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Abstract 
 

Web applications often use dynamic pages that 

interact with each other by accessing shared objects, 

e.g., session objects. Interactions between dynamic 

pages need to be carefully tested, as they may give rise 

to subtle faults that cannot be detected by testing 

individual pages in isolation. Since it is impractical to 

test all possible interactions, a trade-off must be made 

between test coverage (in terms of number of 

interactions covered in the tests) and test effort. In this 

paper, we present a test sequence generation approach 

to cover all pairwise interactions, i.e., interactions 

between any two pages. Intuitively, if a page P could 

reach another page P’, there must exist a test sequence 

in which both P and P’ are visited in the given order. 

We report a test sequence generation algorithm and 

two case studies in which test sequences are generated 

to achieve pairwise interaction coverage for two web 

applications. The empirical results indicate that our 

approach achieves good code coverage and is effective 

for detecting interaction faults in the subject 

applications. 

 

1. Introduction 
 

Web applications have proliferated in recent years, 

as more companies, government agencies and other 

organizations conduct business on the Internet. Along 

with this proliferation comes a growing amount of 

concern about the reliability of those applications. A 

failure, even partial functionality loss, may cause an 

entire business to standstill and cost millions of dollars 

[1, 2]. Also, users' confidence in web applications 

depends to a large degree on whether their business 

transactions are handled correctly by the application. 

Reliability is considered to be the biggest challenge in 

the further promotion of web applications [3]. 

Testing is an effective approach to ensuring the 

quality of web applications [4-6]. One important aspect 

of web applications is that they often consist of 

dynamic pages that interact with each other by 

accessing shared objects. For example, a web 

application may use session objects to track a user in a 

sequence of requests. As another example, different 

pages may access persistent data storage like a database 

to exchange data. Interactions between dynamic pages 

need to be carefully tested as they may give rise to 

subtle faults that cannot be detected by testing 

individual pages in isolation. 

One approach to testing interactions between 

dynamic pages is to test all possible sequences in which 

those pages could be visited. The rationale is that each 

sequence represents a specific way in which those 

pages interact with each other, i.e., one possible 

interaction among those pages. There are, however, 

two problems with this approach. First, because the 

number of sequences grows exponentially as the size of 

a web application increases, it is nearly always 

impractical to test all possible sequences. Second, 

faults only manifest in a small number of sequences. 

Thus, it is inefficient to test all possible sequences, 

many of which do not contribute to fault detection. 

In this paper, we propose a test sequence generation 

approach to address the above problems. We define the 

research problem as follows: Given a web application 

containing dynamic pages, how could we generate, in 

a systematic manner, a small number of test sequences 

that are effective for detecting interaction faults? The 

key idea of our approach is generating test sequences to 

cover all pairwise interactions, i.e., interactions 

between any two pages. In other words, if a page P 

could reach another page P’, there must exist one test 

sequence in which both P and P’ are visited in the 

given order (but not necessarily in a row). Our 

approach involves three major steps: First, a graph 



model is built to capture the navigation structure of the 

application under test, where each node represents a 

web page (or a portion of it), and each edge represents 

a direct link from one node to another. Second, all 

pairwise interactions that may occur in the web 

application are computed from the navigation graph. 

Finally, a set of paths is selected from the navigation 

graph to cover all those pairwise interactions. These 

paths are then used as test sequences to test the web 

application.  

For the purpose of evaluation, we built a prototype 

tool and applied our approach to two web applications, 

namely, Book and CPM [5]. We compared our 

approach with an approach that generated test 

sequences to cover all the edges in a navigation graph. 

We refer to our approach as the AllOrderedPairs 

approach and the latter approach as the AllEdges 

approach. The empirical comparison shows that 

AllOrderedPairs approach can effectively detect some 

interaction faults that cannot be detected by the 

AllEdges approach.  

Our approach is inspired by the pairwise testing 

approach for general software testing [7, 8]. Pairwise 

testing has been shown very effective for detecting 

general software faults. We believe that the notion of 

achieving pairwise coverage will also be effective for 

detecting faults in web applications, for which our case 

studies have provided some initial evidence. To the 

best of our knowledge, our work is the first attempt to 

apply combinatorial testing to generate test sequences 

for web applications. More importantly, our work deals 

with two unique challenges in the context of testing 

web applications. First, for all the existing approaches 

for combinatorial testing, the order in which different 

components appear in a combination is insignificant. 

This is in contrast to our approach, where the order of 

the pages being visited in an interaction is important. In 

particular, page P may reach page P’, but page P’ may 

not reach page P. Second, existing work provides 

limited support for handling constraints. Constraints 

are used to exclude invalid combinations, based on the 

domain semantics, from the resulting test set. In our 

approach, the possible constraints among different 

pages are implicitly captured in a graph structure. The 

notion of using a graph to represent interaction 

constraints, as well as the required algorithmic support, 

is novel. 

