
An Interaction-Based Test Sequence Generation Approach for Testing Web

Applications

Wenhua Wang
1
, Sreedevi Sampath

2
, Yu Lei

1
, Raghu Kacker

3

1
Dept. of Comp. Sci. & Eng.

U. of Texas at Arlington

Arlington, Texas 76019

{wenhuawang, ylei}@uta.edu

2
Dept. of Information Systems

U. of Maryland, Baltimore County

Baltimore, Maryland 21250

sampath@umbc.edu

3
Info. Technology Laboratory

National Institute of Standards & Technology

Gaithersburg, Maryland 20899

raghu.kacker@nist.gov

Abstract

Web applications often use dynamic pages that

interact with each other by accessing shared objects,

e.g., session objects. Interactions between dynamic

pages need to be carefully tested, as they may give rise

to subtle faults that cannot be detected by testing

individual pages in isolation. Since it is impractical to

test all possible interactions, a trade-off must be made

between test coverage (in terms of number of

interactions covered in the tests) and test effort. In this

paper, we present a test sequence generation approach

to cover all pairwise interactions, i.e., interactions

between any two pages. Intuitively, if a page P could

reach another page P’, there must exist a test sequence

in which both P and P’ are visited in the given order.

We report a test sequence generation algorithm and

two case studies in which test sequences are generated

to achieve pairwise interaction coverage for two web

applications. The empirical results indicate that our

approach achieves good code coverage and is effective

for detecting interaction faults in the subject

applications.

1. Introduction

Web applications have proliferated in recent years,

as more companies, government agencies and other

organizations conduct business on the Internet. Along

with this proliferation comes a growing amount of

concern about the reliability of those applications. A

failure, even partial functionality loss, may cause an

entire business to standstill and cost millions of dollars

[1, 2]. Also, users' confidence in web applications

depends to a large degree on whether their business

transactions are handled correctly by the application.

Reliability is considered to be the biggest challenge in

the further promotion of web applications [3].

Testing is an effective approach to ensuring the

quality of web applications [4-6]. One important aspect

of web applications is that they often consist of

dynamic pages that interact with each other by

accessing shared objects. For example, a web

application may use session objects to track a user in a

sequence of requests. As another example, different

pages may access persistent data storage like a database

to exchange data. Interactions between dynamic pages

need to be carefully tested as they may give rise to

subtle faults that cannot be detected by testing

individual pages in isolation.

One approach to testing interactions between

dynamic pages is to test all possible sequences in which

those pages could be visited. The rationale is that each

sequence represents a specific way in which those

pages interact with each other, i.e., one possible

interaction among those pages. There are, however,

two problems with this approach. First, because the

number of sequences grows exponentially as the size of

a web application increases, it is nearly always

impractical to test all possible sequences. Second,

faults only manifest in a small number of sequences.

Thus, it is inefficient to test all possible sequences,

many of which do not contribute to fault detection.

In this paper, we propose a test sequence generation

approach to address the above problems. We define the

research problem as follows: Given a web application

containing dynamic pages, how could we generate, in

a systematic manner, a small number of test sequences

that are effective for detecting interaction faults? The

key idea of our approach is generating test sequences to

cover all pairwise interactions, i.e., interactions

between any two pages. In other words, if a page P

could reach another page P’, there must exist one test

sequence in which both P and P’ are visited in the

given order (but not necessarily in a row). Our

approach involves three major steps: First, a graph

model is built to capture the navigation structure of the

application under test, where each node represents a

web page (or a portion of it), and each edge represents

a direct link from one node to another. Second, all

pairwise interactions that may occur in the web

application are computed from the navigation graph.

Finally, a set of paths is selected from the navigation

graph to cover all those pairwise interactions. These

paths are then used as test sequences to test the web

application.

For the purpose of evaluation, we built a prototype

tool and applied our approach to two web applications,

namely, Book and CPM [5]. We compared our

approach with an approach that generated test

sequences to cover all the edges in a navigation graph.

We refer to our approach as the AllOrderedPairs

approach and the latter approach as the AllEdges

approach. The empirical comparison shows that

AllOrderedPairs approach can effectively detect some

interaction faults that cannot be detected by the

AllEdges approach.

Our approach is inspired by the pairwise testing

approach for general software testing [7, 8]. Pairwise

testing has been shown very effective for detecting

general software faults. We believe that the notion of

achieving pairwise coverage will also be effective for

detecting faults in web applications, for which our case

studies have provided some initial evidence. To the

best of our knowledge, our work is the first attempt to

apply combinatorial testing to generate test sequences

for web applications. More importantly, our work deals

with two unique challenges in the context of testing

web applications. First, for all the existing approaches

for combinatorial testing, the order in which different

components appear in a combination is insignificant.

This is in contrast to our approach, where the order of

the pages being visited in an interaction is important. In

particular, page P may reach page P’, but page P’ may

not reach page P. Second, existing work provides

limited support for handling constraints. Constraints

are used to exclude invalid combinations, based on the

domain semantics, from the resulting test set. In our

approach, the possible constraints among different

pages are implicitly captured in a graph structure. The

notion of using a graph to represent interaction

constraints, as well as the required algorithmic support,

is novel.

We point out that our approach currently does not

address the problem of test data generation. That is, the

test data required to execute a test sequence are

assumed to be supplied manually or using other

techniques like domain partitioning [9].

