Numerical experiments

(日) (同) (三) (三) (三) (○)

# Low-rank projection method

- Construct a new basis vector  $w_j = Av_j$
- Orthogonalize  $w_j$  with respect to the previously generated basis vectors  $\{v_i\}_{i=1}^{j}$  (i.e.,  $\hat{w}_j = w_j \sum_{i=1}^{j} \alpha_i v_i$  where  $V_j^T V_j \alpha = V_j^T w_j$ )
- Truncate the new vector  $\tilde{v}_{j+1} = \mathcal{T}_{\kappa}(\hat{w}_j)$  and orthonormalize  $v_{j+1} = \tilde{v}_{j+1}/\|\tilde{v}_{j+1}\|_2$

Low-rank projection method in tensor format Truncation methods Numerical experiments

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

# Low-rank projection method

- Construct a new basis vector  $w_j = Av_j$
- Orthogonalize  $w_j$  with respect to the previously generated basis vectors  $\{v_i\}_{i=1}^{j}$  (i.e.,  $\hat{w}_j = w_j \sum_{i=1}^{j} \alpha_i v_i$  where  $V_j^T V_j \alpha = V_j^T w_j$ )
- Truncate the new vector  $\tilde{v}_{j+1} = \mathcal{T}_{\kappa}(\hat{w}_j)$  and orthonormalize  $v_{j+1} = \tilde{v}_{j+1}/\|\tilde{v}_{j+1}\|_2$
- Compute the iterate  $(\tilde{u}_1 = \tilde{u}_0 + V_m \beta)$  by projecting the residual  $r_0 = b Au_0$  onto the subspace  $W_m = \text{span}\{w_1, \ldots, w_m\}$  $(W_m^T A V_m)\beta = W_m^T r_0$

Model problem Preliminary work Proposed work

Low-rank projection method in tensor format

# Low-rank projection method

- Construct a new basis vector  $w_i = Av_i$
- **Orthogonalize**  $w_i$  with respect to the previously generated basis vectors  $\{v_i\}_{i=1}^j$  (i.e.,  $\hat{w}_i = w_i - \sum_{i=1}^J \alpha_i v_i$  where  $V_i^T V_i \alpha = V_i^T w_i$ )
- Solution Truncate the new vector  $\tilde{v}_{i+1} = \mathcal{T}_{\kappa}(\hat{w}_i)$  and orthonormalize  $v_{i+1} = \tilde{v}_{i+1} / \|\tilde{v}_{i+1}\|_2$
- Compute the iterate  $(\tilde{u}_1 = \tilde{u}_0 + V_m\beta)$  by projecting the residual  $r_0 = b - Au_0$  onto the subspace  $\mathcal{W}_m = \text{span}\{w_1, \ldots, w_m\}$  $(W_m^T A V_m)\beta = W_m^T r_0$ 
  - Truncation operator  $\mathcal{T}_{\kappa}$  compresses a tensor of higher rank into one of a desired rank  $\kappa$
  - Due to truncation,  $\mathcal{V}_m = \operatorname{span}\{v_1, \ldots, v_m\}$  is not a Krylov subspace
  - If  $\kappa$  is the full rank, the algorithm is the restarted GMRES method A B A B A
     A
     B
     A
     A
     B
     A
     A
     B
     A
     A
     B
     A
     A
     B
     A
     A
     B
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A
     A - 3

Low-rank projection method in tensor format Truncation methods Numerical experiments

Algorithm 2 Restarted low-rank projection method in tensor format

1: set the initial solution 
$$\tilde{u}_{0}$$
  
2: for  $k = 0, 1, ...$  do  
3:  $r_{k} := f - A\tilde{u}_{k}$   
4: if  $||r_{k}||/||f|| < \epsilon$  then  
5: return  $\tilde{u}_{k}$   
6: end if  
7:  $\tilde{v}_{1} := \mathcal{T}_{\kappa}(r_{k})$   
8:  $v_{1} := \tilde{v}_{1}/||\tilde{v}_{1}||$   
9: for  $j = 1, ..., m$  do  
10:  $w_{j} := Av_{j}$   
11: solve  $(V_{j}^{T}V_{j})\alpha = V_{j}^{T}w_{j}$   
12:  $\tilde{v}_{j+1} := \mathcal{T}_{\kappa}\left(w_{j} - \sum_{i=1}^{j} \alpha_{i}v_{i}\right)$   
13:  $v_{j+1} := \tilde{v}_{j+1}/||\tilde{v}_{j+1}||$   
14: end for  
15: solve  $(W_{m}^{T}AV_{m})\beta = W_{m}^{T}r_{k}$   
16:  $\tilde{u}_{k+1} := \mathcal{T}_{\kappa}(\tilde{u}_{k} + V_{m}\beta)$   
17: end for

イロン イ団 とくほと くほとう

ъ.

Low-rank projection method in tensor format Truncation methods Numerical experiments

(日) (同) (三) (三)

3

### 1 Introduction

Problem definition

### 2 Model problem

- KL expansion
- Stochastic Galerkin method
- Tensor format

### Preliminary work

- Low-rank projection method in tensor format
- Truncation methods
- Numerical experiments

### Proposed work

- Nonlinear random fields
- Truncation based on randomized tensor decomposition
- Active subspace methods

Low-rank projection method in tensor format Truncation methods Numerical experiments

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# Truncation of a tensor

#### **Truncation operator:**

$$\mathcal{T}_{\kappa}:\kappa'\mapsto\kappa$$

where  $\kappa \ll \kappa'$ 

Low-rank projection method in tensor format Truncation methods Numerical experiments

# Truncation of a tensor

#### **Truncation operator:**

$$\mathcal{T}_{\kappa}:\kappa'\mapsto\kappa$$

where  $\kappa \ll \kappa'$ 



Low-rank projection method in tensor format Truncation methods Numerical experiments

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 頁 - の々で

#### Truncation based on singular values:

Given  $U = Y_{\kappa'} Z_{\kappa'}^{\mathsf{T}}$  of rank  $\kappa'$  where  $Y_{\kappa'} \in \mathbb{R}^{n_{\mathsf{x}} \times \kappa'}$  and  $Z_{\kappa'} \in \mathbb{R}^{n_{\xi} \times \kappa'}$ , compute the singular value decomposition (SVD) of U.

Low-rank projection method in tensor format Truncation methods Numerical experiments

イロト イポト イヨト イヨト 二日

#### Truncation based on singular values:

Given  $U = Y_{\kappa'} Z_{\kappa'}^{\mathsf{T}}$  of rank  $\kappa'$  where  $Y_{\kappa'} \in \mathbb{R}^{n_{\mathsf{x}} \times \kappa'}$  and  $Z_{\kappa'} \in \mathbb{R}^{n_{\xi} \times \kappa'}$ , compute the singular value decomposition (SVD) of U.