We point out that our approach currently does not 

address the problem of test data generation. That is, the 

test data required to execute a test sequence are 

assumed to be supplied manually or using other 

techniques like domain partitioning [9].  

The remainder of this paper is organized as follows: 

Section 2 briefly surveys related work. Section 3 

describes our test generation approach and presents an 

algorithm that implements the approach. Section 4 

describes the prototype tool and reports two case 

studies. Section 5 concludes this paper and discusses 

future work. 

 

2. Related work 
 

Existing research most relevant to our work falls 

into two main categories: (1) work on testing web 

applications, which can be further classified into 

model-based testing and user-session-based testing, and 

(2) work on general combinatorial testing. 

Model-based Testing. In model-based testing an 

abstract model of the application under test is built, and 

test sequences are generated from the model to satisfy 

some coverage goals. Existing model-based testing 

techniques for web applications extend traditional 

testing techniques, e.g., those based on control flow 

and/or data flow, to the web application domain [10, 

11, 12, 14, 15]. In particular, Lucca et al. [14] 

proposed applying several coverage criteria presented 

by Binder [9] to test web browser interactions. One of 

those criteria is called all-transition-k-tuples, which 

aims to cover all possible sequences of transitions of 

size k consecutively. This criterion is different from our 

AllOrderedPairs criterion, since we do not require that 

the two pages in an ordered pair be connected by a 

direct edge in the graph model of the application. 

Similarly, the test sequences do not have to contain the 

pages in an ordered pair consecutively one after 

another.  

 Note that our interaction-based testing approach is 

also a model-based testing approach. The novelty of 

our work lies in the fact that we generate test sequences 

to achieve pairwise interaction coverage, which is a 

concept unexplored in the web testing domain.  

User session-based testing. Several techniques have 

been developed that record real usage data and use the 

usage data to generate test sequences [6, 16, 17, 18, 

19]. In particular, Sampath et al. [19] investigated the 

effectiveness of reducing test suites with a criterion 

designed to cover all page sequences of size 2 that 

occur in the original suite of logged user sessions. This 

study revealed that certain faults are detected only by 

the occurrence of a certain sequence of pages in the test 

case. Note that the approach of covering sequences of 

size 2 is different from the approach presented in this 

paper. In the AllOrderedPairs approach, we do not 

require that the two pages in an ordered pair appear 

consecutively one after another in the test sequence. 



Compared with model-based testing, user session-

based testing does not need to construct a model, which 

can be difficult for large and/or complex applications. 

However, the fault detection ability of user-session-

based techniques depends to a large degree on the 

quality of collected user sessions [20]. In addition, 

user-session-based techniques require field deployment 

and extensive user participation, which significantly 

limits the applicability of those techniques.  

General combinatorial testing. Combinatorial 

testing refers to a general test generation approach 

which creates tests by combining different parameter 

values, based on some effective combinatorial 

strategies. Existing work has mainly focused on how to 

generate a test set that is as small as possible while still 

satisfying some coverage goals [7, 8]. Empirical studies 

have shown that combinatorial testing can be very 

effective in detecting general software faults [21-23]. 

We note that Yuan et al. described a combinatorial 

approach to testing GUI applications in [23]. Their 

work, however, differs from ours significantly both in 

terms of the way they define their coverage criteria and 

the way they handle constraints. An excellent survey on 

the state-of-the-art of combinatorial testing can be 

found in [24]. 

As discussed in Section 1, we believe our work is 

the first attempt to apply combinatorial testing to the 

web application testing domain. Furthermore, our work 

deals with two unique challenges that are related to 

ordered interaction and constraint handling in the 

context of web application testing, which is considered 

to be the main technical contribution of this paper.  

 

3. An interaction-based test sequence 

generation approach 
 

In this section, we present our interaction-based test 

sequence generation algorithm and an example to 

illustrate the approach.  

 

3.1. Basic concepts 
 

We first introduce the notion of a navigation graph. 

In our approach, a navigation graph is used to represent 

the navigation structure of a web application. A node in 

a navigation graph can be a static node, which 

represents a static page, or a dynamic node, which 

represents a dynamic page or if a dynamic page has 

multiple forms, a form in the dynamic page. We 

distinguish the home page of the web application as a 

special node called home node. There exists an edge 

from one node m to another node n if node n can be 

visited immediately after node m through a direct link. 

Note that a direct link can be a hyperlink in a static 

page or an action in a dynamic page. Formally, a 

navigation graph G can be denoted as G = (V, E, n0), 

where V = V
s
 ∪ V

d
 with V

s
 being a set of static nodes, 

and V
d
 being a set of dynamic nodes,  and E ⊆ V × V is 

a set of edges, and n0 is the home node.  