The remainder of this paper is organized as follows:

Section 2 briefly surveys related work. Section 3

describes our test generation approach and presents an

algorithm that implements the approach. Section 4

describes the prototype tool and reports two case

studies. Section 5 concludes this paper and discusses

future work.

2. Related work

Existing research most relevant to our work falls

into two main categories: (1) work on testing web

applications, which can be further classified into

model-based testing and user-session-based testing, and

(2) work on general combinatorial testing.

Model-based Testing. In model-based testing an

abstract model of the application under test is built, and

test sequences are generated from the model to satisfy

some coverage goals. Existing model-based testing

techniques for web applications extend traditional

testing techniques, e.g., those based on control flow

and/or data flow, to the web application domain [10,

11, 12, 14, 15]. In particular, Lucca et al. [14]

proposed applying several coverage criteria presented

by Binder [9] to test web browser interactions. One of

those criteria is called all-transition-k-tuples, which

aims to cover all possible sequences of transitions of

size k consecutively. This criterion is different from our

AllOrderedPairs criterion, since we do not require that

the two pages in an ordered pair be connected by a

direct edge in the graph model of the application.

Similarly, the test sequences do not have to contain the

pages in an ordered pair consecutively one after

another.

 Note that our interaction-based testing approach is

also a model-based testing approach. The novelty of

our work lies in the fact that we generate test sequences

to achieve pairwise interaction coverage, which is a

concept unexplored in the web testing domain.

User session-based testing. Several techniques have

been developed that record real usage data and use the

usage data to generate test sequences [6, 16, 17, 18,

19]. In particular, Sampath et al. [19] investigated the

effectiveness of reducing test suites with a criterion

designed to cover all page sequences of size 2 that

occur in the original suite of logged user sessions. This

study revealed that certain faults are detected only by

the occurrence of a certain sequence of pages in the test

case. Note that the approach of covering sequences of

size 2 is different from the approach presented in this

paper. In the AllOrderedPairs approach, we do not

require that the two pages in an ordered pair appear

consecutively one after another in the test sequence.

Compared with model-based testing, user session-

based testing does not need to construct a model, which

can be difficult for large and/or complex applications.

However, the fault detection ability of user-session-

based techniques depends to a large degree on the

quality of collected user sessions [20]. In addition,

user-session-based techniques require field deployment

and extensive user participation, which significantly

limits the applicability of those techniques.

General combinatorial testing. Combinatorial

testing refers to a general test generation approach

which creates tests by combining different parameter

values, based on some effective combinatorial

strategies. Existing work has mainly focused on how to

generate a test set that is as small as possible while still

satisfying some coverage goals [7, 8]. Empirical studies

have shown that combinatorial testing can be very

effective in detecting general software faults [21-23].

We note that Yuan et al. described a combinatorial

approach to testing GUI applications in [23]. Their

work, however, differs from ours significantly both in

terms of the way they define their coverage criteria and

the way they handle constraints. An excellent survey on

the state-of-the-art of combinatorial testing can be

found in [24].

As discussed in Section 1, we believe our work is

the first attempt to apply combinatorial testing to the

web application testing domain. Furthermore, our work

deals with two unique challenges that are related to

ordered interaction and constraint handling in the

context of web application testing, which is considered

to be the main technical contribution of this paper.

3. An interaction-based test sequence

generation approach

In this section, we present our interaction-based test

sequence generation algorithm and an example to

illustrate the approach.

3.1. Basic concepts

We first introduce the notion of a navigation graph.

In our approach, a navigation graph is used to represent

the navigation structure of a web application. A node in

a navigation graph can be a static node, which

represents a static page, or a dynamic node, which

represents a dynamic page or if a dynamic page has

multiple forms, a form in the dynamic page. We

distinguish the home page of the web application as a

special node called home node. There exists an edge

from one node m to another node n if node n can be

visited immediately after node m through a direct link.

Note that a direct link can be a hyperlink in a static

page or an action in a dynamic page. Formally, a

navigation graph G can be denoted as G = (V, E, n0),

where V = V
s
 ∪ V

d
 with V

s
 being a set of static nodes,

and V
d
 being a set of dynamic nodes, and E ⊆ V × V is

a set of edges, and n0 is the home node.

Note that a dynamic page could potentially generate

an infinite number of page instances. This is because

the content of such a page instance may depend on the

user input, which could be potentially infinite. If these

page instances were directly represented as individual

nodes, the size of a navigation graph would be

unbounded. This explains why it is the forms in a

dynamic page that are directly represented in a

navigation graph. Each form can be considered to

represent a group of page instances that may be

generated from the same form (with different user

inputs). In our approach, a form is identified by the

URL of the dynamic page containing the form and the

names (but not values) of the input parameters the form

can take.

Next, we introduce the notion of pairwise

interaction coverage. The term “pairwise interaction”

refers to interaction between two dynamic nodes. Let G

= (V, E, n0) be a navigation graph. Formally, a pairwise

interaction in G is an ordered pair (m, n), where m and

n are two dynamic nodes, and there exists a path from

m to n in G. Note that static nodes do not access shared

objects and thus have no interaction with other nodes.

(Static nodes are included in a navigation graph to

capture the navigation structure, which is needed to

generate executable test sequences.) Also note that the

order of nodes in a pairwise interaction is significant,

as a node m may reach a node n, but the reverse may

not be true. (We only consider navigations through

links within a web application. That is, we do not

consider navigations due to actions that are performed

on the web browser.)

