Fast Implementation of mixed finite elements in MATLAB

Teddy Weinberg

mentor: Bedřich Sousedík

Department of Mathematics and Statistics University of Maryland, Baltimore County

Supported by the National Science Foundation (award DMS-1521563) and by an Undergraduate Research Award from the UMBC Office of Undergraduate Education.

DE seminar, April 30, 2018

Teddy Weinberg (UMBC)

Vectorized FEM in Matlab

April 30, 2018 1 / 16

- Study partial differential equations modeling flow in porous media.
- Implement vectorized finite element method to simulate flow in porous media in MATLAB for various elements.
- Compare the effectiveness of the efficient implementation with that of the standard approach by numerical experiments.

Understanding flow in porous media is important for many applications

- Managing groundwater reserves
- Maintaining CO₂ storage facilities
- Simulating petroleum reservoirs.

SPE 10 visualization

From Darcy's law, consider the model problem:

$$\mathbb{k}^{-1}\vec{u} + \nabla p = 0, \tag{1}$$
$$\nabla \cdot \vec{u} = f, \tag{2}$$

where

- \Bbbk ... permeability coefficient,
- \vec{u} ... velocity,
- p ... pressure,
- f ... source terms.

In the mixed variational formulation of (1)-(2) we wish to find $(\vec{u}, p) \in (U_E, Q)$ such that

$$\int_{\Omega} \mathbb{k}^{-1} \vec{u} \cdot \vec{v} \, dx - \int_{\Omega} p \nabla \cdot \vec{v} \, dx = 0, \qquad \forall \vec{v} \in U, \qquad (3)$$
$$- \int_{\Omega} \nabla \cdot \vec{u} q \, dx = - \int_{\Omega} fq \, dx, \quad \forall q \in Q, \qquad (4)$$

where the pair of spaces (U, Q) is selected so that $U \subset \mathbf{H}(\Omega; \text{div})$ and $Q \subset L^2(\Omega)$, and U_E is an extension of U containing velocities that satisfy the essential boundary condition.

Discretization

- We used lowest order Raviart-Thomas finite elements (RT0).
- We implemented for triangular, quadrilateral, tetrahedral, and hexahedral elements.

Matrix Form

Let the basis functions for the velocity and pressure spaces be denoted φ_i and ψ_j , respectively. In matrix terminology, the discretization of (3)–(4) can be written as a saddle-point linear system

$$\begin{bmatrix} \mathbf{A} & \mathbf{B}^{\mathsf{T}} \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{f} \end{bmatrix}, \tag{5}$$

where

$$\mathbf{A} = [a_{ij}], \qquad a_{ij} = \int_{\Omega} \mathbb{k}^{-1} \varphi_i \cdot \varphi_j \, dx,$$
$$\mathbf{B} = [b_{k\ell}], \qquad b_{k\ell} = -\int_{\Omega} \nabla \cdot \varphi_k \, \psi_\ell \, dx,$$
$$\mathbf{f} = [f_\ell], \qquad f_\ell = -\int_{\Omega} f \psi_\ell \, dx$$

- In MATLAB, iterative structures, also known as loops, are not efficient
- However, matrix operations are very efficient
- By converting loops to matrix operations, we can significantly increase the speed of our code.

- We implemented both a standard and a vectorized version of our code.
- The standard version finds the stiffness matrices by looping through each element.
- The vectorized version calculates all of the local element matrices simultaneously.
- The assembly process of the local element matrices into the global system was also vectorized.

