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What is Mathematic Epidemiology<

» Mathematic epidemiology is the science of understanding the cause of a
disease, predicting its outbreak dynamics, and developing strategies to
control it.

» Today's focus is epidemic modeling

» Using mathematical formulas to anticipate the spread of diseases

» Calculating maximum number of people infected

» When can we expect the maximum number of people infected




Why Is epidemic modeling important
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Peirlinck, M., Linka, K., Sahli Costabal, F., & Kuhl, E. (2020). Outbreak dynamics of COVID-19 in China and the United States.
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Heat Equation for Epidemic Modeling
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Computational Epidemiology Data-Driven Modeling of
COVID-19(pg 189), by E. Kuhl




Downsides of using the heat equation

» The heat equation assumes whatever is spread is contiguous

» |f we look at the map of how covid spread through out the united states, we can
see that it is not contiguous

i = div(D - VD) + BI[l,, — I]
Where I, =1-Z%
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Agent based

epidemic modeling

= Dr.Sanjeev Seahra and
The Black Arcs

» https://blackarcs.org/

» Uses locations and
schedules



Downsides of using an Agent system

» Agent based models are computationally intensive
» Only works for small populations
» Time

» Memory

® |nitial cost to set up is high

» Survey of people’s schedule

®» |haccurate data




SIR model Variables

S: number of people who are susceptible
® |: number of people who are infected - “
= R: number of people who are recovered

» (3. infectio

rate

®» y:recoyery rate

S is the rate which susceptible people changes
e rate which infected people changes
R /5 the rate which recovered people changes

="/, : basic reproduction number
Slow dynamic: Ry = 2

Fast dynamic: R, = 4



SIR explicit model

» S =—fSI
» [ = +BSI—vyI (1)
» R = +yl

We can use forward Euler method with a discrete time step of At = t,,.; — t,, t0 say
A Sn+1=Sn  j - Iny1—In p _ Rn4+1—Rn

= S At A At S At (2)

By substituting the list of equations above into the original SIR model equations we get

And now we can solve for the unknowns S,,;1, I,+1, R,4+1 and get
Sn+1 = Sn — BSnlAt

Lhy1 = I, + BSpl At — yi, (4)

Rni1 = Ry + v,



Network diffusion method
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Network diffusion method SR
, , of People York

®» A:n,q X n,g adjacency matrix for the graph G on Flights

®» D:n,,; Xn,; degree matrix per year

®» D;; =Sumof all entries in column | California 0 10,000 2,000
= Craph Laplacian nyg X nyg, where Ly; = Dj; — A New York 10,000 0 500
Arizona 2,000 500 o)

R N

California 0 California
New York 1 0 0.05 New York O 1.05 0

Arizona 0.2 0.05 0 Arizona 0 0 0.25
\\



One Node vs Multl Node Systems

» S =—fSI

» [ = +BSI—vyI (1)

» R= +yI

We can use forward Euler method with a discrete
time step of At = t, ., — t,, tO say

- §= S - luth o Fauy (2)

+1-5n _
R — BSI
Int1—In B 3
L0 — 1BST -yl (3)
Rn41—Rn _ +yl

= S =—Kg Z}lﬂl Li;S; — BSi;
» [ =-K Z?gf Lily + BSiI — v
= R, = —Kpg Z?gf LRy + v

We can use forward Euler method with a discrete time step
of At = t, .1 —t, to say

(1)

(2)

. Sin+1—SI : Itn+1—IIn ¢ Rin+1—Rj
» SI — n+ n ’ II — n+ ,Tl’ RI — n+ ,n
At At At

By substituting the list of equations above into the original
SIR model equations we get

Sin+1=Sin _ iz
At = —Kg 2121 LI]S],n i BSI,nII,n

(3)

Itny1—Iin _ n
- . At = =K Z];lil LI]I],Tl + BSI,nII,n —Viin

Rin+1—Rj n
- % = —Kg Z,Z‘f LijR;n +vlin



One Node vs Multl Node Systems Part 2

nd now we can solve for the unknowns S, 1, I,+1, R+ and get And now we can solve for the unknowns Sy, 1.1, In+1, Rp+1 @nd get
® Sn+1 = Sn I BSnInAt - SI:”"'l = SI»” — Ks Z}lg‘i LUS].TLAt _ BSI,nII,n At
® 1 = I + BSL LA =y (4) ® e =l =K Z}lgil Lyl nAt + BSinlinAt — v At (4)

» R..1=R, + yI, ™ Rin+1 = Rin —Kg Z?Z‘f LijRynAt + v At




The Mobllity Term

® K¢ iS a mobility constant

» |etSbe(l, .8 1] and | be the California node
» Then our mobility ferm looks like

» —ko((1.2* D)+ (—1%.8) +(—2*1)) = —2Kg

_m

California -0.2
New York -1 1.05 -0.05
Arizona -0.2 -0.05 .25




One Node SIR Graph
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Slow Dynamic
Example