Note that a dynamic page could potentially generate 

an infinite number of page instances. This is because 

the content of such a page instance may depend on the 

user input, which could be potentially infinite. If these 

page instances were directly represented as individual 

nodes, the size of a navigation graph would be 

unbounded. This explains why it is the forms in a 

dynamic page that are directly represented in a 

navigation graph. Each form can be considered to 

represent a group of page instances that may be 

generated from the same form (with different user 

inputs). In our approach, a form is identified by the 

URL of the dynamic page containing the form and the 

names (but not values) of the input parameters the form 

can take.     

Next, we introduce the notion of pairwise 

interaction coverage. The term “pairwise interaction” 

refers to interaction between two dynamic nodes. Let G 

= (V, E, n0) be a navigation graph. Formally, a pairwise 

interaction in G is an ordered pair (m, n), where m and 

n are two dynamic nodes, and there exists a path from 

m to n in G. Note that static nodes do not access shared 

objects and thus have no interaction with other nodes. 

(Static nodes are included in a navigation graph to 

capture the navigation structure, which is needed to 

generate executable test sequences.) Also note that the 

order of nodes in a pairwise interaction is significant, 

as a node m may reach a node n, but the reverse may 

not be true. (We only consider navigations through 

links within a web application. That is, we do not 

consider navigations due to actions that are performed 

on the web browser.) 

Pairwise interaction coverage requires that a set of 

paths be selected from a navigation graph as test 

sequences so that every ordered pair is covered in at 

least one of those test sequences. Let P = n1n2 ... nl be a 

path in a navigation graph. Let p = (m, n) be an order 

pair. Then, p is covered in P if there exists 1 ≤ i < j ≤ l 

such that ni = m, and nj = n. Note that in P, nodes m 

and n must appear in the given order, but they do not 

need to appear consecutively. 

To help better understand the notion of pairwise 

interaction coverage, let us compare it with edge 

coverage. The latter requires that every edge in a 

navigation graph be covered by at least one test 

sequence. Fig. 1 (a) shows an example navigation 

graph. Two test sequences, ABDEG and ACDFG, are 



sufficient to cover all the edges in the graph. But these 

two test sequences fail to cover two pairwise 

interactions, namely, (B, F) and (C, E). If a fault is only 

triggered by these two interactions, then this fault 

would be detected by a test set satisfying pairwise 

interaction coverage, but may not be detected by a test 

set satisfying edge coverage.  

 

 
(a) 

  

 
(b) 
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It is interesting to note that pairwise interaction 

coverage does not subsume edge coverage. Fig. 1 (b) 

shows a navigation graph that consists of three nodes 

A, B, and C, and three edges (A, B), (A, C), and (B, C). 

In this graph, path P = ABC satisfies pairwise 

interaction coverage but does not satisfy edge 

coverage. This is because (A, C) as a pairwise 

interaction is covered by path P, since A and C appear 

in P in the given order, but (A, C) as an edge is not 

covered by this path, since A and C do not appear in P 

in a row. 

         

3.2. An interaction-based test generation 

algorithm 
 

Fig. 2 shows an algorithm called Generate-

Sequences, which implements the interaction-based test 

sequence generation approach. Algorithm Generate-

Sequences takes as input a navigation graph G of the 

web application under test, and produces as output a set 

seqs of sequences that covers all the ordered pairs in G. 

The algorithm begins by computing all the set pairs of 

ordered pairs in the navigation graph (line 1). Note that 

we only consider ordered pairs involving two dynamic 

nodes. We point out that this computation basically 

requires determining reachability from one node to 

another, which is a classical problem in graph theory 

and can be solved using algorithms that have been 

reported in the literature [25]. 

Next, the algorithm tries to generate a set of 

sequences to cover all the ordered pairs computed 

earlier. This is accomplished by a while loop (lines 3 – 

12) in which each iteration generates one sequence to 

cover a set of pairs that have not been covered before 

until all the pairs are covered. Each iteration of the 

while loop works as follows: First, a list L of nodes is 

built in which every two adjacent nodes is an ordered 

pair in set pairs, i.e., an ordered pair that has not been 

covered yet (line 4). The purpose of building this list is 

to guide the creation of a test sequence S so that S will 

cover a good number of ordered pairs that have not 

been covered yet. An optimal approach would build L 

in a way such that the size of the resulting set of test 

sequences is minimal. (The size of the resulting test 

sequence set can be measured in different ways, e.g., in 

terms of the total number of requests if we ignore the 

cost of test setup and teardown.) It is easy to see that 

finding an optimal solution is a NP-hard problem, due 

to the combinatorial nature of the problem. Here we 

describe a heuristic approach to building L. In this 

approach, we begin by picking an arbitrary pair (m, n) 

from pairs, and add m and n into L in the given order, 

i.e., L = (m, n). Next, we try to extend L using the 

following three rules: (1) if there is a pair (m’, m) in 

pairs, then we add m’ into the beginning of L, i.e., L = 

(m’, m, n); (2) if there exists a pair (n, n’) in pairs, we 

add n’ into the end of L, i.e., L = (m, n, n’); (3) if there 

are two pairs (m, o) and (o, n), we add o into the 

middle of L, i.e., L = (m, o, n). We will refer to the 

three rules as the front-end, back-end, and middle 

extension, respectively. These three rules can be easily 

generalized to keep extending L until L can no longer 

be extended, i.e., no more nodes can be added into L. 