Pairwise interaction coverage requires that a set of

paths be selected from a navigation graph as test

sequences so that every ordered pair is covered in at

least one of those test sequences. Let P = n1n2 ... nl be a

path in a navigation graph. Let p = (m, n) be an order

pair. Then, p is covered in P if there exists 1 ≤ i < j ≤ l

such that ni = m, and nj = n. Note that in P, nodes m

and n must appear in the given order, but they do not

need to appear consecutively.

To help better understand the notion of pairwise

interaction coverage, let us compare it with edge

coverage. The latter requires that every edge in a

navigation graph be covered by at least one test

sequence. Fig. 1 (a) shows an example navigation

graph. Two test sequences, ABDEG and ACDFG, are

sufficient to cover all the edges in the graph. But these

two test sequences fail to cover two pairwise

interactions, namely, (B, F) and (C, E). If a fault is only

triggered by these two interactions, then this fault

would be detected by a test set satisfying pairwise

interaction coverage, but may not be detected by a test

set satisfying edge coverage.

(a)

(b)

Figure Figure Figure Figure 1111.... Two Two Two Two eeeexample xample xample xample nnnnavigation avigation avigation avigation ggggraphsraphsraphsraphs

It is interesting to note that pairwise interaction

coverage does not subsume edge coverage. Fig. 1 (b)

shows a navigation graph that consists of three nodes

A, B, and C, and three edges (A, B), (A, C), and (B, C).

In this graph, path P = ABC satisfies pairwise

interaction coverage but does not satisfy edge

coverage. This is because (A, C) as a pairwise

interaction is covered by path P, since A and C appear

in P in the given order, but (A, C) as an edge is not

covered by this path, since A and C do not appear in P

in a row.

3.2. An interaction-based test generation

algorithm

Fig. 2 shows an algorithm called Generate-

Sequences, which implements the interaction-based test

sequence generation approach. Algorithm Generate-

Sequences takes as input a navigation graph G of the

web application under test, and produces as output a set

seqs of sequences that covers all the ordered pairs in G.

The algorithm begins by computing all the set pairs of

ordered pairs in the navigation graph (line 1). Note that

we only consider ordered pairs involving two dynamic

nodes. We point out that this computation basically

requires determining reachability from one node to

another, which is a classical problem in graph theory

and can be solved using algorithms that have been

reported in the literature [25].

Next, the algorithm tries to generate a set of

sequences to cover all the ordered pairs computed

earlier. This is accomplished by a while loop (lines 3 –

12) in which each iteration generates one sequence to

cover a set of pairs that have not been covered before

until all the pairs are covered. Each iteration of the

while loop works as follows: First, a list L of nodes is

built in which every two adjacent nodes is an ordered

pair in set pairs, i.e., an ordered pair that has not been

covered yet (line 4). The purpose of building this list is

to guide the creation of a test sequence S so that S will

cover a good number of ordered pairs that have not

been covered yet. An optimal approach would build L

in a way such that the size of the resulting set of test

sequences is minimal. (The size of the resulting test

sequence set can be measured in different ways, e.g., in

terms of the total number of requests if we ignore the

cost of test setup and teardown.) It is easy to see that

finding an optimal solution is a NP-hard problem, due

to the combinatorial nature of the problem. Here we

describe a heuristic approach to building L. In this

approach, we begin by picking an arbitrary pair (m, n)

from pairs, and add m and n into L in the given order,

i.e., L = (m, n). Next, we try to extend L using the

following three rules: (1) if there is a pair (m’, m) in

pairs, then we add m’ into the beginning of L, i.e., L =

(m’, m, n); (2) if there exists a pair (n, n’) in pairs, we

add n’ into the end of L, i.e., L = (m, n, n’); (3) if there

are two pairs (m, o) and (o, n), we add o into the

middle of L, i.e., L = (m, o, n). We will refer to the

three rules as the front-end, back-end, and middle

extension, respectively. These three rules can be easily

generalized to keep extending L until L can no longer

be extended, i.e., no more nodes can be added into L.

We note that this approach is implemented in our

prototype tool to conduct our empirical studies.

Now we are ready to discuss how to actually create

a test sequence S out of L. This is done by first

initializing S to be an empty sequence (line 5) and then

appending to S a shortest path from the first node to the

second node, and a shortest path from the second node

to the third node, and so on (lines 6 – 9). In other

words, S is created by adding into L a shortest path P

between every two adjacent nodes to connect them.

Note that node list L itself is not necessarily a path in

navigation graph G, and thus cannot be directly used as

a test sequence. This is because there may not exist an

edge connecting every two adjacent nodes in L. Also

note that P can always be found since L is built in a

way that every two adjacent nodes, say ni and ni+1,

where 1 ≤ i < k, is an ordered pair, implying that there

must exist at least one path from ni to ni+1.

After sequence S is created, the set covered of pairs

that are covered by sequence S is computed (line 10)

and then removed from set pairs (line 11). Note that

the indices i and j in the computation of set covered do

not have to be adjacent. This is because an ordered pair

(m, n) is covered in a path if m and n appear in the path

in the given order (not necessarily in a row).