An efficient way to compute the SVD of  $U = Y_{\kappa'} Z_{\kappa'}^T$ ,

• Compute QR factorizations of  $Y_{\kappa'}$  and  $Z_{\kappa'}$ :  $Y_{\kappa'} = Q_Y R_Y \in \mathbb{R}^{n_x \times \kappa'}, \ Z_{\kappa'} = Q_Z R_Z \in \mathbb{R}^{n_\xi \times \kappa'},$ 

• Compute the SVD of 
$$R_Y R_Z^T$$
:  
 $R_Y R_Z^T = \hat{U}_{\kappa'} \hat{\Sigma}_{\kappa'} \hat{V}_{\kappa'}^T = \sum_{k=1}^{\kappa'} \hat{\sigma}_k \hat{u}_k \hat{v}_k^T$ ,

• Truncate the sum with the  $\kappa$  terms to produce  $\tilde{Y}_{\kappa}$  and  $\tilde{Z}_{\kappa}$ ,  $\tilde{Y}_{\kappa} = Q_Y \hat{U}_{\kappa} \hat{\Sigma}_{\kappa} \in \mathbb{R}^{n_x \times \kappa}, \ \tilde{Z}_{\kappa} = Q_Z \hat{V}_{\kappa} \in \mathbb{R}^{n_{\xi} \times \kappa}.$ 

Computationally expensive and an appropriate  $\kappa$  is unknown

Low-rank projection method in tensor format Truncation methods Numerical experiments

# Truncation based on multilevel rank-reduction

A coarse-spatial grid solution  $u^{c}(\mathbf{x}, \xi)$ :

$$u^{c}(\mathbf{x}, \xi) = (\Phi^{c}(\mathbf{x}))^{T} \ U^{c} \Psi(\xi) = ((Y^{c})^{T} \Phi^{c}(\mathbf{x}))^{T} ((Z^{c})^{T} \Psi(\xi))$$
  
Recall that  $u^{sg}(\mathbf{x}, \xi) = (Y_{\kappa_{u}}^{T} \Phi(\mathbf{x}))^{T} (Z_{\kappa_{u}}^{T} \Psi(\xi))$ 



э

Low-rank projection method in tensor format Truncation methods Numerical experiments

イロト イポト イヨト イヨト

3

# Truncation based on multilevel rank-reduction

#### Mutlilevel rank-reduction strategy

• Define a truncation operator based on the information obtained from a coarse spatial grid computation: Given  $U = Y_{\kappa'} Z_{\kappa'}^{T}$  of rank  $\kappa'$ ,

$$\mathcal{T}_{\kappa}(U) \equiv \left(Y_{\kappa'} Z_{\kappa'}^{\mathsf{T}} Z_{\kappa}^{\mathsf{c}}\right) \left(Z_{\kappa}^{\mathsf{c}}\right)^{\mathsf{T}} = \tilde{U}$$

where 
$$\tilde{U} = \tilde{Y}_{\kappa} \tilde{Z}_{\kappa}^{T}$$
,  $\tilde{Y}_{\kappa} = Y_{\kappa'} Z_{\kappa'}^{T} Z_{\kappa}^{c} \in \mathbb{R}^{n_{\chi} \times \kappa}$  and  $\tilde{Z}_{\kappa} = Z_{\kappa}^{c} \in \mathbb{R}^{n_{\xi} \times \kappa}$ 

Low-rank projection method in tensor format Truncation methods Numerical experiments

(日) (同) (三) (三)

# Truncation based on multilevel rank-reduction

#### Mutlilevel rank-reduction strategy

• Define a truncation operator based on the information obtained from a coarse spatial grid computation: Given  $U = Y_{\kappa'} Z_{\kappa'}^{T}$  of rank  $\kappa'$ ,

$$\mathcal{T}_{\kappa}(U) \equiv \left(Y_{\kappa'} Z_{\kappa'}^{\mathsf{T}} Z_{\kappa}^{\mathsf{c}}\right) \left(Z_{\kappa}^{\mathsf{c}}\right)^{\mathsf{T}} = \tilde{U}$$

where 
$$\tilde{U} = \tilde{Y}_{\kappa} \tilde{Z}_{\kappa}^{\mathsf{T}}$$
,  $\tilde{Y}_{\kappa} = Y_{\kappa'} Z_{\kappa'}^{\mathsf{T}} Z_{\kappa}^{\mathsf{c}} \in \mathbb{R}^{n_{\chi} \times \kappa}$  and  $\tilde{Z}_{\kappa} = Z_{\kappa}^{\mathsf{c}} \in \mathbb{R}^{n_{\xi} \times \kappa}$ 

• Identify a desired rank  $\kappa$  s.t.

$$\|f^{c} - A^{c} u^{c,\kappa}\|_{2}/\|f^{c}\|_{2} \leq \epsilon$$

where  $u^{c, \kappa}$  is a  $\kappa$ -term approximation to  $u^{c}$ 

• The  $\kappa$ -term approximation on a coarse spatial grid can be computed efficiently using the Proper Generalized Decomposition method

Low-rank projection method in tensor format Truncation methods Numerical experiments

# Preconditioning

**Preconditioned system:** 

$$AM^{-1}\hat{u}=f,\quad \hat{u}=M\tilde{u}$$

- Mean-based preconditioner:  $M = G_0 \otimes K_0$
- Preconditioned system in tensor notation:

$$AM^{-1}\hat{u} = \sum_{l=0}^{M} \sum_{k=1}^{\kappa_{\hat{u}}} G_l \hat{z}_k \otimes K_l K_0^{-1} \hat{y}_k$$

 Practical application of the preconditioner: the action of K<sub>0</sub><sup>-1</sup> is replaced by an application of a single V-cycle of an algebraic multigrid method

With right preconditioning and the AMG preconditioner, the strategy for handling tensor rank is largely unaffected by preconditioning

Low-rank projection method in tensor format Truncation methods Numerical experiments

(日) (同) (三) (三) (三) (○)

Algorithm 3 Preconditioned low-rank projection method with the multilevel rank-reduction

- 1: Compute  $u^{c, \kappa}$  which satisfies  $\frac{\|f^c A^c u^{c, \kappa}\|_2}{\|f^c\|_2} < \epsilon$  using the PGD method
- 2: Compute  $Z_{\kappa}^{c}$  such that  $U^{c,\kappa} = Y_{\kappa}^{c}(Z_{\kappa}^{c})^{T}$  and define  $\mathcal{T}_{\kappa}(U) \equiv (UZ_{\kappa}^{c})(Z_{\kappa}^{c})^{T}$
- 3: Run Algorithm 2 with  $\mathcal{L} = AM^{-1}$ , f, and  $\mathcal{T}_{\kappa}$

Low-rank projection method in tensor format Truncation methods Numerical experiments

(日) (同) (三) (三)

3

## 1 Introduction

• Problem definition

### 2 Model problem

- KL expansion
- Stochastic Galerkin method
- Tensor format

### O Preliminary work

- Low-rank projection method in tensor format
- Truncation methods
- Numerical experiments

## Proposed work

- Nonlinear random fields
- Truncation based on randomized tensor decomposition
- Active subspace methods

Low-rank projection method in tensor format Truncation methods Numerical experiments

3

# Stochastic diffusion problems

# Steady-state diffusion problems with homogeneous Dirichlet boundary condition:

$$\begin{cases} -\nabla \cdot (a(\mathbf{x}, \xi) \nabla u(\mathbf{x}, \xi)) &= f(\mathbf{x}, \xi) \text{ in } D \times \xi, \\ u(\mathbf{x}, \xi) &= 0 \text{ on } \partial D \times \Gamma, \end{cases}$$

with  $f(x, \xi) = 1$ .