We note that this approach is implemented in our 

prototype tool to conduct our empirical studies. 

Now we are ready to discuss how to actually create 

a test sequence S out of L. This is done by first 

initializing S to be an empty sequence (line 5) and then 

appending to S a shortest path from the first node to the 

second node, and a shortest path from the second node 

to the third node, and so on (lines 6 – 9). In other 

words, S is created by adding into L a shortest path P 

between every two adjacent nodes to connect them. 

Note that node list L itself is not necessarily a path in 

navigation graph G, and thus cannot be directly used as 

a test sequence. This is because there may not exist an 

edge connecting every two adjacent nodes in L. Also 

note that P can always be found since L is built in a 

way that every two adjacent nodes, say ni and ni+1, 



where 1 ≤ i < k, is an ordered pair, implying that there 

must exist at least one path from ni to ni+1.  

After sequence S is created, the set covered of pairs 

that are covered by sequence S is computed (line 10) 

and then removed from set pairs (line 11). Note that 

the indices i and j in the computation of set covered do 

not have to be adjacent. This is because an ordered pair 

(m, n) is covered in a path if m and n appear in the path 

in the given order (not necessarily in a row).  

We comment that the test sequences generated by 

algorithm Generate-Sequences do not necessarily start 

from the home node n0. In practice, some applications 

may require that every test sequence start from the 

home node. For example, an application may require 

the user to log in before any other page is visited. In 

this case, if a sequence does not start from the home 

node, it is necessary to add into the beginning of the 

sequence a shortest path from the home node n0 to the 

first node of the sequence.   

Now we consider the time complexity of algorithm 

Generate-Sequences. Set pairs can be computed (line 

1) using a classic algorithm like the Floyd-Warshall 

algorithm [25], which takes O(|V|
3
). Next we consider 

the time complexity of the while loop (lines 3 – 14). 

Assume that the heuristic approach described earlier is 

used to build the node list L (line 4). The application of 

each rule to extend L at a certain point (front end, 

middle, or back end) takes O(|V|), as we only need to 

look up ordered pairs involving one or two nodes at the 

extension point. Since the length of L is O(|V|), L can 

be built in O(|V|
2
). If we pre-compute and store a 

shortest path for every two nodes using an algorithm 

like the Floyd-Warshall algorithm, sequence S can be 

built in a time complexity that is linear to the length of 

S, which is O(|V|). Note that the pre-computation of the 

shortest paths can be merged with the computation of 

set pairs, and thus does not incur additional time. The 

computation of set covered (line 10), together with the 

removal of set covered from pairs (line 11), takes 

O(|V|
2
). This means that the time complexity of each 

iteration is O(|V|
2
). Since the size of set pairs is O(|V|

2
), 

the time complexity of the entire while loop is O(|V|
4
). 

This derives that the time complexity of the entire 

algorithm is O(|V|
4
). 

 

3.3. An example scenario 
 

We demonstrate how algorithm Generate-

Sequences works by using an example scenario from 

Book, one of the two applications used in our 

experiments. Fig. 3 shows a portion of the navigation 

graph for the Book application, where the Default node 

is the home node. For the ease of reference, each page 

is identified by a name, instead of its URL. We first 

generate all the ordered pairs in the navigation graph 

(line 1 in Fig. 2). Those pairs are shown in Table 1. 

Note that in the navigation graph, every node can reach 

itself (through other nodes). Therefore, there exists an 

ordered pair from each node to itself, e.g., D7 = 

(Default, Default), A7= (AdvSearch, AdvSearch), and 

so on.   

  

Algorithm Generate-Sequences 

Input: A navigation graph G = (V, E, n0) of the web 

application under test 

Output: A set seqs of paths covering all the ordered            

pairs in G 

     

1.  pairs = { (m, n) | m and n are dynamic nodes in G, 

and there exists a path from m to n in G } 

2.  let seqs be an empty set (of test sequences) 

3.  while (pairs is not empty) {   

4.     build a list L =  (n1, n2, ..., nk)} of nodes such that 

k ≤ |V| and for 1 ≤  i < k, (ni, ni+1) ∈ pairs 

5.      let S be an empty sequence (of nodes) 