(850, 130) (839, 120) (821, 170)

At =1 (766, 111) (775, 104) (743, 145)

Real solution (758, 110) (767, 102) (735, 142)
(ODEA45)
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California Node

5000 1

Fast Dynamic
Exqmple - .;

New York Node

(2287, 24)  (2324,16) (2304, 32)

At =1 (2115,21)  (2145,15) (2139, 29)

At = .2 (2000, 19) (2030, 14) (2024, 25) § o] :

Real solution (1973, 18) (2006, 13) (1998, 24) 0
(ODEA45) S » @ & % 1 o

o

| Days
Arizona Node
5000 1
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m California New York Arizona o

16% 16% 15% % ool L
At = ] 7% 7% 7% 1000 -
At = .2 1% 1% 1% o




Single Node Implicit System

. $=—BSI
.« i= +BSI—yl
« R= +yI

Again, we can use Implicit/backwards Euler method with a discrete time
step of At = t, .1 — t, tosay

: S S . I -1 . R —-R
° S — 2nt+1y7-on ’ | = M’ R = n+1” n
t At At

Sn-l—l - an,
& +1At & - _IBSn—i—lIn—i—l At " /8 e
In—i—l i In
Int1—In — BSn+1ln+1 + ¥lny1 =0
+1At = +8Sni1lni1 — Vst :> At BSn+1ln+1 + vlnt1
R,11 — R

At



Single Node Implicit System

For every time step, use Newton’s Method to solve the implicit model:
Calculate the residual: Sn+&t—sn + BSni1loie }

Iny1—1In
% - /BSn+1In+1 + 'YIn—i—l
Rn+l_Rn

At o ’YIn—I-l

Res =

Calculate the Jacobian: .
At + /BIn-I-l /BSn-i-l 0
—BIny1 a7 —BSny1+v 0 ] (2)
0 —y Ait

DRes =

Solye for update “s”:

DRes(ak)s = —Res(ay)

sl e e ap = (5,1, R) 3)

Update model until convergence to a set tolerance level or for a set number of times:



Multi-Node Implicit System

® [n every time step, for every node we will
solve for the system:

S S =
I,n+1 — OI,n
At = —K§ E LI,JSJ,n-}-l —6SI,n+1LT,n+1
J=1

I
At

ng
= —KJ Z Lijliny1 + BSrn+ilrntr — Yrn+1At
=

RI,n-I—l - RI,n
At

ng
= —KR E LrsjRin+1 +vIlrns1
J=1

®» We will obtain a solution of the form:
(51
I

Ry

MNnd

I .
\ R/




Multi-Node Implicit System

For every time step, use Newton’s Method to solve the implicit model:
Calculate the residual of the multi-node system:

S1,n+1—S1,n ng

In ny1—1I1n ng
by + k1) 1 Lrglintr — BSin+1lin+1 + Y nt1 AL

Rint1—Rin ng
At + KR ZJ:l LI,JRJ,n—|—1 — ’YIl,n—l—l

Snn ,n+1_Snn , T nd
; At . _I_ HS ZJ:]_ LI,JSJ,TL—I—]_ _I_ IBSnnd)n—i_]-Innd,n‘l_l

_I'n,,n , n
At 4 —I_ I{}I Zjd:]_ LI,JIJ,TL—I—]_ T /BSnnd)n_l_]-Innd)n_'_]- —I_ 7Iﬂnd7n+1At

Rn d,n—l—l_Rn dm nd
\ pdnto—2d® + KR D g LgRint1 — Vn,gnt1

We obtain a vector in [R3*"nd




Multi-Node Implicit System

Calculate the Jacobian using the Kronecker Product to expand our Solve for update s™:

dimensions:
ST BS0s e DResiozk)s = —Res(ay)
DRes= | —fInt1 23— BSnt1+v 0| ®IL, Blanl =
1
0 - At ap = (8717R)
Ks 0 0 i
+10 & 0| ®L1y Update for a set number of iterations or
0 0 kg until convergence to a set tolerance level.

We will obtaina 374 X 31,4 matrix



Implicit Method Graphs
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Features of the Implementations

Explicii/ Forward Implicit/ Backward

Accuracy May result in Generally more
iInaccurate solutions accurate
especially with large

time steps

ofe]aa]e]l] (o] ({e]s[e|No(-YI MFfficient/ Simple Computationally
Iterations/ fast expensive
convergence

tability Oscillations or More stable

divergent solutions
may occur
Stiffness may cause  Handles Stiffness well
numerical instability
or slow convergence



Conclusion

= Fast dynamic

» At > ]
» |f you are fine with an error of around 7% use explicit method
» Otherwise use implicit method to reduce the error

» At <]

» Use explicit method

» Slow dynamic

» At > ]
» |f you are fine with an error of around 7% use explicit method
» Otherwise use implicit method to reduce the error

» At <5

» Use explicit method
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