Covariance function of  $a(\mathbf{x}, \xi)$ :

$$C(\mathbf{x}, \mathbf{y}) = \sigma^2 \exp\left(-\frac{|x_1 - y_1|}{c} - \frac{|x_2 - y_2|}{c}\right)$$

The truncated KL-expansion:

$$a(\mathbf{x}, \xi) = \mu + \sigma \sum_{i=1}^{M} \sqrt{\lambda_i} a_i(\mathbf{x}) \xi_i$$

 $\mu = 1, \sigma = 0.05$ , and *M* is chosen to capture 95% of the total variance of the random field (i.e.,  $\sum_{i=1}^{M} \lambda_i / \sum_{i=1}^{n_x} \lambda_i > 95\%$ )

Low-rank projection method in tensor format Truncation methods Numerical experiments

3

### Coarse spatial grid computation:

Table: Rank ( $\kappa$ ) of coarse-grid solutions satisfying a specified tolerance  $\epsilon$  for the PGD computation, and for varying c and M

|                             |                 | $\epsilon =$    | = 10 <sup>-5</sup> |                 | $\epsilon = 10^{-6}$ |                 |                 |                 |
|-----------------------------|-----------------|-----------------|--------------------|-----------------|----------------------|-----------------|-----------------|-----------------|
| с                           | 4               | 3               | 2.5                | 2               | 4                    | 3               | 2.5             | 2               |
| Μ, n <sub>ξ</sub>           | 5, 56           | 7, 120          | 10, 286            | 15, 816         | 5, 56                | 7, 120          | 10, 286         | 15, 816         |
| n <sub>x</sub> <sup>c</sup> | 15 <sup>2</sup> | 15 <sup>2</sup> | 31 <sup>2</sup>    | 31 <sup>2</sup> | 15 <sup>2</sup>      | 15 <sup>2</sup> | 31 <sup>2</sup> | 31 <sup>2</sup> |
| $Rank(\kappa)$              | 25              | 40              | 65                 | 115             | 35                   | 65              | 100             | 210             |

- $n_{\xi}$ : DoFs of stochastic domain
- $n_x^c$ : DoFs of coarse spatial domain

Model problem Preliminary work

Numerical experiments

#### Fine spatial grid computation:

Table: CPU time to compute approximate solutions satisfying  $\epsilon = 10^{-5}$ ,  $10^{-6}$ using the preconditioned low-rank projection method with the multilevel rank-reduction. Here,  $t_f$  is the time to compute the fine-grid solution,  $t_f$ , and, t is the total time,  $t = t_f + t_c$ 

| n <sub>x</sub>   |                |        | $\epsilon =$ | $10^{-5}$ |         | $\epsilon = 10^{-6}$ |        |         |         |
|------------------|----------------|--------|--------------|-----------|---------|----------------------|--------|---------|---------|
|                  | М              | 5      | 7            | 10        | 15      | 5                    | 7      | 10      | 15      |
| 129 <sup>2</sup> | t <sub>f</sub> | 5.87   | 8.96         | 20.53     | 87.07   | 7.21                 | 14.28  | 36.85   | 235.34  |
|                  | t              | 8.35   | 12.43        | 28.88     | 132.15  | 10.14                | 19.32  | 51.69   | 398.06  |
| 257 <sup>2</sup> | t <sub>f</sub> | 22.69  | 34.90        | 84.85     | 340.51  | 27.61                | 56.36  | 148.07  | 1014.97 |
|                  | t              | 25.17  | 38.37        | 93.20     | 385.59  | 30.55                | 61.41  | 162.90  | 1177.68 |
| 513 <sup>2</sup> | t <sub>f</sub> | 144.69 | 194.41       | 445.36    | 2809.54 | 163.31               | 310.14 | 1318.79 | OoM     |
|                  | t              | 147.17 | 197.87       | 453.71    | 2854.62 | 166.24               | 315.18 | 1333.63 | OoM     |

 $n_x$ : DoFs of fine spatial domain

#### Comparison to a truncation operator based on singular values:

Table: CPU time to compute approximate solutions satisfying  $\epsilon = 10^{-5}, 10^{-6}$  using the preconditioned low-rank projection (LRP) methods with the multilevel rank-reduction and the singular value based truncation on the level 8 spatial grid ( $n_x = 257^2$ )

|                      | Solver         | М | 5     | 7      | 10     | 15      | 20      |
|----------------------|----------------|---|-------|--------|--------|---------|---------|
| $\epsilon = 10^{-5}$ | LRP-SVD        | t | 55.04 | 108.11 | 284.27 | 1280.65 | 5691.19 |
|                      | LRP-Multilevel | t | 25.17 | 38.37  | 93.20  | 385.59  | 1943.49 |
| $\epsilon = 10^{-6}$ | LRP-SVD        | t | 76.03 | 198.20 | 564.12 | 5131.32 | OoM     |
|                      | LRP-Multilevel | t | 30.55 | 61.41  | 162.90 | 1177.68 | OoM     |

Model problem Preliminary work Numerical experiments

#### PGD as a solver on a finer spatial grid:

Table: Computation time to obtain approximate solutions satisfying  $\epsilon = 10^{-5}$ using the PGD method and the preconditioned low-rank projection method on the level 8 spatial grid ( $n_x = 257^2$ )

|                      | Solver         | М        | 5     | 7      | 10     | 15      | 20      |
|----------------------|----------------|----------|-------|--------|--------|---------|---------|
| $\epsilon = 10^{-5}$ | PGD            | κ        | 25    | 45     | 65     | 125     | 195     |
|                      |                | t        | 43.78 | 109.72 | 228.73 | 940.69  | 3066.87 |
|                      | LRP-Multilevel | $\kappa$ | 25    | 40     | 65     | 115     | 180     |
|                      |                | t        | 25.17 | 38.37  | 93.20  | 385.59  | 1943.49 |
| $\epsilon = 10^{-6}$ | PGD            | $\kappa$ | 40    | 70     | 110    | 225     | OoM     |
|                      |                | t        | 74.43 | 214.82 | 533.10 | 2713.70 | OoM     |
|                      | LRP-Multilevel | $\kappa$ | 35    | 65     | 100    | 210     | OoM     |
|                      |                | t        | 30.55 | 61.41  | 162.90 | 1177.68 | OoM     |