6.      for (1 ≤ i < k) { 

7.         let P be a shortest path from ni to ni+1 

8.         S = S • P 

9.      } 

10.    covered = {(ni, nj) | 1 ≤ i < j ≤ k, ni, nj ∈ L} 

11.    pairs = pairs − covered 

12.    add S into seqs 

13. } 

14. return seqs 
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Next, we try to generate test sequences to cover all 

the ordered pairs in Table 1 (lines 2 – 13 in Fig. 2). We 

first try to build a node list L (line 4), using the 

heuristic approach described in Section 3.2. Assume 

that we first pick D1 = (Default, AdvSearch), and add 

Default and AdvSearch into L (and remove D1 from 

Table 1):  

L = {Default, AdvSearch}  

Now we try to extend L using the three extension 

rules, i.e., the front-end, back-end, and middle 

extension. Without loss of generality, assume that we 

first apply back-end extension, where we try to find an 

ordered pair whose first node is the last node of L, i.e., 

AdvSearch. Note that A1 = (AdvSearch, Books) is one 

such pair. Thus, we add Books into the end of L (and 

remove A1, as well as D2, which is also covered by L, 

from Table 1):  
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L = {Default, AdvSearch, Books}  

Similarly, as B1 = (Books, BookDetail) is an 

ordered pair, we add BookDetail into the end of L (and 

remove B1, as well as D3 and A2, which are also 

covered by L, from Table 1): 

L = {Default, AdvSearch, Books, BookDetail}  

We keep applying back-end extension to L until we 

get the following sequence:  

L = {Default, AdvSearch, Books, BookDetail, 

ShoppingCart, ShoppingCartRecord, Default, 

MyInfo, ShoppingCart, AdvSearch} 

At this point, we cannot find any ordered pair whose 

first node is AdvSearch. Next we apply front-end 

extension, where we try to find an ordered pair whose 

second node is the first node of L. We find M3 = 

(MyInfo, Default) to be one such pair. Thus, we add 

MyInfo to the beginning of L (and remove M3, as well 

as M4, M5, M6 and M7, which are also covered by L, 

from Table 1):   

L = {MyInfo, Default, AdvSearch, Books, 

BookDetail, ShoppingCart, ShoppingCartRecord, 

Default, MyInfo, ShoppingCart, AdvSearch}  

Note that all the ordered pairs whose second node is 

MyInfo, namely, D6, A6, B5, BD4, S4, R2, and M7, 

are already covered in L, implying that those pairs have 

been removed from Table 1. Thus, at this point, we 

cannot find any ordered pair to extend L in the front 

end.   

Next we try to apply middle extension. However, 

none of the remaining ordered pairs, i.e., B7, BD6, 

BD7, S6, S7, R5, and R6, satisfies the condition for 

middle extension. At this point, we finish building L. 

     Now we generate a test sequence out of L such 

that every two adjacent nodes in L are connected via a 

shortest path between the two nodes (lines 5 – 9 in Fig. 

2). It turns out that most adjacent nodes in L have a 

direct edge between them, except for adjacent nodes 

Default and MyInfo, which can be connected by a 

shortest path (Default, ShoppingCart, MyInfo), and 

adjacent nodes ShoppingCart and AdvSearch, which 

can be connected by path (ShoppingCart, Default, 

AdvSearch). Thus, we generate the following test 

sequence: 

S = {MyInfo, Default, AdvSearch, Books, 

BookDetail, ShoppingCart, ShoppingCartRecord, 

Default, ShoppingCart, MyInfo, ShoppingCart, 

Default, AdvSearch} 

 

Table 1.  The pairs set for Book 
Pair Default Pair AdvSearch Node 

D1 

D2 

D3 

D4 

 

D5  

 

 

D6 

D7 

 

Default, AdvSearch 

Default, Books 

Default, BookDetail 

(Default, 

ShoppingCart) 

(Default, 

ShoppingCartRecord) 

Default, MyInfo 

Default, Default 

A1 

A2 

 

A3 

 

A4 

 

A5 

A6 

A7 

 

AdvSearch, Books 

(AdvSearch, 

BookDetail) 

(AdvSearch, 

ShoppingCart) 

(AdvSearch, 

ShoppingCartRecord) 

AdvSearch, Default 

AdvSearch, MyInfo 

(AdvSearch, 

AdvSearch) 

Pair Books  BookDetail 

B1 

B2 

B3 

 

 

B4 

B5 

B6 

B7 

 

Books, BookDetail 

Books, ShoppingCart 

(Books, 

ShoppingCartRecord) 

Books, Default 

Books, MyInfo 

Books, AdvSearch 

Books, Books 

 

BD1 

 

BD2 

 

BD3 

BD4 

BD5 

 

BD6 

 

BD7 

(BookDetail,        

ShoppingCart) 

(BookDetail,    

ShoppingCartRecord) 

BookDetail, Default 

BookDetail, MyInfo 

(BookDetail, 

AdvSearch) 

(BookDetail, 

BookDetail) 

BookDetail, Books 

Pair ShoppingCart  Pair ShoppingCartRecord 

S1 

 

