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ABSTRACT

An increasing number of social networking platforms are giv-
ing users the option to endorse entities that they find ap-
pealing, such as videos, photos, or even other users. We de-
fine this model as a Social Endorsement Network, visualized
as a bipartite graph with edges (endorsements) from users
to endorsed entities. In this work, we formalize the prob-
lem of interactive recommendations in social endorsement

networks: given a query of tags and a social endorsement
network, the problem is to recommend entities that match
the query and also share a significant number of common
endorsers. We propose an efficient search engine for the
solution of the problem, able to produce high-quality and
explainable recommendations. The entire framework is de-
signed in a principled and efficient manner, making it ideal
for large-scale systems. In a thorough experimental evalua-
tion on real datasets, we illustrate the efficacy of our meth-
ods and provide some valuable insight on social endorsement
networks.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process; E.1 [Data]: Data
Structures—Graphs and networks; H.2.8 [Database Man-
agement]: Database applications—Data Mining

General Terms

Algorithms, Experimentation

Keywords

Social Networks, Recommendation Systems, Social Endorse-
ment, Twitter

1. INTRODUCTION
The desire of users to exchange information and share

their personal opinions has been one of the main causes of
the astounding popularity of social networks. Users use so-
cial networks to comment on a variety of different entities,
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such as photos, movies, products, or even other users. In
many popular platforms this method of expression has been
formalized, allowing users to express their approval of an
entity by endorsing it. On Facebook.com, users have the
option to “Like” different types of entities, including pho-
tos, videos, celebrities and commercial products. On Ci-

teULike.org users can show their approval of a published
paper by including it in their “Library”. On Flickr.com

users can add a picture to their “Favorites” folder. Finally,
on Twitter.com users can express their interest and approval
by becoming “followers” of other users.

By visualizing an endorsement as an edge from a user to
an entity, we can view a Social Endorsement Network as a
bipartite graph G = (U, V, E), where U is the set of users,
V is the set of entities, and E is the set of endorsement
edges. A problem that naturally arises in such a network
is recommending to the user other entities that he is likely
to be interested in. As we show in our work, the informa-
tion encoded in the graph of the social endorsement network
can serve as an exceptional foundation for a solution to this
problem. The intuition is simple: an endorsement serves
as a verification that the user approves the endorsed entity.
Examining the set of entities that are endorsed by a single
user can provide some information on his preferences, but it
does not answer the most important question: Why did the

user choose to endorse this particular entity?

To answer this question, we call upon the wisdom of crowds:
first, we find groups of entities that are endorsed by the same
large groups of users. For each group, we then examine the
common characteristics of the included entities and identify
the aspects that truly appealed to the same large set of users.
The product of this first phase is a collection of groups. For
each group, we have a set of tags that encode its most attrac-
tive and characteristic aspects. Given this information, the
next step toward a great recommendation framework comes
naturally: we make our system interactive, allowing the user
to specify his own personal interests in the form of a textual
query. The submitted query is then streamed through the
mined groups, in order to identify those that best match the
user’s interests. The main problem addressed in this paper
is the following:

Problem 1. Given a user-submitted query and a social
endorsement network G, we want to identify and recommend
groups of entities that match the query and also share a
significant number of common endorsers.

In order to accurately encode the user’s preferences, we for-
malize queries as sets of tags (keywords). This is an intuitive
and flexible mechanism, with which practically every user is
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familiar. Below are some examples of relevant queries, as
could be formed in popular social networking platforms:

• Twitter: Recommend female singers from the USA.

• Facebook: Recommend Chinese Restaurants

in San Fransisco

• CiteULike: Recommend research papers
on Social Networks

The underlined terms represent the query-tags that encode
the user’s interests. A possible recommendation of our frame-
work for the 1st query is : “Whitney Houston, Mariah Carey
and Celine Dion match the query and also share 50,000
followers”. The interaction with the user and the author-
ity offered by the large number of common endorsers make
our recommendations explainable and intuitive to the user.
Explainable recommendations are increasingly popular and
have been the focus of numerous research efforts [24].