≡ nar

イロト イポト イヨト イヨト

Low-rank projection method in tensor format Truncation methods Numerical experiments

3

# Stochastic convection-diffusion problems

Steady-state convection-diffusion problems with non-homogeneous boundary condition:

$$\begin{cases} \nu \nabla \cdot (a(\mathbf{x}, \xi) \nabla u(\mathbf{x}, \xi)) + \vec{w} \cdot \nabla u(\mathbf{x}, \xi) &= f(\mathbf{x}, \xi) & \text{in } D \times \Gamma, \\ u(\mathbf{x}, \xi) &= g_D(\mathbf{x}) & \text{on } \partial D \times \Gamma, \end{cases}$$

where  $g_D(\mathbf{x})$  is determined by

$$g_D(\mathbf{x}) = \left\{ egin{array}{c} g_D(x,\,-1) = x, & g_D(x,\,1) = 0, \\ g_D(-1,\,y) pprox -1, & g_D(1,\,y) pprox 1, \end{array} 
ight.$$

where the latter two approximations hold except near y = 1, and  $\nu$  is the viscosity parameter.
Preliminary work

Numerical experiments

#### The solution has exponential boundary layer near y = 1



Figure: Mean solutions (top) and their contour plots (bottom) for varying  $\nu$ 

イロト イポト イヨト イヨト

Low-rank projection method in tensor format Truncation methods Numerical experiments

(日) (同) (目) (日) (日) (0) (0)

### Stochastic Galerkin system:

$$\left(G_0 \otimes \nu K_0 + \sum_{l=1}^M G_l \otimes \nu K_l + G_0 \otimes N + G_0 \otimes S\right) u = g_0 \otimes f_0$$

- the convection term N:  $[N]_{ij} = \int_D ec{w} \cdot 
  abla \phi_i(m{x}) \phi_j(m{x}) dm{x}$
- the streamline-diffusion term  $S: [S]_{ij} = \sum_{l=1}^{n_e} \delta_l \int_D (\vec{w} \cdot \nabla \phi_i) (\vec{w} \cdot \nabla \phi_j) d\mathbf{x}$ where  $n_e$ : the number of element in the finite element discretization and  $\delta_k = \frac{h_k}{2 \|\vec{w}\|_2} \left(1 - \frac{1}{\mathcal{P}_k}\right)$  if  $\mathcal{P}_k > 1$

#### Preconditioned system:

Mean-based preconditioner:  $M = G_0 \otimes (K_0 + N + S)$ 

the action of  $(K_0 + N + S)$  is replaced by an application of a single V-cycle of an algebraic multigrid method

Model problem Preliminary work

Numerical experiments

#### Comparison to a truncation operator based on singular values:

Table: CPU time to compute approximate solutions satisfying  $\epsilon = 10^{-5}, 10^{-6}$ using the preconditioned low-rank projection (LRP) methods with the multilevel rank-reduction and the singular value based truncation on the level 8 spatial grid  $(n_x = 257^2)$ 

|                  |                |   | u=1/600 |        |        |         | $\nu =$ | 1/20   |        |         |
|------------------|----------------|---|---------|--------|--------|---------|---------|--------|--------|---------|
| $\epsilon$       | Solver         | М | 5       | 7      | 10     | 15      | 5       | 7      | 10     | 15      |
| 10 <sup>-5</sup> | LRP-SVD        | t | 90.33   | 103.44 | 218.35 | 484.08  | 68.45   | 100.83 | 201.34 | 448.25  |
|                  | LRP-Multilevel | t | 65.48   | 73.28  | 142.46 | 321.99  | 51.50   | 67.24  | 128.45 | 291.46  |
| 10 <sup>-6</sup> | LRP-SVD        | t | 122.44  | 231.07 | 421.76 | 1208.88 | 132.08  | 234.15 | 570.56 | 2055.44 |
|                  | LRP-Multilevel | t | 81.93   | 107.84 | 186.56 | 530.89  | 83.43   | 136.69 | 341.32 | 1266.53 |

| Introduction     |
|------------------|
| Model problem    |
| Preliminary work |
| Proposed work    |

Numerical experiments

Table: Computation time and the number of cycles (k) to compute approximate solutions with  $\epsilon = 10^{-5}$  and  $10^{-6}$  using the preconditioned low-rank projection methods with the multilevel rank-reduction method for varying  $\nu$ 

|                 |                  |       | $\epsilon = 10^{-}$ | 5      | $\epsilon = 10^{-6}$ |       |        |  |
|-----------------|------------------|-------|---------------------|--------|----------------------|-------|--------|--|
| ν               | n <sub>x</sub> c | M = 5 | M = 7               | M = 10 | M = 5                | M = 7 | M = 10 |  |
| $\frac{1}{20}$  | 17 <sup>2</sup>  | 25    | 35                  | 55     | 35                   | 50    | 75     |  |
| $\frac{1}{100}$ | 17 <sup>2</sup>  | 20    | 25                  | 45     | 30                   | 40    | 65     |  |
| $\frac{1}{200}$ | 33 <sup>2</sup>  | 20    | 25                  | 45     | 25                   | 40    | 60     |  |
| $\frac{1}{400}$ | 33 <sup>2</sup>  | 20    | 20                  | 35     | 25                   | 35    | 55     |  |
| $\frac{1}{600}$ | 65 <sup>2</sup>  | 20    | 20                  | 35     | 30                   | 35    | 45     |  |

 $n_{\star}^{c}$ : DoFs of coarse spatial grid

イロト イポト イヨト イヨト

Nonlinear random fields Truncation based on randomized tensor decomposition Active subspace methods

(日) (同) (三) (三)

3



### 2 Model problem

- KL expansion
- Stochastic Galerkin method
- Tensor format

### 3 Preliminary work

- Low-rank projection method in tensor format
- Truncation methods
- Numerical experiments

### Proposed work

- Nonlinear random fields
- Truncation based on randomized tensor decomposition
- Active subspace methods

Nonlinear random fields Truncation based on randomized tensor decomposition Active subspace methods

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

# Nonlinear random fields

### Log-normal random field:

$$a(\mathbf{x}, \xi) = e^{g(\mathbf{x}, \xi)}, \quad g(\mathbf{x}, \xi) = g_0(\mathbf{x}, \xi) + \sum_{i=1}^M g_i(\mathbf{x})\xi_i$$

where  $g(\mathbf{x}, \xi)$  is a truncated KL expansion and  $\{\xi_i\}_{i=1}^M$  are independent normal random variables