 

S2 

 

S3 

 

S4 

 

S5 

 

S6 

S7 

(ShoppingCart, 

ShoppingCartRecord) 

(ShoppingCart, 

Default) 

(ShoppingCart, 

MyInfo) 

(ShoppingCart, 

ShoppingCart) 

(ShoppingCart, 

AdvSearch) 

ShoppingCart, Books 

(ShoppingCart, 

BookDetail)  

R1 

 

R2 

 

R3 

 

R4 

 

R5 

 

R6 

 

R7 

 

(ShoppingCartRecord, 

Default) 

(ShoppingCartRecord, 

MyInfo) 

(ShoppingCartRecord, 

ShoppingCart) 

(ShoppingCartRecord, 

AdvSearch) 

(ShoppingCartRecord, 

Books) 

(ShoppingCartRecord, 

Books)  

(ShoppingCartRecord, 

ShoppingCartRecord) 

Pair MyInfo   

M1 

 

M2 

M3 

M4 

M5 

M6 

 

M7 

(MyInfo, 

ShoppingCart) 

MyInfo, AdvSearch 

MyInfo, Default 

MyInfo, Books 

MyInfo, BookDetail 

 (MyInfo, 

ShoppingCartRecord) 

MyInfo, MyInfo 

  



 

Note that sequence S does not cover all the ordered 

pairs. For example, BD7 = (BookDetail, Books) is not 

yet covered. The same process can be repeated to 

generate additional test sequences until all the ordered 

pairs are covered, which is not explained for the 

purpose of brevity.  

 

4. Experiments 
 

Our experiments are designed to answer the 

following research questions.  

1. How does the AllOrderedPairs test sequence 

generation approach compare with AllEdges test 

generation approach with respect to program coverage? 

2. How does the AllOrderedPairs test sequence 

generation approach compare with AllEdges test 

generation approach with respect to fault detection 

effectiveness?  

 

We measure the effectiveness of the two test 

generation strategies by measuring statement coverage 

and number of faults detected. 

 

4.1. Experimental setup 
 

Subject Applications: We used two applications, 

Book and CPM [5], in our experiments. Book is an 

online e-commerce application that users can use to 

browse, search and buy books [26]. CPM is a course 

project manager developed at Duke University. CPM 

allows course instructors to create grader accounts for 

teaching assistants. Instructors and teaching assistants 

can create student accounts, post student grades and 

post available time slots for students to demonstrate 

their course projects. Students can view their grades 

and sign up for specific demo time slots with a grader. 

New grader/student/course accounts can be created and 

deleted as necessary. More details on the applications 

are presented in previous work by Sampath et al. [5]. 

Table 2 presents the main characteristics of the two 

applications.  

Navigation Graph and Test Case 

Characteristics: Table 2 also shows the characteristics 

of the navigation graph (number of nodes and number 

of edges of the navigation graph) and Table 3 shows 

characteristics of test cases for each application. From 

the last row of Table 3, we see that on average, the 

length of test cases generated by both AllEdges and 

AllOrderedPairs test generation strategies is the same 

(around 8 requests), except for Book’s 

AllOrderedPairs test cases. The AllOrderedPairs test 

generation algorithm is designed to (a) cover as many 

ordered pairs as possible in a test sequence, and (b) 

find the shortest paths between two consecutive nodes 

in the test sequence. Thus, the length of a generated test 

case depends on these two factors above. Since Book’s 

navigation graph has high connectivity—each node is 

connected to several other nodes, and since the 

algorithm is designed to find the shortest path between 

every two consecutive nodes, long test cases are 

created, however, the number of test cases is small—7 

AllOrderedPairs test cases. Also, since 

AllOrderedPairs does not subsume AllEdges (as 

described in Section 3.1), we find that the 

AllOrderedPairs test cases for our subject applications 

do not necessarily cover all the edges in the graph 

(AllOrderedPairs test cases cover 60.7% of edges in 

Book, and 78.4% of edges in CPM).  

Experimental Framework: We used the 

framework presented in Sprenkle et al. [6] for 

capturing program coverage and fault detection 

information. The framework has three main 

components: a customized tool for replaying the test 

cases, Clover [27] for instrumenting and measuring 

program coverage, and a fault detection component that 

allows insertion of hand-seeded faults into the 

application, application of oracles to determine if a test 

case detects a fault or not, and creation of fault 

detection reports based on the faults detected by a test 

suite [6]. We augmented faults seeded by Sampath et 

al. [5] with faults that are likely to occur when two 

pages interact with each other. Table 2 presents the 

number of seeded faults in each application.  