An overview of our framework is shown in Figure (1):
Given a social endorsement network, we first extract groups
of entities that share a significant number of common en-
dorsers. Next, we identify the appropriate set of tags for
each of the reported groups. Taking the assigned tags into
consideration, we then apply a filter that eliminates redun-
dant groups (i.e. groups that can be induced by others), and
produces a compact and informative corpus. The final cor-
pus is then organized in an appropriate index structure. By
combining the index with an efficient algorithm for query
evaluation, we create a search engine able to recommend
groups of entities that are relevant to the given query.

Contribution: Our work is the first to formalize and solve
the problem of interactive recommendations in social en-

dorsement networks. We thoroughly discuss the architec-
ture of the proposed framework and demonstrate its effi-
cacy through a thorough experimental evaluation on real
datasets. The benefits of our approach are clear:

• It is interactive, allowing the user to repeatedly query
the system for different types of entities.

• Its principled and efficient architecture make it ideal
for large-scale systems.

• The recommended entities come organized into groups,
with each group representing a different cohesive set of
similar entities.

• The recommendations are easily explainable and, thus,
more intuitive to the user.

Another significant contribution of this paper is the release
of a brand new dataset (crawled from Twitter.com), which
is ideal for research on social endorsement networks.

1.1 RoadMap
We begin in Section 2 with an overview of the related

work. In Section 3 we discuss the identification of popular
groups of entities. In Section 4 we discuss the process of
tagging the reported groups. In Section 5 we introduce a
principled filtering method for the elimination of redundant
groups. In Section 6 we describe our interactive recommen-
dation mechanism. In Section 7, we present our experimen-
tal evaluation. Finally, we conclude in Section 8 with a brief
overview of the paper.

. . .
. . .
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Figure 1: An overview of our complete search framework

2. RELATED WORK
To the best of our knowledge, ours is the first work to

consider the problem of interactive recommendations in so-

cial endorsement networks. Nonetheless, our work has ties
to numerous fields.

Our recommendation system is defined in the context of
a social endorsement network, which we formalize in the
paper. Social endorsement has been also considered in the
past, albeit in a different context. Kunegis et al. [12] ana-
lyze different aspects of the social graph from Slashdot.org,
where users have the option to tag others as “friends” or
“foes”, thus providing positive or negative endorsements. In
another relevant paper, Leskovec et al. [13] discuss the pre-
diction of positive and negative edges in social networks.

Different types of recommendation systems have been pro-
posed in the broad context of social networks: Guy et al. [7]
considered the familiarity network among the users to sup-
port their recommendation system. In a related paper, Bon-
hard et al. [1] explore how the familiarity and similarity
among users can be utilized to improve recommendations.

In the first phase of our framework we mine frequent (pop-
ular) groups of entities. Pattern mining has been explored in
the context of recommendation systems [14, 17, 16], albeit
in contexts that are completely different to our own. Fur-
ther, our framework employs a type of social tagging. Social
tagging is an increasingly popular research topic, following
the popularity of social networking platforms. A significant
amount of work has been devoted to methods for automatic
tag extraction [11, 3, 23, 6] and to using tagging to enhance
recommendation systems [26, 4, 21, 15, 22].

Users can interact with our recommendation system via
queries. Interactivity in the context of recommendations
systems has also been studied in the past: Viappiani et
al. [25] propose a conversational recommender that collects
information and adapts to the user’s preferences. In a simi-
lar setup, Bridge at al. [2] try to identify the most suitable
items for a user, while keeping query updates to a mini-
mum. Schenkel et al. [20] propose an incremental top-k
querying-algorithm that takes into consideration the rela-
tionships among users to rank tagged entities.

Finally, our work has ties to collaborative filtering, an ex-
tensively studied problem in the context of recommendation
systems [8, 19, 18, 27]. Though relevant, our work is the
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Figure 2: An example of using tags to identify the corre-
lation among the entities in a group. In this case, the four
entities are all Restaurants in Los Angeles that offer both
Parking and Outdoor seating.

first to focus on social endorsement networks and enables
interactive and explainable recommendations.

3. EXTRACTION OF POPULAR GROUPS
In this section, we describe the process of identifying groups

of entities with a significant number of common endorsers,
given a social endorsement network. This is only the first
phase of our framework, albeit an important one, since it
produces an initial collection of popular entity-groups. These
groups will then be processed, tagged, filtered, and finally
organized toward an efficient recommendation engine.