### Polynomial approximation of a random field:

$$m{a}(m{x},\,\xi) = \sum_{lpha \in m{\Lambda}} m{a}_lpha(m{x}) \psi_lpha(\xi)$$

where  $\Lambda$  is a multi-index set

Nonlinear random fields Truncation based on randomized tensor decomposition Active subspace methods

(日) (同) (目) (日) (日) (0) (0)

### Stochastic Galerkin system

Stochastic Galerkin solution:  $u^{(sg)}(\mathbf{x}, \xi) = \sum_{s=1}^{n_{\xi}} \sum_{r=1}^{n_{x}} u_{rs} \phi_{r}(\mathbf{x}) \psi_{s}(\xi)$ 

Stochastic weak formulation:

$$\int_{\Gamma} \int_{D} \left( \sum_{\alpha \in \Lambda} a_{\alpha}(\mathbf{x}) \psi_{\alpha}(\xi) \right) \nabla \left( \sum_{s=1}^{n_{\xi}} \sum_{r=1}^{n_{x}} u_{rs} \phi_{r}(\mathbf{x}) \psi_{s}(\xi) \right) \nabla \phi_{i}(\mathbf{x}) \psi_{j}(\xi) \, d\mathbf{x} \rho(\xi) d\xi,$$
$$i = 1, \ldots, n_{x}, j = 1, \ldots, n_{\xi}$$

Stiffness matrices and "stochastic matrices":

$$[K_l]_{ij} = \int_D a_l \phi_i \phi_j d\mathbf{x}, \qquad [G_l]_{ij} = \langle \psi_l \psi_i \psi_j \rangle_\rho.$$

Nonlinear random fields Truncation based on randomized tensor decomposition Active subspace methods

Total degree space for approximating  $u^{(sg)}(\mathbf{x}, \xi)$ :

$$\Lambda^{M, p} = \{\alpha(s) \in \mathbb{N}_0^M : \|\alpha(s)\|_0 \le M, \|\alpha(s)\|_1 \le p\}$$

Polynomial expansion is implicitly truncated with polynomials of total degree  $\leq 2p$ :

$$m{a}(m{x},\,\xi)pprox \sum_{lpha\in\Lambda^{M,\,2p}}m{a}_lpha(m{x})\psi_lpha(\xi)$$

#### because

$$\langle \psi_I \psi_i \psi_j \rangle_{\rho} = 0 \quad \forall i, j \text{ s.t. } \alpha(i), \, \alpha(j) \in \Lambda^{M, p} \quad \text{if} \quad \sum_k \alpha_k(I) > 2p,$$

$$a(\mathbf{x},\,\xi)\approx\sum_{k=0}^{M}a_k(\mathbf{x})\xi_k$$

A /

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

Nonlinear random fields Truncation based on randomized tensor decomposition Active subspace methods

・ロン ・回 と ・ ヨン ・ ヨン …

2

### Block sparse linear system, A:





linear RF

nonlinear RF

Nonlinear random fields Truncation based on randomized tensor decomposition Active subspace methods

### Block sparse linear system, A:



linear RF



nonlinear RF



Each block is sparse

Э.

イロト イヨト イヨト イヨト

Nonlinear random fields Truncation based on randomized tensor decomposition Active subspace methods

3

### Two potential directions of the study:

- Use a randomized tensor Interpolative Decomposition as a truncation operator
  - to replace costly SVD
  - when efficient coarse grid computation is impossible
  - ID provides means to approximate a matrix/ tensor in efficient way
- Reduce dimensions of problem using active subspace methods
  - the number of terms in the polynomial expansion of  $a(\mathbf{x}, \xi)$  is large
  - Active subspace methods represents a dimension-reduction method that can be used to reduce the number of terms in the expansion

Nonlinear random fields Truncation based on randomized tensor decomposition Active subspace methods

3

# Matrix Interpolative Decomposition

Matrix approximation by a column subset:

$$A \approx A_{CS}[I|T]P^T$$

G matrices are rank-deficient

w = Av where  $mat(v) = Y_v Z_v^T$ ,  $mat(w) = Y_w Z_w^T$ 

Nonlinear random fields Truncation based on randomized tensor decomposition Active subspace methods

# Matrix Interpolative Decomposition

Matrix approximation by a column subset:

$$A \approx A_{CS}[I|T]P^T$$

G matrices are rank-deficient

- $$\begin{split} & w = Av \text{ where } \mathsf{mat}(v) = Y_v Z_v^T, \, \mathsf{mat}(w) = Y_w Z_w^T \\ & Y_v \in \mathbb{R}^{n_x \times \kappa}, \, Z_v \in \mathbb{R}^{n_\xi \times \kappa}, \, Y_w \in \mathbb{R}^{n_x \times \kappa'}, \, \mathsf{and} \, Z_w \in \mathbb{R}^{n_\xi \times \kappa'} \end{split}$$
  - W = mat(w) is rank deficient
    Z<sub>w</sub> = [G<sub>0</sub>Z<sub>v</sub> | G<sub>1</sub>Z<sub>v</sub> | ··· | G<sub>na</sub>Z<sub>v</sub>], each block is rank deficient In tensor format, y ⊗ x + z ⊗ x = (y + z) ⊗ x

Interpolative decomposition:

$$W \approx W_{\rm CS}[I|T]P^{T}$$
$$(G_{i}Z_{v}) \approx G_{\rm CS}[I|T]P^{T}$$

Randomization makes the computation efficient without losing too much accuracy  $\langle \Box \rangle + \langle \overline{\Box} \rangle +$ 

Nonlinear random fields Truncation based on randomized tensor decomposition Active subspace methods

# Active subpace methods

Applying active subspace methods on a nonlinear random field:

$$a(\mathbf{x}, \xi) = \exp\left(g_0(\mathbf{x}, \xi) + \sum_{k=1}^M g_k(\mathbf{x})\xi_k
ight) pprox \sum_{lpha \in \Lambda^{M, 2p}} a_lpha(\mathbf{x})\psi_lpha(\xi)$$

The gradient of  $a(\mathbf{x}, \xi)$ :

$$abla_{\xi} \boldsymbol{a}(\boldsymbol{x},\xi) = \left[\frac{\partial \boldsymbol{a}}{\partial \xi_1}, \ldots, \frac{\partial \boldsymbol{a}}{\partial \xi_M}\right]^T$$

where

$$\frac{\partial \boldsymbol{a}}{\partial \xi_i} = \exp\left(g_0(\boldsymbol{x},\,\xi) + \sum_{k=1}^M g_k(\boldsymbol{x})\xi_k\right)g_i(\boldsymbol{x}).$$

