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Recommender systems have become commonplace in recent years:

• Amazon shows users other compelling purchases.

• Netflix shows users new movies that may be of interest.

• Google shows targeted advertisements.

Many companies have large swaths of user’s information from social networks such as Facebook. As the largest
internet company in China, Baidu Inc. runs popular social media networks and is looking to use this information
to improve their video service.

Goal: Develop algorithms to incorporate social media data into recommendation systems.

Introduction

Baidu Inc. provided our team with a dataset containing:

• Approximately 10,000 users rating around 8,000 movies.

• User’s browser history.

• The users that a given user has “followed“.

• Movie tags as set by users.

Our project was to train a model which would be predict a user’s rating for a movie. Our model was tested on
a hidden dataset using the RMSE metric:

RMSE =
n∑
i

(ŷi − yi)

where ŷi is the model prediction and yi is the known user movie rating. As the RMSE measures the distance
between prediction and reality, our goal was to find a model which minimizes the RMSE.

Particular difficulties included:

• Sparsity: users do not rate most movies.

• Computational efficiency: the algorithm must run in a reasonable time on large datasets.

The Problem

Solving Sparsity: Factorizations

• Idea: To find the interaction (estimated correlation) between Alice in Wonderland and Star Trek,
assume the interaction is the same as some other related and rated movie (i.e. Star Wars)

• This can be done mathematically modeling interactions with an n ×m matrix:

– Let m be the number of movies.

– Let n � m.

– Define the interaction effect to be the dot product between columns.

• Training will make similar movies have similar columns causing high interaction effects.

Ensembling: “Knowledge of the Crowd“

• In Who Wants to Be a Millionaire, the “ask the audience“ option was almost always right whereas
“phone a friend“ (supposed expert) was usually wrong!

• Idea: Generate many recommendations from diverse models and aggregate the results.

• Work to develop and aggregate many models instead of a “best“ model.

Summary of Main Techniques

Our team decided to create a software package for developing prediction algorithms utilizing a doubly ensemble
framework. This program is called TBEEF, Triple Bagged Ensemble Ensemble Framework. It has three steps:

1. Model: Runs factorization models on sparse datasets to generate predictions.

2. Hybrid: Uses an ensemble of ensembling techniques to generate predictions.

3. Synthesize: Aggregates the hybrid step predictions using one ensemble technique.

A plugin interface has been implemented to let users easily create factorization models for the Model step
and ensemble models for the Hybrid and Synthesize steps. This program is publicly distributed with the MITx
license and can be found on the Machine Learning Open Source Software (MLOSS) repository under the name
TBEEF: Triple Bagged Ensemble Ensemble Framework.

Diagram of the TBEEF program. Shown are the three steps, the Model step, the Hybrid step, and the Synthesize step.

Example models are shown in the Model and Hybrid steps.

Introduction to TBEEF

General Factorization Model:

ŷ = w0 +

m∑
j=1

wjxj +

m∑
j=1

m∑
k=j+1

〈vi, vj〉xixj,

• ŷ is the predicted movie rating.

• x is the data vector to be specified for the user/movie pair.

• w0 is the global average rating.

• wi is the average for the ith parameter.

• 〈vi, vj〉 is defined as the dot product between the i-th and the j-th rows of the factor matrix V.

Standard Factorization Model
The standard model is to use information of only the user and the movie. Index the movies and users numerically
and use binary variables to denote the user/movie pair with a data vector:

(u, i) → x = (0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
|U|

, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
|I|

)

to give the model:

ŷ(x) = w0 + wu + wi +
k∑
f=1

vu,f vi,f

where wu is the user’s average rating and wi is the movie’s average rating.

The Factorization Model

Example Network Models
Followed Network Model
Using social data collected about the users, we construct our input vectors using user ID u, movie ID i, and
a set of followed users S. Each friend in the vector is given a 1/m value where m is the total number of
users followed by u. To encode this model into the factorization machine, one would use the input vector:

x = (0, . . . , 1, 0, . . .︸ ︷︷ ︸
|U|

, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
|I|

, 0, . . . , 1/m, 0, . . . , 1/m, . . . , 0︸ ︷︷ ︸
|U|

).

to define the model:

ŷ(x) = w0 + wu + wi + 〈vu, vi〉 +
1

m

m∑
j=1

〈vi, vsj 〉 +
1

m

m∑
j=1

wsj

+
1

m

m∑
j=1

〈vu, vsj 〉 +
1

m2

m∑
j=1

m∑
j′>j

〈vsj , vsj′
〉.

This correlates the user’s predicted ratings with those of the people who he/she follows on the social networks.

Browser History Model
Using browser history for each implicitly defined user, we give each movie viewed in the history a rj/m value

where m is the total number of movies in the history and rj is either the rating of the movie lj or the user

never rated it, then simply a 1.

x = (0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
|I|

, 0, . . . , r1/m, 0, . . . , rm/m, . . . , 0︸ ︷︷ ︸
|I|

).

This penalizes movies for which the user browsed to but did not watch.

Incorporating Social Media Information

Ensemble models were used to aggregate predictions from many models under certain conditions:

1. Needed to prevent over-fitting data.

2. No worry about sparsity: factorization models generate a prediction for every movie.

3. Needed to account for biases induced by various models.

Overfit Protection: Bagging without replacement
To prevent over-fitting, bootstrap aggregation without replacement was used. Thus each model saw a random
subset of the data with which to train. User/movie pairs used as predictions in the next round were omitted
from the training set to reduce the bias imposed by utilizing multiple steps.

The Ensemble Problem

Example Ensemble Method: Ordinary Least Squares Regression (OLS)
Given j factorization models, one way to ensemble the predictions is to run a regression

yi =

m∑
j=1

xi,jβj.

which calculates the “best” way to create a prediction as a weighted average of other predictions.

Advanced Ensemble Models

1. Random Forest Models (Bagged Random Forest, Conditional Random Forest): Split data into
homogeneous regions to run OLS.

2. Gradient Boosted Regression Trees: Repeatedly cycle residuals back into OLS.

3. Bayesian Model Averaging Regression: Make predictions on all 2j product combinations of predic-
tions.

Ensemble Models
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