We formalize the problem of extracting popular groups
as an instance of the problem of mining frequent itemsets:
we are given a set of transactions, where each transaction
includes a set of items. We then want to find groups of
items that were often grouped together. In our context, a
transaction is the set of entities that are endorsed by a user.
Formally, we define the problem as follows:

Problem 2. Given a social endorsement network G =
(U, V, E) and a group of endorsed entities g ∈ 2V , let N(g)
return the set of common endorsers of g in G. Then, find

the set of entity-groups G, so that

G = {g | g ∈ 2V
, |N(g)| ≥ T} (1)

As formulated above, the problem asks for all groups that
have at least T endorsers in common. In the Experiments
section, we show how tuning the value of T affects the num-
ber of reported groups.

By representing the set of entities endorsed by each user
as a transaction, Problem 2 can be efficiently solved by any
of the popular algorithms for mining frequent itemsets. In
our experiments, we use the algorithm proposed in [9], which
proved efficient enough to easily handle a database of over
six million transactions.

4. GROUP TAGGING
After we obtain the popular groups, the next step is to

tag them in a way that facilitates search. Given a group,
we want to answer the following question: Why where these

entities endorsed by the same large set of users? To an-
swer this, we need to identify the common characteristics
that make these entities appealing to the same crowd. In
order to achieve this, we need to obtain and record informa-
tion on the different attributes of each entity. For example,
if the endorsed entity is a restaurant, the list of attributes
may include the type of food served or the restaurant’s lo-
cation. Such information can be easily encoded in the form
of tags. Tagging is an increasingly popular feature, avail-
able in many social networking platforms. For example, in
Flickr and Facebook, users can tag photos and videos with
descriptive terms or phrases of their choice. Such tags can
be submitted by users who manually assign descriptive to-
kens to each entity, or produced by an automated tagging
method [23, 3, 11, 6]. Our framework is compatible
with any tagging method that can assign a set of tags
ts(e) to each entity e. These TagSets can be then used to
compute the TagSet ts(g) of an entire group g = {e1, e2, ...}
as follows:

ts(g) =
⋂

e∈g

ts(e) (2)

Even though this definition worked superbly in our experi-
ments, it can easily be relaxed to include tags that appear in
a large majority of the group’s entities, rather than
all of them.

Getting the Tags:In the case of automated tag-extraction,
a question that arises is the following: Where can we mine

the required TagSets from? Typically, automated methods
are based on a piece of descriptive textual information that
is available for each entity. In cases where the entity is itself
consisting of text (e.g. a webpage or other document), then
obtaining such information is a non-issue. Given the abun-
dance of information that are available on the Web, such text
summaries can be easily obtained for virtually any type of
entity: Facebook Groups and Fan Pages have a short pas-
sage describing the nature and purpose of the group. On
Twitter and MySpace, users provide a self-written descrip-
tion in their profiles. Informative pieces of text can also be
extracted from sources outside the network: if the endorsed
entity is a product, the text from the product’s official web-
site can serve as a descriptive summary. If the entity is a
movie, the source can be the plot summary from sites like
imdb.com. If the entity is an influential person, we can use
the text from his personal page or the respective entry on
sites like Wikipedia.com. Another option is to submit the
name of the entity (e.g. a restaurant) as a query to a search
engine. The aggregated text of the top-k returned webpages
can then be mined for frequent and informative tags.

Structured Content: In many cases, informative con-
tent can be found in a semi-structured format in the Web.
The templated entries on the right side of the pages on
Wikipedia.com serve as a characteristic example of such a
format. Such templates facilitate the direct extraction of in-
formative tags. An intuitive way to compose TagSets from
such data is via the construction of profiles. Examples are
given in Figures (2) (Restaurant) and (3) (Athlete, Singer,

Politician). The profiling process adds an additional level
of abstraction and facilitates the grouping of different enti-
ties; Since the available entities are evaluated on a fixed set
of attributes, it is easier to identify common characteristics
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Figure 3: An example of redundancy: g3 is pruned, since it
is a subset of g1 and ts(g3) ⊆ ts(g1).

and decode the correlation among the members of a group.
An illustrative example is given in Figure (2): we are given
a profile representing a restaurant, along with a group of
four matching entities. In this case, since all the entities
in the group belong to the same profile, the attribute-set of
the group includes only the seven attributes of the profile:
{Food Type, Location, Price Range, Parking, Delivery, At-

tire, Outdoor Seating}. Then, the TagSet of the group will
contain the attribute values that remain the same for all
restaurants. In this case: ts(g) ={Los Angeles, With Park-

ing, With Outdoor Seating}. These three tags compose the
TagSet of the group , and reveal why such a large number
of users endorsed all four restaurants.