The covariance matrix  $C(\mathbf{x})$ :

$$[C(\mathbf{x})]_{ij} = \mathbb{E}\left[\frac{\partial a}{\partial \xi_i}\frac{\partial a}{\partial \xi_j}\right] = \exp\left(2g_0(\mathbf{x},\,\xi) + \sum_{k=1}^M 2g_k^2(\mathbf{x})\right)g_i(\mathbf{x})g_j(\mathbf{x}).$$

Nonlinear random fields Truncation based on randomized tensor decomposition Active subspace methods

An eigendecomposition of  $C_i = C(x_i) \in \mathbb{R}^{M \times M}$ :

 $C_i = W_i \Lambda_i W_i^T$ 

A new set of random variable  $\{\eta_j^{(i)}\}_{j=1}^M$ :

$$\eta^{(i)} = W_i^T \xi \Leftrightarrow W_i \eta^{(i)} = W_i W_i^T \xi = \xi,$$

and  $\{\eta^{(i)}\}\$  are also independent normal random variables:

$$\mathbb{E}\left[\eta_{j}^{(i)}\right] = \mathbb{E}\left[\boldsymbol{w}_{j}^{T}\boldsymbol{\xi}\right] = 0,$$
$$\mathbb{E}\left[(\eta_{j}^{(i)})^{2}\right] = \mathbb{E}\left[(\boldsymbol{w}_{j}^{T}\boldsymbol{\xi})^{2}\right] = \|\boldsymbol{w}_{j}\|_{2}^{2} = 1,$$
$$\mathbb{E}\left[\left(\eta_{j}^{(i)}\right)\left(\eta_{j}^{(i)}\right)^{T}\right] = \mathbb{E}\left[\boldsymbol{W}_{i}^{T}\boldsymbol{\xi}\boldsymbol{\xi}^{T}\boldsymbol{W}_{i}\right] = \boldsymbol{W}_{i}^{T}\mathbb{E}\left[\boldsymbol{\xi}\boldsymbol{\xi}^{T}\right]\boldsymbol{W}_{i} = I.$$

Introduction Nonlinear random fields Model problem Truncation based on randomized tensor decomposition Proposed work Active subspace methods

### Change of variable:

$$\begin{aligned} \mathsf{a}(x_{i},\,\xi) &= \exp\left(g_{0}(x_{i}) + \sum_{k=1}^{M} g_{k}(x_{i})\xi_{k}\right) \\ &= \exp\left(g_{0}(x_{i}) + \sum_{k=1}^{M} g_{k}(x_{i})\left(\sum_{l=1}^{M} w_{kl}\eta_{l}^{(i)}\right)\right) \\ &= \exp\left(g_{0}(x_{i}) + \sum_{k=1}^{M} \tilde{g}_{k}(x_{i})\eta_{k}^{(i)}\right), \quad \left(\tilde{g}_{k}(x_{i}) = \sum_{l=1}^{M} g_{l}(x_{i})w_{ik}\right), \\ &= \mathsf{a}(x_{i},\eta^{(i)}) \end{aligned}$$

A new linear expansion for  $a(\mathbf{x}, \xi)$ :

$$a(x_i,\xi) = \hat{a}(x_i,\eta^{(i)}) = \sum_{\alpha \in \Lambda^{M,2p}} \hat{a}_{\alpha}(x_i)\psi_{\alpha}(\eta^{(i)})$$

・ロン ・回 と ・ ヨン ・ ヨン …

= 990

| Introduction<br>Model problem<br>Preliminary work<br><b>Proposed work</b> | Nonlinear random fields<br>Truncation based on randomized tensor decomposition<br>Active subspace methods |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|



At spatial point  $x_1$ ,  $\log_{10}(|a_{\alpha}(x_1)|)$  v.s.  $\log_{10}(|\hat{a}_{\alpha}(x_1)|)$ 

| 4 回 🕨 🔺 三 🕨 🔺 三 🕨

ъ.

Introduction Model problem Preliminary work Proposed work Active subspace methods

### Thank you!

≡ ∽ ९ ୯

イロン イ団 とくほと くほとう

Nonlinear random fields Truncation based on randomized tensor decomposition Active subspace methods

(日) (同) (目) (日) (日) (0) (0)

# Coarse Spatial Grid Computation

### The Proper Generalized Decomposition method:

- Computes the separated representation of a coarse-grid solution:  $u^{c,\kappa}(\mathbf{x}, \xi) = \sum_{i=1}^{\kappa} \tilde{y}_i(\mathbf{x}) \tilde{z}_i(\xi)$ 
  - Discretization in physical space:  $ilde{y}_i(m{x}) = \sum_{k=1}^{n_{\scriptscriptstyle X}} ilde{y}_k^{(i)} \phi_k^c(m{x})$
  - Discretization in stochastic space:  $\tilde{z}_i(\xi) = \sum_{l=1}^{n_{\xi}} \tilde{z}_l^{(i)} \psi_l(\xi)$

Nonlinear random fields Truncation based on randomized tensor decomposition Active subspace methods

(日) (同) (目) (日) (日) (0) (0)

# Coarse Spatial Grid Computation

### The Proper Generalized Decomposition method:

- Computes the separated representation of a coarse-grid solution:  $u^{c,\kappa}(\mathbf{x}, \xi) = \sum_{i=1}^{\kappa} \tilde{y}_i(\mathbf{x}) \tilde{z}_i(\xi)$ 
  - Discretization in physical space:  $ilde{y}_i(m{x}) = \sum_{k=1}^{n_{\scriptscriptstyle X}} ilde{y}_k^{(i)} \phi_k^c(m{x})$
  - Discretization in stochastic space:  $\tilde{z}_i(\xi) = \sum_{l=1}^{n_{\xi}} \tilde{z}_l^{(i)} \psi_l(\xi)$
- Identifies the function pairs  $(\tilde{y}_i(\mathbf{x}), \tilde{z}_i(\xi))$  incrementally until the relative residual of the computed solution satisfies a given tolerance,  $\|f^c A^c u^{c, \kappa}\|_2 / \|f^c\|_2 < \epsilon$

Nonlinear random fields Truncation based on randomized tensor decomposition Active subspace methods

▲□▶ ▲□▶ ▲■▶ ▲■▶ = ののの

# Coarse Spatial Grid Computation

### The Proper Generalized Decomposition method:

- Computes the separated representation of a coarse-grid solution:  $u^{c,\kappa}(\mathbf{x}, \xi) = \sum_{i=1}^{\kappa} \tilde{y}_i(\mathbf{x}) \tilde{z}_i(\xi)$ 
  - Discretization in physical space:  $ilde{y}_i(m{x}) = \sum_{k=1}^{n_{\scriptscriptstyle X}} ilde{y}_k^{(i)} \phi_k^c(m{x})$
  - Discretization in stochastic space:  $ilde{z}_i(\xi) = \sum_{l=1}^{n_\xi} ilde{z}_l^{(i)} \psi_l(\xi)$
- Identifies the function pairs  $(\tilde{y}_i(\mathbf{x}), \tilde{z}_i(\xi))$  incrementally until the relative residual of the computed solution satisfies a given tolerance,  $\|f^c A^c u^{c, \kappa}\|_2 / \|f^c\|_2 < \epsilon$
- Once *i* such pairs have been computed,  $(\tilde{y}_{i+1}, \tilde{z}_{i+1})$  is sought in  $X_h \times S_M$  by imposing Galerkin orthogonality with respect to the tangent manifold of the set of rank-one elements at  $\tilde{y}_{i+1}\tilde{z}_{i+1}$ , which is  $\{\tilde{y}_{i+1}\zeta + v\tilde{z}_{i+1}; v \in X_h, \zeta \in S_M\}$ : find  $\tilde{y}_{i+1}\tilde{z}_{i+1}$  s.t.