For the fault detection study, we use both the diff 

and the struct oracle, presented by Sprenkle et al. [6, 

28]. The diff oracle applies the Unix utility ‘diff’ on the 

HTML responses returned on executing the test cases 

on the clean and faulty versions of the application and 

reports any difference between the HTML responses as 

a failure. Since the diff oracle considers any difference 

in the HTML as a failure, differences in real-time 

content, e.g., current date, are flagged as a failure by 

the oracle, thus leading to false positives. The struct 

oracle is more conservative—it filters the HTML 

responses and reports only differences in the HTML 

tags. The obvious disadvantage of the struct oracle lies 

in its inability to capture faults that arise from 

differences in the content of the HTML page. Sprenkle 

et al. [28] discuss more about the oracles and the trade-

offs. In this paper, we present results from both diff and 

struct oracles.  

We implemented the Generate-Sequences algorithm 

in our prototype tool to generate test sequences. This 

tool generates test sequences that cover all pairwise 

interactions (AllOrderedPairs) and all edges 



(AllEdges). After generating the test sequences, our 

tool also verifies whether all the pairwise interactions 

are covered by test sequences for covering all pairwise 

interactions and whether all the edges are covered by 

test sequences for covering all edges. It also shows us 

statistics of comparison between the AllOrderedPairs 

approach and AllEdges approach. Our test sequence 

generation algorithm generates only the base requests 

for the test cases and ensures that pairwise interactions 

are covered by the AllOrderedPairs test cases. To 

execute the test cases correctly, we manually augment 

the requests with name-value pairs. This is similar to 

how testers provide test input to ensure correct 

execution of test cases in traditional programs. We also 

use an initial data store state that is reset before each 

test case is executed, to avoid cascading faults.  

 

4.2. Results and discussion 
 

From Table 4, for Book application, we observe that 

both AllEdges approach and AllOrderedPairs approach 

have the same code coverage, 85.32%, but 

AllOrderedPairs detects 6 to 8 more faults than the 

AllEdges approach. By design, in Book, certain 

methods are included in every page of the application 

(through an include JSP statement), even though these 

methods are never called by the other methods in the 

page—these methods are designed to be called by a 

user with different privileges (an admin user), instead 

of an end-user. In this paper, since our tool focused on 

covering pairwise interactions of end-user accessible 

pages and functions, we report program coverage 

results for Book after removing such repeated code 

from the coverage report generated by Clover. The 

program coverage is same for AllOrderedPairs and 

AllEdges because the same pages are accessed with the 

same parameters and values, thus resulting in same 

code coverage. That means sequences for AllEdges 

approach and AllOrderedPairs approach should have 

the same detection ability for faults in unit testing. The 

primary advantage of the AllOrderedPairs test cases is 

that they can guarantee pairwise interaction coverage, 

while the AllEdges approach cannot.  

From our experiments, we observe that all the faults 

detected by the AllEdges test cases are also detected by 

the AllOrderedPairs test cases. One example of a fault 

that is caught by AllOrderedPairs but missed by 

AllEdges is presented here: we found that a fault is 

exposed when the Login page is accessed the second 

time in a test sequence. Since (Login, Login) was an 

ordered pair for Book, the ordered pair (Login, Login) 

appeared in one of the AllOrderedPairs test sequences, 

and the fault was detected by the AllOrderedPairs test 

case. However, since there was no direct edge from 

Login to Login, the AllEdges test cases were not 

required to generate a test sequence with two 

occurrences of the Login page in them, thus failing to 

detect the fault.  
 

TTTTable 2able 2able 2able 2....        Characteristics of Characteristics of Characteristics of Characteristics of ssssubject applicationsubject applicationsubject applicationsubject applications    

 Book CPM 

Technologies 
JSP, 

MySQL 

Java servlets, 

File-based data 

store, HTML 

Non-commented LOC 7615 9401 

Number of classes 11 75 

Number of Methods 319 173 

Number of Seeded Faults 72 197 

Number of Nodes 41 64 

Number of Edges 63 125 

 

TTTTable 3able 3able 3able 3....  Characteristics of test cases  Characteristics of test cases  Characteristics of test cases  Characteristics of test cases    

AllEdges AllOrderedPairs 
 

Book CPM Book CPM 

Number of 

test cases 
15 41 7 261 

Percent of 

ordered pairs 

covered 

53.12% 15.03% 100% 100% 

Percent of 

edges covered 
100% 100% 60.7% 78.4% 

Total number 

of requests 
133 330 154 2273 

Longest test 

case length 
20 25 40 105 

Shortest test 

case length 
4 3 12 3 

Average Test 

Case length 
8.87 8.05 22 8.71 

 

TTTTable 4able 4able 4able 4....    Book: Book: Book: Book:     Effectiveness MetricsEffectiveness MetricsEffectiveness MetricsEffectiveness Metrics    

 All Edges All Ordered Pairs 

Total Faults 72 72 

Detected Faults 
Diff oracle: 61 

Struct oracle:45 
Diff oracle: 69 

Struct oracle:51
 

Statement 

Coverage 
85.32% 85.32% 

 

TTTTable 5able 5able 5able 5....        CPM: Effectiveness MetricsCPM: Effectiveness MetricsCPM: Effectiveness MetricsCPM: Effectiveness Metrics    

 All Edges All Ordered Pairs 

Total Faults 197 197 

Detected Faults 
Diff oracle: 37 

Struct oracle: 28 
Diff oracle: 124 

Struct oracle: 49
 

Statement 

coverage 
62.8% 67.5% 



Table 4 presents the program coverage and fault 

detection results for CPM. Test sequences from the 

AllOrderedPairs approach have higher program 

coverage than sequences from AllEdges approach. 