5. ELIMINATING REDUNDANCY
In this section we identify a type of redundancy among

entity-groups and propose a principle method to eliminate it.
Consider the example given in Figure (3): we are given three
entities: David Beckham (athlete), John McCain (politi-
cian) and Mick Jagger (singer). We assume that the three
individuals have a significant number of common endorsers
and have been identified as a popular group. On the right,
the figure shows all the possible (sub)groups with at least
two members, along with their respective TagSets. We ob-
serve that g3 is a subset of g1, and also bears no additional
tags (i.e. g3 ⊂ g1 and ts(g3) = ts(g1) = {Caucasian, Male}).
Therefore, g3 is redundant and we can safely prune it with-
out losing any information. On the other hand, even though
both g2 and g4 are also subsets of g1, they also have richer
TagSets and thus have to be included in the final set. For-
mally, we define the problem as follows:

Problem 3. Given a set of groups G, find a filtered set

G∗ ⊆ G, so that:

1. ∀g ∈ G, ∃g′ ∈ G∗s.t. {ts(g) ⊆ ts(g′) and g ⊆ g′}

2. G∗ is the smallest set among all those that satisfy the

1st condition.

The first condition requires that, for every group g ∈ G,
there exists a group g′ ∈ G∗ that contains all the entities
of g, and is also tagged with all the tags included in ts(g)
(among others). The second condition implicitly asks for a
set consisting exclusively of non-redundant groups: even if
a single redundant group exists in G∗, we can safely prune
it and thus get a set of smaller size. In order to address this

Algorithm 1 GroupFilter

Input: Set of Entity Groups G
Output: Filtered set of non-redundant Groups G∗

1: filteredIndex← ∅ // supports superset queries.

2: Sort G in desc order by group size
3: for each group g ∈ G do
4: isRedundant← false

5: S ← lookup sups(filteredIndex, g)
6: for (each super-group S ∈ S) do
7: if (ts(g) ⊆ ts(S)) then
8: isRedundant← true

9: break

10: if (!isRedundant) then
11: filteredIndex.insert(g)

12: return filteredIndex.getGroups()

problem, we propose the GroupFilter algorithm, which re-
ports a filtered set, consisting only of non-redundant groups.
The pseudocode is given in Algorithm (1).

Details of Algorithm (1): The input consists of the com-
plete set of groups G, while the output is a filtered set G∗

of all non-redundant groups. The algorithm maintains an
index of the non-redundant groups (filteredIndex). For
every group g, we probe the index to retrieve the set of (non-
redundant) super-groups (i.e. groups that contain, among
others, all the entities included in g). Any structure that
supports such superset queries can be used to build the in-
dex. We use the UBTree [10], a simple and efficient structure
for indexing sets. We refer the reader to the original paper
for more details on the structure.
GroupFilter begins by sorting all the groups by size (i.e.

number of members), in descending order. This ensures that
all super-groups of a redundant group will be evaluated be-
fore it is. Then, for each group g ∈ G, we probe the index
to retrieve its set of super-groups S . If there exists a super-
group S ∈ S that has all the tags of g (i.e. ts(g) ⊆ ts(S)),
then g is redundant and can be ignored. Note that, since
the TagSet of a group is guaranteed to contain all the tags
included in any of its super-groups, it is sufficient to check
if |ts(g)| ≤ |ts(S)|. If there exists no superset S that satis-
fies this inequality, g is non-redundant and can be safely
inserted in the index. At this point we know that g is
non-redundant, otherwise it would have been pruned ear-
lier (since the groups in G are sorted). This guarantees that
our index only contains non-redundant groups, leading to
a structure that is smaller and faster to probe. After all
the groups have been evaluated, the algorithm returns the
filtered set of non-redundant groups.

