
ModelingToolkit:
A Composable Modeling

Language in Julia
Yingbo Ma

About me

Senior year undergraduate mathematics
major

Research engineer at Julia Computing
working on modeling and numerics

About me

I was interested in differential equations when I was in high school and found Julia by Googling

Went to JuliaCon 2016 https://juliacon.org/2016/

Spent my summer at the Julia Lab and learned numerical linear algebra and ordinary differential
equations

https://juliacon.org/2016/

Julia

Multiple Dispatch: a higher
abstraction on functions. One
can dispatch on the specificity
of all arguments instead of
just the first one.

foo(a::Number, b::Number) = 1

foo(a::Complex, b::Real) = 2

foo(a::Real, b::Complex) = 3

foo(a::Real, b::Real) = 4

foo(1+2im, 2+2im) == 1

foo(1+2im, 2) == 2

foo(2, 1+im) == 3

foo(1, 1) == 4

Definition of ODEs

● f is called the derivative function or the right

hand side of the ODE

● u is called the dependent variable or the states.

● p is the parameters.

● t is the independent variable.

Limitations of ODEs in Engineering

Kirchhoff's current law:

Kirchhoff's voltage law:

Limitations of ODEs in Engineering:
No explicit constraints

ODEs with explicit constraints:
differential-algebraic equation (DAEs)

E.g.

Composable modeling and DAEs

Model each physical component individually and
connect them together instead of simplify the system
into an ODE by hand.

Composable modeling

@parameters t
@connector function Pin(;name)
 sts = @variables v(t)=1.0 i(t)=1.0 [connect = Flow]
 ODESystem(Equation[], t, sts, []; name=name)
end

function Ground(;name)
 @named g = Pin()
 eqs = [g.v ~ 0]
 compose(ODESystem(eqs, t, [], []; name=name), g)
end

Simple circuits components are characterized by v and i.

Object oriented programming

To simplify the modeling process more, one can abstract away the intrinsic physical constraints
of a class of physical components, and extend more specific equations later.

Composable modeling

function OnePort(;name)
 @named p = Pin()
 @named n = Pin()
 sts = @variables v(t)=1.0 i(t)=1.0
 eqs = [
 v ~ p.v - n.v
 0 ~ p.i + n.i
 i ~ p.i
]
 compose(ODESystem(eqs, t, sts, [];
 name=name), p, n)
end

Object-oriented design:

We can define a base model, which contains fundamental physical constraints. This is
analogous to boundary conditions.

Composable modeling

Object-oriented design:

Simple electronic components are
extended model from the base
model. This is like “interior”
conditions.

function Resistor(;name, R = 1.0)
 @named oneport = OnePort()
 @unpack v, i = oneport
 ps = @parameters R=R
 eqs = [
 v ~ i * R
]
 extend(ODESystem(eqs, t, [], ps; name=name), oneport)
end
function Capacitor(;name, C = 1.0)
 @named oneport = OnePort()
 @unpack v, i = oneport
 ps = @parameters C=C
 D = Differential(t)
 eqs = [
 D(v) ~ i / C
]
 extend(ODESystem(eqs, t, [], ps; name=name), oneport)
end

RC circuit

R = 1.0; C = 1.0; V = 1.0
@named resistor = Resistor(R=R)
@named capacitor = Capacitor(C=C)
@named source = ConstantVoltage(V=V)
@named ground = Ground()

rc_eqs = [connect(source.p, resistor.p)
 connect(resistor.n, capacitor.p)
 connect(capacitor.n, source.n)
 connect(capacitor.n, ground.g)]
@named rc_model = ODESystem(rc_eqs, t)
rc_model = compose(rc_model, [resistor, capacitor, source,

ground])

RC circuit

R = 1.0; C = 1.0; V = 1.0
@named resistor = Resistor(R=R)
@named capacitor = Capacitor(C=C)
@named source = ConstantVoltage(V=V)
@named ground = Ground()

rc_eqs = [connect(source.p, resistor.p)
 connect(resistor.n, capacitor.p)
 connect(capacitor.n, source.n)
 connect(capacitor.n, ground.g)]
@named rc_model = ODESystem(rc_eqs, t)
rc_model = compose(rc_model, [resistor, capacitor, source,

ground])

RC circuit

Due to the constraints, the simulation
of this system is numerically
expensive.

Structural simplification of DAEs

First observation: most of the algebraic
equations in practice are linear with only
integer coefficients.

We run an algorithm on the linear subsystem
with integer coefficients that is fast and
avoids truncation errors.

Bareiss algorithm

The Bareiss algorithm exploits the fact that
the determinant of integer valued matrices
is also integer. Bareiss used Sylvester's
determinant identity to prove that this
algorithm is fraction-free.

Bareiss, Erwin H. (1968)

Alias elimination

Tearing

Consider the system of equations

0 = u1 - f1(u5)
0 = u2 - f2(u1)
0 = u3 - f3(u1, u2)
0 = u4 - f4(u2, u3)
0 = u5 - f5(u4, u1)

Suppose we know u5 already: we can
transform it into

u1 = f1(u5)
u2 = f2(u1)
u3 = f3(u1, u2)
u4 = f4(u2, u3)
u5 = f5(u4, u1)

Note that we get u5
again

Tearing (cont.)

Hence, we can reduce it into a single nonlinear equation by
substitution

0 = u5 - f5(f4(f2(f1(u5)), f3(f1(u5),

f2(f1(u5)))), f1(u5))

Suppose we know u5 already: we can
transform it into

u1 = f1(u5)
u2 = f2(u1)
u3 = f3(u1, u2)
u4 = f4(u2, u3)
u5 = f5(u4, u1)

Tearing (cont.)

We can formulate this process in
terms of graphs.

1. Run the bipartite graph
matching algorithm to assign
each equation an unknown.

2. Contract the bipartite graph of
equations and unknowns to
only a graph of unknowns.

3. Remove all acyclic subgraph.

All Together

Acknowledgement

My collaborators: Shashi Gowda (MIT), Chris Rackauckas, Keno Fischer, Viral Shah (Julia
Computing), Chris Laughman (MERL)

Modelica community: Hilding Elmquist, Martin Otter

Advisor: Dr. Bedřich Sousedík

References

Julia Language official website: https://julialang.org/

ModelingToolkit.jl code: https://github.com/SciML/ModelingToolkit.jl

Yingbo Ma, Shashi Gowda, Ranjan Anantharaman, Chris Laughman, Viral Shah, and Chris
Rackauckas. "Modelingtoolkit: A composable graph transformation system for equation-based
modeling." arXiv:2103.05244 (2021).

Martin Otter and Hilding Elmqvist. "Transformation of differential algebraic array equations to index
one form." In Proceedings of the 12th International Modelica Conference. Linköping University
Electronic Press, 2017.

https://julialang.org/
https://github.com/SciML/ModelingToolkit.jl

