

N. Petra¹, J. Zweck¹, S. E. Minkoff¹, A. A. Kosterev², and J. H. Doty III² ¹Mathematics and Statistics, University of Maryland Baltimore County and ²Electrical and Computer Engineering, Rice University

Resonant OptoThermoAcoustic DEtection (ROTADE)

ROTADE uses a quartz tuning fork (QTF) to detect diffusion waves generated when optical radiation interacts with a gas

Detection

- Gas molecules diffuse and collide with QTF surface
- Excited molecules transfer vibrational energy to QTF
- Heating induces a stress and displacement of the QTF
- A resonance is induced by modulating the laser
- A current is generated via piezoelectricity of quartz

Current is proportional to gas concentration.

ROTADE Characteristics

- Effective at low ambient pressures (≤ 50 Torr)
- High wavelength selectivity
- Allows for analysis of small gas samples ($< 1 \text{ mm}^3$)
- Offers immunity to environmental acoustic noise

Validation of a Model of a Resonant **Optothermoacoustic Trace Gas Sensor**

0 tic

Γ_2 (free) Γ_1 (clamped) —

Helmholtz Equation for Diffusion Wave

T = temperaturek = thermal diffusivity $\omega_L = \text{laser modulation frequency}$ S =laser source amplitude

Helmholtz Equation for Thermoelastic Deformation

u = displacement field $\rho = density$ b = damping constant

32.8 kHz eigenmode of vibration of QTF

Geometry of QTF

Laser beam axis is parallel to y-axis through (0, 0, z)

$-\nabla \cdot (k\nabla T) + i\omega_L T = S$

$\nabla \cdot C[\nabla \mathbf{u}] + (\rho \omega_{TF}^2 - ib\omega_{TF})\mathbf{u} = \nabla \cdot C[\alpha T]$

C = elasticity tensor $\omega_{TF} = QTF$ resonance freq. = ω_L α = thermal expansion tensor

http://www.mirthecenter.org