6. INTERACTIVE RECOMMENDATIONS
In this section, we describe a search engine for the recom-

mendation of entity-groups. Conceptually, we want to re-
spond to queries of the type: “Find large groups of entities

that share a set of tags {t1, t2, ..., tm}, and also have a sig-

nificant number of common endorsers’. By asking for larger
groups, we maximize the amount of information returned
to the user, who can then further investigate the numerous
entities in a group. Maximizing the number of endorsers
would not be reasonable in our context, since it would lead
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Algorithm 2 TopKFinder

Input: Inverted Index index, query of tags q =
{t1, t2, ..., tm}, int k

Output: set of top− k matching groups
1: TopK ← ∅ // sorted, holds at most k elements
2: L ← {Li | ti ∈ q}
3: while TopK.size() < k) do
4: for (every List L ∈ L) do
5: g ← getNext(L)
6: if (g = null) then return TopK

7: else if (L′[g] 6= ∅, ∀L′ ∈ L) then
8: TopK.insert(g)

9: return TopK

to trivial, single-entity groups. We formalize the problem as
one of top-k evaluation, as follows:

Problem 4. Given a set of entity-groups G = {g1, g2, ..., gn}
and a query of tags q = {t1, t2, ..., tm}, find the k largest

groups from G that satisfy the following condition:

ts(g)∩ ti 6= 0, ∀ti ∈ q (3)

Conceptually, Problem 4 asks for the k largest groups that
contain all the tags of the query in their respective TagSets.
To address the problem, we use an inverted index structure,
mapping each tag to the list of groups that contain it. The
groups in each list are primarily sorted in descending or-
der by their size. In addition, a secondary sort is done by
the number of endorsers, also in descending order. This en-
sures that, among groups of equal cardinality, those with
the highest number of endorsers will have priority. Given
the inverted index, we can retrieve the top-k results using a
simple evaluation algorithm, shown in Algorithm (2).

The algorithm, which we refer to as TopKFinder, begins by
retrieving the set L of group-lists that correspond to the m

tags of the query. Then, for each list L ∈ L, the getNext(L)
function is used to retrieve the next group under sorted ac-
cess. The function returns null if L has been exhausted.
For each candidate group g in L, the algorithm checks if it
is also included in all other lists in L. Each list is checked
using a random access probe, supported by an appropriate
structure. An example of such a structure is a hash-set,
where each group is hashed by a label consisting of its tags
(or tag IDs) in lexicographical order. If g is indeed included
in all the lists, then it is included in the top− k. The algo-
rithm continues, until k groups have been identified or until
at least one of the lists has been exhausted (Line 6).
TopKFinder is essentially a simplified version of the popu-

lar Threshold Algorithm (TA) [5]. In the typical use case of
TA, the score of each object (group) is different in every list.
Therefore, the algorithm has to retrieve the respective scores
of the object from all the lists, and compute the cumulative
value. A threshold mechanism is used as a termination cri-
terion. In our case, this mechanism is redundant, since the
score of each group is the same in all the lists (i.e. equal to
the group’s size).

With TopKFinder, we can evaluate any multi-tag query
submitted by a user and efficiently solve Problem 4. Even
though the inverted index itself is not original, its appli-
cation to interactive recommendation systems is one of the
novelties of our work.

7. EXPERIMENTS
In this section we present the thorough experimental eval-

uation that we conducted to evaluate our approach. We be-
gin with a discussion of our datasets and proceed with a
detailed discussion of each experiment.

7.1 Datasets
The Twitter dataset: This is a new corpus, which we com-
posed particularly for the purposes of this paper. The data
is available upon request. The corpus is built based on
data collected from Twitter.com, a popular social network-
ing platform, where one can “follow” other users and get
updates on their posts. The dataset is constructed as fol-
lows: first, we obtain the list of the 1000 users in Twitter
with the most followers (from TwitterHolic.com. We then
crawl Twitter to retrieve the set of followers for each of these
users. We focus on the top-1000 users since they are typ-
ically well-known public figures, making the verification of
our results intuitive.