We comment that the test sequences generated by

algorithm Generate-Sequences do not necessarily start

from the home node n0. In practice, some applications

may require that every test sequence start from the

home node. For example, an application may require

the user to log in before any other page is visited. In

this case, if a sequence does not start from the home

node, it is necessary to add into the beginning of the

sequence a shortest path from the home node n0 to the

first node of the sequence.

Now we consider the time complexity of algorithm

Generate-Sequences. Set pairs can be computed (line

1) using a classic algorithm like the Floyd-Warshall

algorithm [25], which takes O(|V|
3
). Next we consider

the time complexity of the while loop (lines 3 – 14).

Assume that the heuristic approach described earlier is

used to build the node list L (line 4). The application of

each rule to extend L at a certain point (front end,

middle, or back end) takes O(|V|), as we only need to

look up ordered pairs involving one or two nodes at the

extension point. Since the length of L is O(|V|), L can

be built in O(|V|
2
). If we pre-compute and store a

shortest path for every two nodes using an algorithm

like the Floyd-Warshall algorithm, sequence S can be

built in a time complexity that is linear to the length of

S, which is O(|V|). Note that the pre-computation of the

shortest paths can be merged with the computation of

set pairs, and thus does not incur additional time. The

computation of set covered (line 10), together with the

removal of set covered from pairs (line 11), takes

O(|V|
2
). This means that the time complexity of each

iteration is O(|V|
2
). Since the size of set pairs is O(|V|

2
),

the time complexity of the entire while loop is O(|V|
4
).

This derives that the time complexity of the entire

algorithm is O(|V|
4
).

3.3. An example scenario

We demonstrate how algorithm Generate-

Sequences works by using an example scenario from

Book, one of the two applications used in our

experiments. Fig. 3 shows a portion of the navigation

graph for the Book application, where the Default node

is the home node. For the ease of reference, each page

is identified by a name, instead of its URL. We first

generate all the ordered pairs in the navigation graph

(line 1 in Fig. 2). Those pairs are shown in Table 1.

Note that in the navigation graph, every node can reach

itself (through other nodes). Therefore, there exists an

ordered pair from each node to itself, e.g., D7 =

(Default, Default), A7= (AdvSearch, AdvSearch), and

so on.

Algorithm Generate-Sequences

Input: A navigation graph G = (V, E, n0) of the web

application under test

Output: A set seqs of paths covering all the ordered

pairs in G

1. pairs = { (m, n) | m and n are dynamic nodes in G,

and there exists a path from m to n in G }

2. let seqs be an empty set (of test sequences)

3. while (pairs is not empty) {

4. build a list L = (n1, n2, ..., nk)} of nodes such that

k ≤ |V| and for 1 ≤ i < k, (ni, ni+1) ∈ pairs

5. let S be an empty sequence (of nodes)

6. for (1 ≤ i < k) {

7. let P be a shortest path from ni to ni+1

8. S = S • P

9. }

10. covered = {(ni, nj) | 1 ≤ i < j ≤ k, ni, nj ∈ L}

11. pairs = pairs − covered

12. add S into seqs

13. }

14. return seqs

Figure Figure Figure Figure 2222.... Algorithm Algorithm Algorithm Algorithm GenerateGenerateGenerateGenerate----SequencesSequencesSequencesSequences

Next, we try to generate test sequences to cover all

the ordered pairs in Table 1 (lines 2 – 13 in Fig. 2). We

first try to build a node list L (line 4), using the

heuristic approach described in Section 3.2. Assume

that we first pick D1 = (Default, AdvSearch), and add

Default and AdvSearch into L (and remove D1 from

Table 1):

L = {Default, AdvSearch}

Now we try to extend L using the three extension

rules, i.e., the front-end, back-end, and middle

extension. Without loss of generality, assume that we

first apply back-end extension, where we try to find an

ordered pair whose first node is the last node of L, i.e.,

AdvSearch. Note that A1 = (AdvSearch, Books) is one

such pair. Thus, we add Books into the end of L (and

remove A1, as well as D2, which is also covered by L,

from Table 1):

Figure Figure Figure Figure 3333.... Navigation Navigation Navigation Navigation ggggraph for raph for raph for raph for BookBookBookBook

L = {Default, AdvSearch, Books}

Similarly, as B1 = (Books, BookDetail) is an

ordered pair, we add BookDetail into the end of L (and

remove B1, as well as D3 and A2, which are also

covered by L, from Table 1):

L = {Default, AdvSearch, Books, BookDetail}

We keep applying back-end extension to L until we

get the following sequence:

L = {Default, AdvSearch, Books, BookDetail,

ShoppingCart, ShoppingCartRecord, Default,

MyInfo, ShoppingCart, AdvSearch}

At this point, we cannot find any ordered pair whose

first node is AdvSearch. Next we apply front-end

extension, where we try to find an ordered pair whose

second node is the first node of L. We find M3 =

(MyInfo, Default) to be one such pair. Thus, we add

MyInfo to the beginning of L (and remove M3, as well

as M4, M5, M6 and M7, which are also covered by L,

from Table 1):

L = {MyInfo, Default, AdvSearch, Books,

BookDetail, ShoppingCart, ShoppingCartRecord,

Default, MyInfo, ShoppingCart, AdvSearch}

Note that all the ordered pairs whose second node is

MyInfo, namely, D6, A6, B5, BD4, S4, R2, and M7,

are already covered in L, implying that those pairs have

been removed from Table 1. Thus, at this point, we

cannot find any ordered pair to extend L in the front

end.