$$\left\langle \int_{D} \mathbf{a}(\mathbf{x}, \xi) \nabla (u^{c, i} + \tilde{y}_{i+1} \tilde{z}_{i+1}) \cdot \nabla (\tilde{y}_{i+1} \zeta + \upsilon \tilde{z}_{i+1}) \right\rangle = \left\langle \int_{D} f(\tilde{y}_{i+1} \zeta + \upsilon \tilde{z}_{i+1}) \right\rangle,$$
  
$$\forall (\upsilon, \zeta) \in X_h \times S_M$$

- Introduction Nonlinear random fields Model problem Truncation based on randomized tensor decomposition Proposed work Active subspace methods
- Two coupled problems: a deterministic problem and a stochastic problem
  - **Deterministic problem:** given  $\tilde{z}_{i+1}$ , find  $\tilde{y}_{i+1} \in X_h$  s.t.

$$\left\langle \int_{D} \mathbf{a}(\mathbf{x},\,\xi) \nabla(\mathbf{u}^{c,\,i}+\tilde{y}_{i+1}\tilde{z}_{i+1}) \cdot \nabla(\phi_{j}^{c}\tilde{z}_{i+1}) \right\rangle = \left\langle \int_{D} f\phi_{j}^{c}\tilde{z}_{i+1} \right\rangle, \, j=1,\,\ldots,\,n_{x}^{c}$$

- **Stochastic problem:** given  $\tilde{y}_{i+1}$ , finds  $\tilde{z}_{i+1} \in S_M$  s.t.

$$\left\langle \int_{D} \mathbf{a}(\mathbf{x},\,\xi) \nabla(\mathbf{u}^{c,\,i}+\tilde{y}_{i+1}\tilde{z}_{i+1}) \cdot \nabla(\tilde{y}_{i+1}\psi_j) \right\rangle = \left\langle \int_{D} f\,\tilde{y}_{i+1}\psi_j \right\rangle,\, j=1,\,\ldots,\,n_{\xi}$$

- Enhances accuracy of the  $\kappa\text{-term}$  approximation by solving a set of  $\kappa$  coupled equations
  - Update problem: given  $\{\tilde{y}_i\}_{i=1}^{\kappa}$ , find  $\{\tilde{z}_i\}_{i=1}^{\kappa}$  s.t.

$$\left\langle \int_{D} \mathbf{a}(\mathbf{x},\,\xi) \nabla(\mathbf{u}^{(\kappa)}) \cdot \nabla(\tilde{\mathbf{y}}_{i}\psi_{j}) \right\rangle = \left\langle \int_{D} f \tilde{\mathbf{y}}_{i}\psi_{j} \right\rangle, \, i = 1,\,\ldots,\,\kappa,\,j = 1,\,\ldots,\,n_{\xi}.$$

Proposed work

Active subspace methods

# Matrix Interpolative Decomposition

### **QR** factorization:

$$AP = QR = \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix}$$
$$= \begin{bmatrix} Q_{11} \\ Q_{21} \end{bmatrix} [R_{11}|R_{12}] + \begin{bmatrix} Q_{12} \\ Q_{22} \end{bmatrix} [0|R_{22}]$$
$$= \begin{bmatrix} Q_{11}R_{11} \\ Q_{21}R_{11} \end{bmatrix} [I|R_{11}^{-1}R_{12}] + \begin{bmatrix} 0 & Q_{12}R_{22} \\ 0 & Q_{22}R_{22} \end{bmatrix}$$
$$= A_{CS}[I|T] + XP$$

where

$$A_{\rm CS} = \begin{bmatrix} Q_{11}R_{11} \\ Q_{21}R_{11} \end{bmatrix}, \quad T = R_{11}^{-1}R_{12}, \quad X = \begin{bmatrix} 0 & Q_{12}R_{22} \\ \hline 0 & Q_{22}R_{22} \end{bmatrix} P^{T}$$

・ロン ・回 と ・ ヨン ・ ヨン …

| Introduction<br>Model problem<br>Preliminary work<br><b>Proposed work</b> | Nonlinear random fields<br>Truncation based on randomized tensor decompositio<br>Active subspace methods |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|

$$A \approx \hat{A} = A_{\mathsf{CS}}[I|T]P^{\mathsf{T}},$$
$$\|A - \hat{A}\|_2 = \|X\|_2 \le \sigma_{k+1}(A)\sqrt{1 + k(n-k)}.$$

$$R = \begin{bmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix}$$

$$\sigma_1(R_{22}) \leq \sigma_{k+1}(A)\sqrt{1+k(n-k)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Model problem Preliminary work Proposed work

Active subspace methods

# Randomized Matrix Interpolative Decomposition

Randomized scheme for approximating the range  $A \in \mathbb{R}^{m \times n}$ :

- Draw an  $n \times l$  Gaussian random matrix  $\Omega$
- Form the matrix product  $Y = A\Omega$
- Construct a matrix Q whose columns form an orthonormal basis for the range of Y

### Intuition:

$$y^{(i)} = A\omega^{(i)}, \quad i = 1, 2, ..., k$$

Consider A = B + E, where B is a rank-k matrix and E is a small perturbation, then

$$y^{(i)} = (B + E)\omega^{(i)} = B\omega^{(i)} + E\omega^{(i)}, \quad i = 1, 2, ..., k + p$$

where p is a small number

▲□▶ ▲□▶ ▲■▶ ▲■▶ = ののの

Nonlinear random fields Truncation based on randomized tensor decomposition Active subspace methods

3

# Randomized Matrix Interpolative Decomposition

### Algorithm 4 Randomized matrix interpolative decomposition

Input: An  $m \times n$  matrix A and integer l > kOutput: Indices set  $\mathcal{L}_k$  of the k columns, the permutation matrix P, and the column subset matrix  $A_{CS}$ 

- 1: Draw an  $n \times l$  Gaussian random matrix,  $\Omega$ .
- 2: Form  $m \times I$  matrix  $Y = A\Omega$ .
- 3: Construct an  $m \times k$  orthonormal matrix Q for approximate the range of Y via the QR factorization, Y = QR.
- 4: Construct  $\mathcal{L}_k$ , P, and  $A_{CS}$  from the QR of Y.