After a detailed inspection of the data, we identified five
entity profiles that represent the most dominant types among
these highly-followed entities: Music Artist, TV Personality,

Athlete, Business Person and Other (e.g. authors, bloggers,
politicians). These include real-life public figures and share
the following attributes: the occupation (also the name of
the profile), the gender, the age group (e.g. 20-30), the coun-
try of origin, the state of origin (or city if non-usa), and the
particular type or genre each person belongs to, within their
bounds of their profession. This includes the music type(s)
for artists, the genre(s) for TV personalities, the different
properties of people assigned to the Other profile (e.g. au-
thor, blogger, columnist), and the specific sport for athletes.

The TagSets for the followed individuals are pop-
ulated in an entirely automated manner. we build a
focused crawler which, given a name, retrieves the required
information from the Web. For TV Personalities, we use
the imdb.com website, which hosts all the required informa-
tion, including the relevant genres for each person (we only
kept the top-3 genres per person, as ranked by imdb). For
all other profiles we use Wikipedia.com, which maintains all
the required profile information in a separate entry within
the HTML template. Our crawler retrieved the profile in-
formation for about 500 individuals. A manual examination
of the unidentified entities verified that they were either not
real-life people (e.g. cnn.com), spam (e.g. fake accounts),
or simply users for which the information was not available
on Wikipedia or imdb. The 500 profiled individuals consti-
tute the set V of endorsed entities, in the context of a social
endorsement network G = (U, V, E). The set of endorsers U

is represented by the entire population of followers, which
consisted of 6, 436, 382 distinct Twitter users (by username).
The minimum number of endorsers per group (as a percent-
age of the total number of users) was set to 0.007.

The DBLP dataset: To create the second benchmark for
our experiments, we use a snapshot of the data taken from
the DBLP Bibliography Server on April 12, 20061 .

For each published paper, the snapshot contains the title,
the set of authors, and the set of cited papers. Using this
information, we construct our social endorsement network
G = (U,V, E) as follows: the set of endorsers U consists of
all the papers that reference at least one other paper. The

1http://kdl.cs.umass.edu/data/dblp/dblp-info.html
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set of endorsed entities V consists of the authors that have
at least one citation to one of their papers. Thus, the set of
endorsement edges E is populated by adding an edge from a
paper in U to an author in V , if the paper cites the author’s
work. Finally, the TagSet of each author consists of the
distinct (stemmed) terms that appear in his papers’ titles.
Alternatively, one could use the set of authors to represent
both the endorsers and the endorsed entities. However, this
would fail to capture cases where an author A cites mul-
tiple papers of another author B. The collection includes
456764 distinct authors and 728510 research papers (we dis-
carded PhD and masters theses). The minimum number of
endorsers per group (as a percentage of the total number of
users) was set to 0.005.

7.2 Quantitative Analysis
Here, we perform a detailed quantitative analysis of our

framework on the Twitter and DBLP datasets.

Group Size Distribution: Figures 4(a) and 4(c) show the
distribution of the various group sizes for DBLP and Twitter,
respectively. The x-axis holds the different group cardinali-
ties, while the y-axis shows the number of groups with each
particular cardinality (in log-scale). For DBLP, the majority
of the groups consist of 2-10 authors, while very few have
over 20 members. For Twitter, the reported groups are
generally smaller, with the largest groups consisting of 12
entities. This can be explained by the fact that the number
of distinct entities in Twitter is considerably smaller (500
individuals, Vs. several thousand authors in DBLP), mak-
ing it less likely to find large groups that share a significant
number of followers and also have overlapping TagSets. In
addition, the profiles in DBLP typically consist of numerous
tags (twelve per author, on average), making it easier to
identify groups of authors with overlapping TagSets.

Inverted Index: Next, we evaluate the inverted-index struc-
ture employed by our framework, by examining the size
of the group-lists mapped to the indexed tags. For both
datasets, a clear majority of the lists in the inverted index
are small, leading to a compact structure that is easy to
stored and probe.

Figures 4(b) and 4(d) show histograms of the list sizes for
DBLP and Twitter, respectively. Each bar represents a size
range (e.g. the first bar on Figure 4(b) represents all lists of
size between 1 and 20). The y-axis (in log-scale) marks the
percentage of tags that are mapped to a list with a size that
falls within the respective range.