Next we try to apply middle extension. However,

none of the remaining ordered pairs, i.e., B7, BD6,

BD7, S6, S7, R5, and R6, satisfies the condition for

middle extension. At this point, we finish building L.

 Now we generate a test sequence out of L such

that every two adjacent nodes in L are connected via a

shortest path between the two nodes (lines 5 – 9 in Fig.

2). It turns out that most adjacent nodes in L have a

direct edge between them, except for adjacent nodes

Default and MyInfo, which can be connected by a

shortest path (Default, ShoppingCart, MyInfo), and

adjacent nodes ShoppingCart and AdvSearch, which

can be connected by path (ShoppingCart, Default,

AdvSearch). Thus, we generate the following test

sequence:

S = {MyInfo, Default, AdvSearch, Books,

BookDetail, ShoppingCart, ShoppingCartRecord,

Default, ShoppingCart, MyInfo, ShoppingCart,

Default, AdvSearch}

Table 1. The pairs set for Book
Pair Default Pair AdvSearch Node

D1

D2

D3

D4

D5

D6

D7

Default, AdvSearch

Default, Books

Default, BookDetail

(Default,

ShoppingCart)

(Default,

ShoppingCartRecord)

Default, MyInfo

Default, Default

A1

A2

A3

A4

A5

A6

A7

AdvSearch, Books

(AdvSearch,

BookDetail)

(AdvSearch,

ShoppingCart)

(AdvSearch,

ShoppingCartRecord)

AdvSearch, Default

AdvSearch, MyInfo

(AdvSearch,

AdvSearch)

Pair Books BookDetail

B1

B2

B3

B4

B5

B6

B7

Books, BookDetail

Books, ShoppingCart

(Books,

ShoppingCartRecord)

Books, Default

Books, MyInfo

Books, AdvSearch

Books, Books

BD1

BD2

BD3

BD4

BD5

BD6

BD7

(BookDetail,

ShoppingCart)

(BookDetail,

ShoppingCartRecord)

BookDetail, Default

BookDetail, MyInfo

(BookDetail,

AdvSearch)

(BookDetail,

BookDetail)

BookDetail, Books

Pair ShoppingCart Pair ShoppingCartRecord

S1

S2

S3

S4

S5

S6

S7

(ShoppingCart,

ShoppingCartRecord)

(ShoppingCart,

Default)

(ShoppingCart,

MyInfo)

(ShoppingCart,

ShoppingCart)

(ShoppingCart,

AdvSearch)

ShoppingCart, Books

(ShoppingCart,

BookDetail)

R1

R2

R3

R4

R5

R6

R7

(ShoppingCartRecord,

Default)

(ShoppingCartRecord,

MyInfo)

(ShoppingCartRecord,

ShoppingCart)

(ShoppingCartRecord,

AdvSearch)

(ShoppingCartRecord,

Books)

(ShoppingCartRecord,

Books)

(ShoppingCartRecord,

ShoppingCartRecord)

Pair MyInfo

M1

M2

M3

M4

M5

M6

M7

(MyInfo,

ShoppingCart)

MyInfo, AdvSearch

MyInfo, Default

MyInfo, Books

MyInfo, BookDetail

 (MyInfo,

ShoppingCartRecord)

MyInfo, MyInfo

Note that sequence S does not cover all the ordered

pairs. For example, BD7 = (BookDetail, Books) is not

yet covered. The same process can be repeated to

generate additional test sequences until all the ordered

pairs are covered, which is not explained for the

purpose of brevity.

4. Experiments

Our experiments are designed to answer the

following research questions.

1. How does the AllOrderedPairs test sequence

generation approach compare with AllEdges test

generation approach with respect to program coverage?

2. How does the AllOrderedPairs test sequence

generation approach compare with AllEdges test

generation approach with respect to fault detection

effectiveness?

We measure the effectiveness of the two test

generation strategies by measuring statement coverage

and number of faults detected.

4.1. Experimental setup

Subject Applications: We used two applications,

Book and CPM [5], in our experiments. Book is an

online e-commerce application that users can use to

browse, search and buy books [26]. CPM is a course

project manager developed at Duke University. CPM

allows course instructors to create grader accounts for

teaching assistants. Instructors and teaching assistants

can create student accounts, post student grades and

post available time slots for students to demonstrate

their course projects. Students can view their grades

and sign up for specific demo time slots with a grader.

New grader/student/course accounts can be created and

deleted as necessary. More details on the applications

are presented in previous work by Sampath et al. [5].

Table 2 presents the main characteristics of the two

applications.

Navigation Graph and Test Case

Characteristics: Table 2 also shows the characteristics

of the navigation graph (number of nodes and number

of edges of the navigation graph) and Table 3 shows

characteristics of test cases for each application. From

the last row of Table 3, we see that on average, the

length of test cases generated by both AllEdges and

AllOrderedPairs test generation strategies is the same

(around 8 requests), except for Book’s

AllOrderedPairs test cases. The AllOrderedPairs test

generation algorithm is designed to (a) cover as many

ordered pairs as possible in a test sequence, and (b)

find the shortest paths between two consecutive nodes

in the test sequence. Thus, the length of a generated test

case depends on these two factors above. Since Book’s

navigation graph has high connectivity—each node is

connected to several other nodes, and since the

algorithm is designed to find the shortest path between

every two consecutive nodes, long test cases are

created, however, the number of test cases is small—7

AllOrderedPairs test cases. Also, since

AllOrderedPairs does not subsume AllEdges (as

described in Section 3.1), we find that the

AllOrderedPairs test cases for our subject applications

do not necessarily cover all the edges in the graph

(AllOrderedPairs test cases cover 60.7% of edges in

Book, and 78.4% of edges in CPM).