Nonlinear random fields Truncation based on randomized tensor decomposition Active subspace methods

## Randomized Tensor Interpolative Decomposition

Tensor notation:

$$\mathcal{U} = \sum_{l=1}^{\kappa_{\mathcal{U}}} \bigotimes_{j=1}^{d} \boldsymbol{u}_{j}^{(l)} = \sum_{l=1}^{\kappa_{\mathcal{U}}} \mathcal{U}^{(l)}, \quad \mathcal{U}^{(l)} = \bigotimes_{j=1}^{d} \boldsymbol{u}_{j}^{(l)}.$$

where  $\pmb{u}^j \in \mathbb{R}^{M_j}$  for  $j=1,\,\ldots,\,d$  and  $\kappa_\mathcal{U}$  is the rank

A matricized tensor U:

$$U = \left[ \begin{array}{ccc} | & & | \\ \mathcal{U}^{(1)} & \cdots & \mathcal{U}^{(\kappa_{\mathcal{U}})} \\ | & & | \end{array} \right]$$

The inner product between two tensors  ${\mathcal U}$  and  ${\mathcal V}$ :

$$\langle \mathcal{U}, \mathcal{V} 
angle = \sum_{l=1}^{\kappa_{\mathcal{U}}} \sum_{m=1}^{\kappa_{\mathcal{V}}} \prod_{j=1}^{d} \langle \boldsymbol{u}_{j}^{(l)}, \, \boldsymbol{v}_{j}^{(m)} 
angle$$

Nonlinear random fields Truncation based on randomized tensor decomposition Active subspace methods

(日) (同) (三) (三)

### Randomized Tensor Interpolative Decomposition

### Algorithm 5 Randomized tensor interpolative decomposition

Input: A rank  $\kappa'$  tensor  $\mathcal{U}$  and integer  $l > \kappa$ Output: A rank  $\kappa$  tensor  $\tilde{\mathcal{U}}$ 

- 1: Draw a random tensor  $\mathcal{R}$  of rank *I*.
- 2: Form  $I \times \kappa'$  matrix  $Y = \mathcal{R}^T \mathcal{U}$ .
- Compute an ID of Y and, as a result, a κ × κ' permutation matrix P, and a column index set L<sub>k</sub>.

4: Compute 
$$ilde{\mathcal{U}}^{(l)} = \sum_{m=1}^{\kappa'} P_{ml} \mathcal{U}^{(l_m)}$$
 where  $l_m \in \mathcal{L}_k$ 

Nonlinear random fields Truncation based on randomized tensor decomposition Active subspace methods

(日) (同) (三) (三)

3

# Active subspace methods

A general multivariate function  $f : \mathbb{R}^m \mapsto \mathbb{R}$ 

$$f = f(\xi), \quad \xi \in \mathbb{R}^m$$

### Active subspace method

Compute the gradient of f:

$$abla_{\xi}f(\xi) = \left[\frac{\partial f}{\partial \xi_1}, \ldots, \frac{\partial f}{\partial \xi_m}\right]^T$$

**Onstruct** a covariance matrix *C*:

$$C = \mathbb{E}\left[ (\nabla_{\xi} f(\xi)) (\nabla_{\xi} f(\xi))^{T} \right]$$

Introduction Nonlinear random fields Model problem Truncation based on randomized tensor decompositio Proposed work Active subspace methods

Sompute an eigendecomposition of C:

$$C = W \Lambda W^T$$
,  $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_m)$ ,

where  $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m$ Partition W and  $\Lambda$ :

$$\Lambda = \begin{bmatrix} \Lambda_1 & \\ & \Lambda_2 \end{bmatrix}, \quad W = [W_1, W_2]$$

where  $\Lambda_1 = \text{diag}(\lambda_1, \ldots, \lambda_n)$  with n < m and  $W_1 \in \mathbb{R}^{m \times n}$ Solution Rotate  $\xi$ :

$$y = W_1^T \xi, \quad z = W_2^T \xi$$

where  $y \in \mathbb{R}^n$  and  $z \in \mathbb{R}^{m-n}$ 

| Introduction<br>Model problem<br>Preliminary work<br><b>Proposed work</b> | Nonlinear random fields<br>Truncation based on randomized tensor decomposition<br>Active subspace methods |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|



At spatial point  $x_1$ ,  $\log_{10}(|a_{\alpha}(x_1)|)$  v.s.  $\log_{10}(|\hat{a}_{\alpha}(x_1)|)$ 

| 4 回 🕨 🔺 三 🕨 🔺 三 🕨

ъ.

| Introduction<br>Model problem<br>Preliminary work<br><b>Proposed work</b> | Nonlinear random fields<br>Truncation based on randomized tensor decomposition<br>Active subspace methods |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|



At spatial points  $x_i$ , i = 1, 2, 3, 4,  $\log_{10}(|\hat{a}_{\alpha}(x_i, \eta^{(1)})|)$ 

- 4 回 > - 4 回 > - 4 回 >

Э.

Nonlinear random fields Truncation based on randomized tensor decomposition Active subspace methods

### Group $n_{set}$ sets of spatial points

Construct the Jacobian of  $a(\mathbf{x}, \xi)$  at a set of spatial points  $\mathbf{x}^{(k)} = \{x_i^{(k)}\}_{i=1}^{n'_x}, n'_x = n_x/n_{set}$  and  $k = \{1, \ldots, n_{set}\}$ :

$$J(\mathbf{x}^{(k)}) = \begin{bmatrix} \frac{\partial a(x_1^{(k)}, \xi)}{\partial \xi_1} & \dots & \frac{\partial a(x_{n'_k}^{(k)}, \xi)}{\partial \xi_1} \\ \vdots & & \vdots \\ \frac{\partial a(x_1^{(k)}, \xi)}{\partial \xi_M} & \dots & \frac{\partial a(x_{n'_k}^{(k)}, \xi)}{\partial \xi_M} \end{bmatrix}$$

Compute the covariance matrix:

$$C(\mathbf{x}^{(k)}) = \mathbb{E}\left[J(\mathbf{x}^{(k)})J(\mathbf{x}^{(k)})^{T}\right].$$

Rotate  $\xi$ :

$$\eta^{\mathbf{x}^{(k)}} = W_{\mathbf{x}^{(k)}}^T \xi \in \mathbb{R}^{M \times 1}$$

(日) (同) (目) (日) (日) (0) (0)



At spatial points  $x_i$ , i = 1, 2, 3, 4,  $\log_{10}(|\hat{a}_{\alpha}(x_i, \eta^{\mathbf{x}^{(1)}})|)$ 

<ロ> <同> <同> < 回> < 回>