For DBLP, Figure 4(b) shows that over 50% of the tags
where included in the TagSets of less than 20 groups. The 3
most popular tags were “databases”, “systems” and “data”,
which appeared in 22326, 20015 and 19645 groups, respec-
tively. These fall within the 2% of the tags that were mapped
to more than 3000 groups.

For Twitter, Figure 4(d) shows that around 50% of the
lists in the index contained between 1 and 5 groups. For this
dataset, the 3 most popular tags where “Male”, “Age[30-40]”
and “TV Personality”, which appeared in 48033, 2441 and
2054 groups, respectively.

7.3 Qualitative Analysis
Next, we evaluate the quality of our results on the Twit-

ter and DBLP datasets. First, we create a set of 10 queries
for each dataset. For DBLP, the first 9 queries are taken from
the session names of the SIGKDD conference from 2006 (the

same year when the data was collected). We also added a
10th query (“world wide web”) for relevance. For Twitter,
the queries consist of popular tags from the corpus, in order
to enhance the verifiability of the results. For each query,
we report the top-1 group of entities returned by our search
framework, as well as the number of common endorsers per
group. The results for DBLP and Twitter are shown in Ta-
bles 1 and 2, respectively.

Discussion of the Results: For DBLP, we are looking for
large groups of authors that have the terms of the query in
their TagSets, and whose work is often cited in the same
papers. As can be seen from the table, the reported groups
consist of highly-cited and well-known authors. This was an-
ticipated, since authors with numerous papers are not only
more likely to be cited, but also more likely to have larger,
more diverse TagSets that overlap with those of other au-
thors. Certain names are included in the groups for many
queries, indicating that the respective authors have been
active in different areas, while being able to attract a signif-
icant number of citations. Another important observation is
that co-authorships can be a deciding factor in the forma-
tion of groups of co-cited entities. A characteristic example
is that of entry #9: Won Kim, Nat Ballou, Jorge F. Garza
and Darrell Woelk were all included in the top-1 group for
the query “privacy”, partly due to their highly-cited paper
“A Distributed Object-Oriented Database System Support-
ing Shared and Private Databases”.

For Twitter, we are looking for groups of individuals that
match the specified query, and share a significant number of
followers. As can be seen in Table 2, the reported groups
consist of people who are well-known in their respective
fields. Less focused queries lead to more diverse groups:
the group reported for “Men between the ages of 30 and 40”
consists of 2 actors, 1 athlete and 4 people from the business
world. Interestingly enough, over 68000 Twitter users chose
to follow these individuals.

Particularly interesting observations can be made from
examining the groups reported for queries #2, #3 and #4,
which are ordered from the more general to the more fo-
cused one. For query #2, a group of 4 pop-music artists is
reported. Query #3 is more refined, asking for groups of
female pop-music artists. Britney Spears is the only person
reported for both queries, indicating that she shares a signif-
icant number of followers with both male and female artists.
Note that Britney Spears had the third largest number of
followers among all the individuals in Twitter. The first 2
positions are held by Ashton Kutcher and Ellen DeGeneres
(TV personalities), who are also included in top-1 groups.
Britney Spears is also included in the top-1 group for query
#4. This query is even more focused, asking for women
that are also between the ages of 20 and 30. An interesting
observation here is that the reported group has more follow-
ers than those reported for the previous two queries, even
though it is more refined. This is because the group has
only 3 members (while the groups for queries #2 and #3
had 4). As described in Section 6, we prefer large groups,
while using the number of followers for secondary ranking.

7.4 Redundancy Filtering
Here, we evaluate the redundancy filter described in Sec-

tion 5. First, we use the mechanism described in Section
3 to obtain the complete set of popular groups for both
datasets. We repeat the experiments for different values
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Figure 4: Quantitative analysis of our framework, as applied on the Twitter and DBLP datasets. Figures 4(a) and 4(c) show the

distribution of the reported groups’ sizes for DBLP and Twitter, respectively. Figures and 4(b) and 4(d) show histograms of the different

list sizes in the Inverted Index. For example, for DBLP, more than 50% of the tags were mapped to lists of at most 20 groups.

for the minimum number of common endorsers T , expressed
as a percentage of the total number of users (i.e. follow-
ers on Twitter and papers on DBLP). For each value of T ,
we apply the GroupFilter algorithm and compute the num-
ber of eliminated groups. The results are shown in Figures
5(a) and 5(b). The x-axis represents the common endorsers
threshold T , while the y−axis holds the number of reported
groups (in logarithmic scale). For each value of T , we plot
the number of groups before and after the application of the
redundancy filter.