Experimental Framework: We used the

framework presented in Sprenkle et al. [6] for

capturing program coverage and fault detection

information. The framework has three main

components: a customized tool for replaying the test

cases, Clover [27] for instrumenting and measuring

program coverage, and a fault detection component that

allows insertion of hand-seeded faults into the

application, application of oracles to determine if a test

case detects a fault or not, and creation of fault

detection reports based on the faults detected by a test

suite [6]. We augmented faults seeded by Sampath et

al. [5] with faults that are likely to occur when two

pages interact with each other. Table 2 presents the

number of seeded faults in each application.

For the fault detection study, we use both the diff

and the struct oracle, presented by Sprenkle et al. [6,

28]. The diff oracle applies the Unix utility ‘diff’ on the

HTML responses returned on executing the test cases

on the clean and faulty versions of the application and

reports any difference between the HTML responses as

a failure. Since the diff oracle considers any difference

in the HTML as a failure, differences in real-time

content, e.g., current date, are flagged as a failure by

the oracle, thus leading to false positives. The struct

oracle is more conservative—it filters the HTML

responses and reports only differences in the HTML

tags. The obvious disadvantage of the struct oracle lies

in its inability to capture faults that arise from

differences in the content of the HTML page. Sprenkle

et al. [28] discuss more about the oracles and the trade-

offs. In this paper, we present results from both diff and

struct oracles.

We implemented the Generate-Sequences algorithm

in our prototype tool to generate test sequences. This

tool generates test sequences that cover all pairwise

interactions (AllOrderedPairs) and all edges

(AllEdges). After generating the test sequences, our

tool also verifies whether all the pairwise interactions

are covered by test sequences for covering all pairwise

interactions and whether all the edges are covered by

test sequences for covering all edges. It also shows us

statistics of comparison between the AllOrderedPairs

approach and AllEdges approach. Our test sequence

generation algorithm generates only the base requests

for the test cases and ensures that pairwise interactions

are covered by the AllOrderedPairs test cases. To

execute the test cases correctly, we manually augment

the requests with name-value pairs. This is similar to

how testers provide test input to ensure correct

execution of test cases in traditional programs. We also

use an initial data store state that is reset before each

test case is executed, to avoid cascading faults.

4.2. Results and discussion

From Table 4, for Book application, we observe that

both AllEdges approach and AllOrderedPairs approach

have the same code coverage, 85.32%, but

AllOrderedPairs detects 6 to 8 more faults than the

AllEdges approach. By design, in Book, certain

methods are included in every page of the application

(through an include JSP statement), even though these

methods are never called by the other methods in the

page—these methods are designed to be called by a

user with different privileges (an admin user), instead

of an end-user. In this paper, since our tool focused on

covering pairwise interactions of end-user accessible

pages and functions, we report program coverage

results for Book after removing such repeated code

from the coverage report generated by Clover. The

program coverage is same for AllOrderedPairs and

AllEdges because the same pages are accessed with the

same parameters and values, thus resulting in same

code coverage. That means sequences for AllEdges

approach and AllOrderedPairs approach should have

the same detection ability for faults in unit testing. The

primary advantage of the AllOrderedPairs test cases is

that they can guarantee pairwise interaction coverage,

while the AllEdges approach cannot.

From our experiments, we observe that all the faults

detected by the AllEdges test cases are also detected by

the AllOrderedPairs test cases. One example of a fault

that is caught by AllOrderedPairs but missed by

AllEdges is presented here: we found that a fault is

exposed when the Login page is accessed the second

time in a test sequence. Since (Login, Login) was an

ordered pair for Book, the ordered pair (Login, Login)

appeared in one of the AllOrderedPairs test sequences,

and the fault was detected by the AllOrderedPairs test

case. However, since there was no direct edge from

Login to Login, the AllEdges test cases were not

required to generate a test sequence with two

occurrences of the Login page in them, thus failing to

detect the fault.

TTTTable 2able 2able 2able 2.... Characteristics of Characteristics of Characteristics of Characteristics of ssssubject applicationsubject applicationsubject applicationsubject applications

 Book CPM

Technologies
JSP,

MySQL

Java servlets,

File-based data

store, HTML

Non-commented LOC 7615 9401

Number of classes 11 75

Number of Methods 319 173

Number of Seeded Faults 72 197

Number of Nodes 41 64

Number of Edges 63 125

TTTTable 3able 3able 3able 3.... Characteristics of test cases Characteristics of test cases Characteristics of test cases Characteristics of test cases

AllEdges AllOrderedPairs

Book CPM Book CPM

Number of

test cases
15 41 7 261

Percent of

ordered pairs

covered

53.12% 15.03% 100% 100%

Percent of

edges covered
100% 100% 60.7% 78.4%

Total number

of requests
133 330 154 2273

Longest test

case length
20 25 40 105

Shortest test

case length
4 3 12 3

Average Test

Case length
8.87 8.05 22 8.71

TTTTable 4able 4able 4able 4.... Book: Book: Book: Book: Effectiveness MetricsEffectiveness MetricsEffectiveness MetricsEffectiveness Metrics