However, we see a large difference between the 

numbers of faults detected by each approach. From our 

experiments, we observe that all the faults detected by 

the AllEdges test cases are also detected by the 

AllOrderedPairs test cases. Fault detection by the 

AllOrderedPairs test cases improved by a factor of 

2.57 over the AllEdges test cases. From Table 2, we see 

that the AllEdges test cases for CPM cover only 

15.03% of the pairwise interactions, whereas the 

AllOrderedPairs test cases cover 100% of the 

interactions. We also found that test cases that cover 

the most ordered pairs (2273 and 1523 ordered pairs), 

detect the most faults in the application (35 and 33 

faults, respectively). Thus, we observe that there is a 

relation between the number of ordered pairs covered 

in a test case and the number of faults it detects. 

Also, CPM application is more complex in logic 

than the Book. There are many pairwise interactions 

through data storage. For example, the pairwise 

interaction (CreateCourseServlet, 

CatchGroupSignupServlet) is not covered by the 

AllEdges test cases. If a fault exists in storing the 

course name of a new course in the 

CreateCourseServlet page, the AllEdges test cases will 

fail to detect it. But, since the interaction is present in 

the AllOrderedPairs test cases, such a fault can be 

detected by test cases that contain the pairwise 

interaction (CreateCourseServlet, 

CatchGroupSignupServlet).   

Another reason for the difference is because of the 

complex logic in sequences for AllOrderedPairs test 

cases and the name-value pairs supplied to the test 

cases. For example, the request for creating a grader 

may just occur once in a test case generated by the 

AllEdges approach. But in a test case created by the 

AllOrderedPairs approach, the same request may occur 

multiple times because we are trying to cover all 

pairwise interactions. Thus, when an existing grader is 

created again by a request that appears later in the test 

case, the error tolerance code will be covered because 

that grader already exists. This is also another reason 

for the higher code coverage for AllOrderedPairs 

approach when compared to the AllEdges approach. 

A disadvantage of the AllOrderedPairs test cases is 

that there are more AllOrderedPairs test cases (261) 

than AllEdges (41) test cases—thus, the 

AllOrderedPairs test cases take longer to execute and 

require more resources. However, we believe the trade-

off in improved fault detection effectiveness is worth 

the increased test execution time. Also, it is important 

to note that the fault detection of the AllOrderedPairs 

test cases is still only 36.5% of the total seeded faults 

(with the struct oracle). But, this is expected because 

our test generation algorithm only generates the base 

requests—the name-value pairs to the request are still 

manually supplied. The particular name-value pairs 

used in the test cases have a significant impact on code 

coverage and fault detection. In the future, we plan to 

implement strategies to systematically generate name-

value pairs for web application requests.  

 

4.3. Threats to validity 
 

One important threat to validity of our results is that 

we conducted our experiments on only two subject 

programs. Though the subject applications are fairly 

large-sized programs, we cannot generalize our results 

to all web applications. We also manually generated 

parameter-values to the requests generated by our 

tool—the effectiveness of the test case largely depends 

on the parameter-values used in the test case. In the 

future, we will closely investigate the problem of test 

input generation for web applications. The techniques 

were tested on applications with hand-seeded faults. 

Also, we do not report on the time to generate test 

cases and the time to execute the test cases for fault 

detection effectiveness—these are measures that we 

plan to evaluate in the future. 

 

5. Conclusion 
 

In this paper, we presented a new test sequence 

generation approach, called AllOrderedPairs, for web 

applications. This approach tries to test all pairwise 

interactions in a web application. Our experimental 

results indicate that for applications that involve 

complex interactions between dynamic pages, the 

AllOrderedPairs approach can be significantly more 

effective than the AllEdges approach.  

There are a number of venues to continue our work. 

First, at present, a navigation graph is built manually, 

which can be time consuming, especially for complex 

web applications. We plan to develop an approach to 

automatically or semi-automatically explore the 

navigation structure of a web application. Second, we 

plan to address the problem of test data generation. In 

particular, we want to explore if it is possible to apply 

the notion of combinatorial testing as well. Finally, we 

want to conduct more case studies to thoroughly 

evaluate the effectiveness of our approach. The 

automated or semi-automated approaches to building 



navigation graphs and generating test data will allow us 

to study more complex applications.  
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