Non-Vectorized Code

```
for e = 1:nelem % loop over elements
       A = zeros(nelf);
2
       B = zeros(1, nelf);
3
       xcoord = nodes2coord(1,elems2nodes(:,e));
4
       vcoord = nodes2coord(2,elems2nodes(:,e));
5
       for intx = 1:nglx
6
           x = point2(intx, 1);
7
           wtx = weight2(intx,1);
8
           for inty = 1:ngly
9
               v = point2(intv, 2);
10
               wty = weight2(inty,2);
12
                [sghape,divsghape,dhdr,dhds] = feisoguad2D4n_RT0(x,v);
               J = [(xcoord(2) - xcoord(1))/2 0]
13
                    0 (vcoord(4)-vcoord(1))/2 ]; %Jacobian
14
               detJ = det(J);
15
16
               sqhape1 = spdiags(signs(:,e),0,nelf,nelf) * 1/(detJ) * (sqhape*J) * ...
                    spdiags(coeffs(:,e),0,dim,dim);
17
                    sqhape2 = spdiags(signs(:,e),0,nelf,nelf) * 1/(detJ) * (sqhape*J);
18
               A = A + (sghape1*sghape2')*wtx*wtv*detJ;
19
               B = B + ( signs(:,e)' .* divsghape )*wtx*wty*detJ;
20
           end
21
           Kloc(:,:,e) = [A B';
22
23
                    B 0 1;
24
       end
25
   end
```

э

(日)

Vectorized Code

```
2 Kloc = zeros(nbasis+1,nbasis+1,nelems);
   for i=1:nip
3
       for m=1:nbasis
4
           for k=m:nbasis
5
                Kloc(m,k,:) = squeeze(Kloc(m,k,:))' + \dots
6
                    w(i) .* B_K_detA'.^(-1) .* ...
                    sum( squeeze( astam(signs(:,m), ( amsv(B_K, val(i,:,m)) .* ...
8
                    reshape(coeffs, size(coeffs, 1), 1, size(coeffs, 2)) ) ).* ...
9
                    squeeze( astam(signs(:,k), amsv(B_K, val(i,:,k))) ) ...
10
                    );
               end
12
               Kloc(m,nbasis+1,:) = squeeze(Kloc(m,nbasis+1,:)) + ...
13
                    w(i) .* B_K_detA.^(1) .* ...
14
                    (signs(:,m) .* dval(i,:,m) );
15
           end
16
17
       end
18
   Kloc = copy_triu(Kloc);
```

э

(日)

- Experiments were performed on a (0,1)x(0,1) domain for 2-D and a (0,1)x(0,1)x(0,1).
- The domain was discretized into smaller equally sized squares or blocks used for setup of linear system
- The experiments were run on a computer with two 8-core Intel Xeon E5-2620v4 2.10 GHz procesors with 1 TB memory and Linux openSUSE 42.3.

problem setup	standard			vectorized		
partitioning	t _e	t _a	$t_e + t_a$	t _e	t _a	$t_e + t_a$
4 × 4	.13	.01	.14	.06	.02	.08
8 imes 8	.03	.00	.03	.00	.01	.02
16 imes16	.08	.02	.10	.02	.01	.03
32 imes 32	.03	.10	.38	.02	.03	.05
64 imes 64	1.10	.94	2.04	.06	.15	.21
128 imes 128	5.37	11.96	17.33	.15	.74	.88
256 imes256	20.02	196.49	216.51	.51	2.25	2.76
512 imes 512	70.12	5163.50	5233.62	2.07	9.55	11.62

problem setup	standard			vectorized		
partitioning	t _e	ta	$t_e + t_a$	t _e	ta	$t_e + t_a$
4 imes 4 imes 4	.18	.01	.19	.04	.02	.06
$8 \times 8 \times 8$.31	.09	.40	.03	.02	.05
16 imes 16 imes 16	.2.35	2.47	4.82	.15	.14	.29
$32\times32\times32$	18.73	147.96	166.69	.84	.98	1.82
$64\times 64\times 64$	148.95	18822	18970.95	7.42	8.13	15.55

(日)

э

- As expected, the vectorized version significantly outperformed the standard version for large numbers of elements
- The vectorized version had runtime increase approximately linearly with the number of elements

- Our next step is to work on efficiently solving the linear system produced by the current code.
- We want to develop and implement preconditioners for iterative solvers.
- We want to determine a posteriori error estimates for our computed solutions.