 All Edges All Ordered Pairs

Total Faults 72 72

Detected Faults
Diff oracle: 61

Struct oracle:45
Diff oracle: 69

Struct oracle:51

Statement

Coverage
85.32% 85.32%

TTTTable 5able 5able 5able 5.... CPM: Effectiveness MetricsCPM: Effectiveness MetricsCPM: Effectiveness MetricsCPM: Effectiveness Metrics

 All Edges All Ordered Pairs

Total Faults 197 197

Detected Faults
Diff oracle: 37

Struct oracle: 28
Diff oracle: 124

Struct oracle: 49

Statement

coverage
62.8% 67.5%

Table 4 presents the program coverage and fault

detection results for CPM. Test sequences from the

AllOrderedPairs approach have higher program

coverage than sequences from AllEdges approach.

However, we see a large difference between the

numbers of faults detected by each approach. From our

experiments, we observe that all the faults detected by

the AllEdges test cases are also detected by the

AllOrderedPairs test cases. Fault detection by the

AllOrderedPairs test cases improved by a factor of

2.57 over the AllEdges test cases. From Table 2, we see

that the AllEdges test cases for CPM cover only

15.03% of the pairwise interactions, whereas the

AllOrderedPairs test cases cover 100% of the

interactions. We also found that test cases that cover

the most ordered pairs (2273 and 1523 ordered pairs),

detect the most faults in the application (35 and 33

faults, respectively). Thus, we observe that there is a

relation between the number of ordered pairs covered

in a test case and the number of faults it detects.

Also, CPM application is more complex in logic

than the Book. There are many pairwise interactions

through data storage. For example, the pairwise

interaction (CreateCourseServlet,

CatchGroupSignupServlet) is not covered by the

AllEdges test cases. If a fault exists in storing the

course name of a new course in the

CreateCourseServlet page, the AllEdges test cases will

fail to detect it. But, since the interaction is present in

the AllOrderedPairs test cases, such a fault can be

detected by test cases that contain the pairwise

interaction (CreateCourseServlet,

CatchGroupSignupServlet).

Another reason for the difference is because of the

complex logic in sequences for AllOrderedPairs test

cases and the name-value pairs supplied to the test

cases. For example, the request for creating a grader

may just occur once in a test case generated by the

AllEdges approach. But in a test case created by the

AllOrderedPairs approach, the same request may occur

multiple times because we are trying to cover all

pairwise interactions. Thus, when an existing grader is

created again by a request that appears later in the test

case, the error tolerance code will be covered because

that grader already exists. This is also another reason

for the higher code coverage for AllOrderedPairs

approach when compared to the AllEdges approach.

A disadvantage of the AllOrderedPairs test cases is

that there are more AllOrderedPairs test cases (261)

than AllEdges (41) test cases—thus, the

AllOrderedPairs test cases take longer to execute and

require more resources. However, we believe the trade-

off in improved fault detection effectiveness is worth

the increased test execution time. Also, it is important

to note that the fault detection of the AllOrderedPairs

test cases is still only 36.5% of the total seeded faults

(with the struct oracle). But, this is expected because

our test generation algorithm only generates the base

requests—the name-value pairs to the request are still

manually supplied. The particular name-value pairs

used in the test cases have a significant impact on code

coverage and fault detection. In the future, we plan to

implement strategies to systematically generate name-

value pairs for web application requests.

4.3. Threats to validity

One important threat to validity of our results is that

we conducted our experiments on only two subject

programs. Though the subject applications are fairly

large-sized programs, we cannot generalize our results

to all web applications. We also manually generated

parameter-values to the requests generated by our

tool—the effectiveness of the test case largely depends

on the parameter-values used in the test case. In the

future, we will closely investigate the problem of test

input generation for web applications. The techniques

were tested on applications with hand-seeded faults.

Also, we do not report on the time to generate test

cases and the time to execute the test cases for fault

detection effectiveness—these are measures that we

plan to evaluate in the future.

5. Conclusion

In this paper, we presented a new test sequence

generation approach, called AllOrderedPairs, for web

applications. This approach tries to test all pairwise

interactions in a web application. Our experimental

results indicate that for applications that involve

complex interactions between dynamic pages, the

AllOrderedPairs approach can be significantly more

effective than the AllEdges approach.

There are a number of venues to continue our work.

First, at present, a navigation graph is built manually,

which can be time consuming, especially for complex

web applications. We plan to develop an approach to

automatically or semi-automatically explore the

navigation structure of a web application. Second, we

plan to address the problem of test data generation. In

particular, we want to explore if it is possible to apply

the notion of combinatorial testing as well. Finally, we

want to conduct more case studies to thoroughly

evaluate the effectiveness of our approach. The

automated or semi-automated approaches to building

navigation graphs and generating test data will allow us

to study more complex applications.

Acknowledgements. We would like to thank the

University of Delaware Software Testing Research

Group and their collaborators at Drexel University for

creating the fault seeded versions and for sharing with

us the original and fault seeded versions of the Book

and CPM web applications. This work is partly

supported by a grant (Award No. 60NANB6D6192)

from the Information Technology Lab (ITL) of

National Institute of Standards and Technology

(NIST).