The results illustrate that, for DBLP, redundant groups
cover a very high percentage of the unfiltered set. Our filter
eliminates this redundancy and produces a compact and in-
formative set. This translates to significant computational
savings for a framework that needs to maintain and search
the corpus of groups. For Twitter, the volume of pruned
groups was reduced. This can be explained by the fact that,
especially for higher values of T , the size of the unfiltered
corpus was already quite small, compared to the respective
number for DBLP. However, for lower values of T , the num-
ber of filtered groups was still significant. For example, for
T = 0.007, the number of groups dropped from 6436171 to
56695, while for T = 0.008 it went from to 27410 to 5756.

8. CONCLUSION
In this paper, we formalized the problem of interactive

recommendations in social endorsement networks. We pre-
sented an efficient, query-driven framework for the solution
of the problem, able to make high-quality and explainable
recommendations. In addition, our framework is equipped
with a filtering mechanism for the elimination of redun-
dancy, which can be used reduce the size of the corpus and
produce a crisp and informative dataset. The entire recom-
mendation system is designed in a principled and efficient
manner, making it ideal for large-scale systems. Finally, we
illustrated the efficacy of our methods in a thorough exper-
imental evaluation on real datasets.
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Figure 5: Effects of the Group Redundancy Filter for the Twitter and DBLP datasets.

Table 1: Groups of Authors in DBLP

Tag-Query Top-1 Group of Authors
# Common

Citations

1. classification
Tomasz Imielinski, Rakesh Agrawal, Sakti P. Ghosh,

54
Balakrishna R. Iyer, Arun N. Swami

2. web mining Serge Abiteboul, Stefano Ceri 70

3. clustering Jiawei Han, Philip S. Yu, Rakesh Agrawal, Jong Soo Park, Arun N. Swami 43

4. graph mining Jiawei Han, Philip S. Yu, Rakesh Agrawal, Ming-Syan Chen 54

5. time series H. V. Jagadish, R. Ramakrishnan 127

6. pattern mining Jiawei Han, Philip S. Yu, R. Agrawal, R. Srikant, Jong Soo Park, Ming-Syan Chen 49

7. text mining Rakesh Agrawal, Ramakrishnan Srikant, Heikki Mannila 71

8. structured data
Nievergelt, C. Faloutsos, H. Hinterberger, B. Seeger,

55
J. , K. C. Sevcik, H.-P. Kriegel, A. Guttman

9. privacy Won Kim, Nat Ballou, Jorge F. Garza, Darrell Woelk 228

10. world wide web Alberto O. Mendelzon, Alon Y. Halevy, Anand Rajaraman, Joann J. Ordille 40

Table 2: Groups of Infividuals in Twitter

Tag-Query Top-1 Group of Individuals #Followers

1. Athlete
Shaquille O’Neal (basketball), Lance Armstrong (cycling),

83309
Tony Hawk (skateboarding)

2. Music Artist, Pop Britney Spears, Diddy, MC Hammer, Sara Bareilles 79443

3. Music Artist, Pop, Female Britney Spears, Ashlee Simpson, Sara Bareilles, Maledy Moore 69056

4. Music Artist, Pop, Female, Age[20-30] Britney Spears, Ashlee Simpson, Lily Rose Allen 99765

5. Business person, Age[30-40]
Evan Williams, Biz Stone, Jack Dorsey (Twitter),

71017
Michael Arrington (TechCrunch) , Kevin Rose (Digg)

6. TV Personality, Female
Ellen DeGeneres, Martha Stewart, Brooke Burke,

69910
Felicia Day, Veronica Belmont

7. TV Personality, Female, Age[50-60] Ellen DeGeneres, Oprah Winfrey 286545

8. Music Artist, New York Diddy, 50 Cent, Mariah Carey 90294

9. Comedian, New York Jimmy Fallon, Danny Masterson 117300

10. Male, Age[30-40]
Ashton Kutcher, Lance Armstrong, Evan Williams,

68429
Kevin Rose, Wil Wheaton, Michael Arrington, Biz Stone
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