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• Arbitrage: A strategy in which a trader simultaneously buys and sells the same
asset in different markets, taking advantage of its different prices to ensure a
risk-free profit.

• No-Arbitrage Pricing Theory: In an efficient market, there is no opportunity
for riskless profit. If an asset were mispriced (creating an arbitrage opportunity),
traders would immediately exploit it, pushing the price back to equilibrium.

• Stochastic Discount Factor (SDF): A function that accounts for the stochastic
(random) nature of economic outcomes to “discount” future asset payoffs based on
both time and risk, in order to determine the asset’s present value and fair price.
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• No-Arbitrage Assumption: The existence of an SDF, Mt+1 > 0, such that, for
any return in excess of the risk-free rate, it holds
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• Loss Function: Minimizes pricing errors and enforces the no-arbitrage condition.
An adversarial network chooses ĝ(It, It,i) to emphasize assets with the largest
mispricings. The model optimizes by minimizing the worst pricing errors.
(Smaller residuals =⇒ Better fit)
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L = loss function It = macro feature at time t
T = total number of time periods It,i = asset-specific feature for asset i
Ti = total number of time periods for asset i

∑N
i=1

= sum over all assets
ĝ(It, It,i) = selects difficult-to-price assets

∑
t∈Ti

= sum over all time periods for asset i

• Neural Network: Estimates the SDF by learning optimal portfolio weights. This
image shows three hidden layers, but this can vary. The optimal model uses two.

?
• Question: Why do different assets have different expected returns?

• Answer: According to No-Arbitrage Pricing Theory, expected returns
differ because assets have different exposure to the SDF. We estimate
the SDF that explains all stock returns from the conditional moment
constraints implied by no arbitrage.

BACKGROUND

We use a general nonlinear asset pricing model created by Chen, Pelger, and Zhu, with deep
neural networks. We utilize monthly U.S. stock data from 1967 to 2016, 178 macro-economic
time series and 46 firm-specific characteristics as the input datasets.

• Generative Adversarial Network (GAN) Model Architecture: An adversarial
network is a model that uses two competing networks that optimize in opposing
directions. Here, it is the SDF Network and the Conditional Network. The con-
ditional network selects asset weights that maximize pricing errors to identify the
most mispriced assets, forcing the SDF Network to minimize the worst-case errors.

– SDF Network: Uses a State Recurrent Neural Network (SRNN), which
processes past feature information I1, ..., It to generate a hidden state
ht . A Feed Forward Network (FFN) then uses ht along with asset-specific
information It,i to produce SDF weights ŵ(ht, It,i). The constructed
SDF is then applied to asset returns.

– Conditional Network: Learns an adversarial weighting function that max-
imizes pricing errors, identifying worst-case mispricings. The Moment
RNN processes past feature information I1, ..., It to produce a hidden
state hg

t . An FFN takes hg
t and asset-specific information It,i to com-

pute weights ĝ(hg
t , It,i).

Loss Calculation and Iterative Optimizer: The loss function L quantifies pricing
errors. The SDF Network minimizes L for accurate pricing, while the Conditional
Network maximizes L to identify worst-case mispricings.

METHODOLOGY

• (Unconditional) Sharpe Ratio (SR): Measures the risk-adjusted return of the SDF
portfolio by comparing its expected return to its volatility (standard deviation).

SR =
E[portfolio return]√
Var[portfolio return]

(Higher value =⇒ More efficient model)

• Explained Variation: Measures the proportion of the total variation in excess re-
turns that is explained by the SDF. (Higher value =⇒ Better performance)
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ϵ = pricing error for asset i at time t + 1

• (Weighted) Cross-Sectional Mean: Measures how well the model explains the
cross-sectional variation in asset returns across different time periods.
(Higher value =⇒ Stronger explanatory power)
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MODEL METRICS

• Training Checkpoints and Constructing Decile Portfolios: We ran a Python
training script 18 times, generating 18 checkpoint trials.

Train SDF Model: Train a GAN-based model to estimate the SDF. Compute SDF-
implied weights, normalize SDF factors, and save them for portfolio construction later.

Construct Decile Portfolios: Sort assets into deciles based on predicted returns, calculate
portfolio returns for each decile, and plot the performance of the decile portfolios.

• Selecting the Best Checkpoints: We selected two checkpoints with the highest test
Sharpe ratios. Each checkpoint includes a train, validation, and test Sharpe ratio.

Train Validation Test
Checkpoint 1 4.136 1.272 0.840
Checkpoint 2 5.174 1.104 0.760

• Final Metrics for the GAN Model
Train Validation Test

SDF Portfolio Sharpe Ratio 3.10 1.29 0.92
Explained Variation 0.15 0.06 0.06

(Weighted) XS − R2 0.11 0.00 0.19

The plot shows the cumulative excess returns of 10 decile portfolios, calculated
relative to the risk-free rate. Portfolio returns for each decile are calculated as the
weighted average return of the assets in that decile.

Conclusion: Deep learning appears to be a promising tool that can provide insight into the
underlying uncertainties associated with the portfolio optimization process. It can efficiently
process large datasets to identify patterns and assist with producing portfolios with higher
excess returns as compared to the risk-free rate.
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