Disclaimer. Any mention of commercial products

within this article is for information only; it does not

imply recommendation or endorsement by NIST.

6. References

[1] Web Application Development–Bridging the Gap

between QA and Development. http://www.stickyminds.com.

[2] S. Pertet, and P. Narsimhan, "Causes of Failures in Web

Applications", CMU-PDL-05-109, Carnegie Mellon

University, 2005.

[3] A. Stout, "Testing a Website: Best Practices", The Revere

Group, 2001.

[4] G. Di Lucca, A. Fasolino, F. Faralli, and U.D. Carlini,

"Testing Web Applications", In 18th IEEE International

Conference on Software Maintenance, pp. 310-319, 2002.

[5] S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and A.S.

Greenwald, "Applying Concept Analysis to User-session-

based Testing of Web Applications", IEEE Transactions on

Software Engineering, 33, (10), pp. 643-658, 2007.

[6] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock,

"Automated Replay and Failure Detection for Web

Applications", In 20th International Conference of

Automated Software Engineering, pp. 253-262, 2005.

[7] D.M. Cohen, S.R. Dalal, J. Parelius, and G.C. Patton,

"The Combinatorial Design approach to Automatic Test

Generation", IEEE Software, 13, (5), pp. 83-88, 1996.

[8] Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, and J. Lawrence,

"IPOG/IPOG-D: Efficient Test Generation for Multi-way

Combinatorial Testing", Software Testing, Verification and

Reliability, 2007.

[9] R. Binder, "Testing Object-Oriented Systems" (Addison

Wesley. 2000).

[10] C.-H. Liu, D.C. Kung, P. Hsia, and C.-T. Hsu,

"Structural Testing of Web Applications", In 11th

International Symposium on Software Reliability

Engineering, pp. 84-96, 2000.

[11] Y. Qi, D. Kung, and E. Wong, "An Agent-based Testing

Approach for Web Applications", In 29th Annual

International Computer Software and Applications

Conference, pp. 45-50, 2005.

[12] F. Ricca, and P. Tonella, "Analysis and Testing of Web

Applications", In 23rd International Conference on Software

Engineering, pp. 25-34, 2001-05, 2001.

[13] P. Tonella, and F. Ricca, "A 2-layer Model for the

White-box Testing of Web Applications", In 6th IEEE

International Workshop on Web Site Evolution, pp. 11-19,

2004.

[14] G.A. Di Lucca, and M.D. Penta, "Considering Browser

Interaction in Web Application Testing", In 5th International

Workshop on Web Site Evolution, pp. 74-81, 2003.

[15] A. Andrews, J. Offutt, and R. Alexander, "Testing Web

Applications by Modeling with FSMs", Software and

Systems Modeling, 4, (3), pp. 326-345, 2005.

[16] S. Elbaum, G. Rothermel, S. Karre, and M.F. II,

"Leveraging User Session Data to Support Web Application

Testing", IEEE Transactions on Software Engineering, 31,

(3), pp. 187-202, 2005.

[17] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock, "A

Case Study of Automatically Creating Test Suites from Web

Application Field Data", In Workshop on Testing, Analysis,

and Verification of Web Services and Applications, pp. 1-9,

2006.

[18] S. Sprenkle, S. Sampath, E. Gibson, L. Pollock, A.

Souter, "An Empirical Comparison of Test Suite Reduction

Techniques for User-session-based Testing of Web

Applications", In 21st International Conference on Software

Maintenance, pp. 587-596, 2005.

[19] S. Sampath, S. Sprenkle, E. Gibson, and L. Pollock,

"Web Application Testing with Customized Test

Requirements—An Experimental Comparison Study", In

17th International Symposium on Software Reliability

Engineering, pp. 266-278, 2006.

[20] S. Elbaum, S. Karre, and G. Rothermel, "Improving Web

Application Testing with User Session Data", In 25th

International Conference on Software Engineering, pp. 49-

59, 2003.

[21] D.R. Kuhn, and M.J. Reilly, "An Investigation of the

Applicability of Design of Experiments to Software Testing",

In 27th NASE/IEEE Software Engineering Workshop, pp. 91-

95, 2002.

[22] D.R. Kuhn, D.R. Wallace, and A.M. Gallo, "Software

Fault Interactions and Implications for Software Testing",

IEEE Transactions on Software Engineering, 30, (6), pp. 418-

421, 2004.

[23] X. Yuan, M. Cohen, and A.M. Memon, "Covering Array

Sampling of Input Event Sequences for Automated GUI

Testing", In 22nd IEEE/ACM international conference on

Automated Software Engineering, pp. 405-408, 2007.

[24] M. Grindal, J. Offutt, and S.F. Andler, "Combination

Testing Strategies: A Survey", Journal of Software Testing,

Verification and Reliability, 15, (2), pp. 97-133, 2005.

[25] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein,

"Introduction to Algorithms" (The MIT Press, 2001, Second

edn.), pp. 629-632.

[26] Open Source Web Applications with Source Code.

http://www.gotocode.com, 2006, last access.

[27] Clover: Code Coverage Tool for Java.

http://www.cenqua.com/clover/, 2006, last access.

[28] S. Sprenkle, L. Pollock, H. Esquivel, B. Hazelwood, and

S. Ecott, "Automated Oracle Comparators for Testing Web

Applications", In 18th IEEE International Symposium on

Software Reliability, pp. 117-126, 2007.

