Maximum Likelihood Estimation of the Random-Clumped
Multinomial Model using High Performance Computing

e Parallel computing has become popular in statistics
e But tends to focus on “embarassingly parallel” problems

— Split problems into smaller subproblems, which can be solved independently
— For example: repeating a simulation many times
— Easy to do, e.g. using the SNOW package for R by Tierney et al

o How could we use high performance computing (HPC) in a more sophisticated way?
We consider maximum likelihood estimation (MLE) for a special multinomial model
e We show that HPC is very useful for improving computation time, for large problems

e Consider the model
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e f(x | ©) isthe density of each X;
o The joint likelihood function is
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e A standard inference problem — parametric point estimation:

— f is a known function, but parameters @ are unknown
- We've gotdata xq, . .., x, generated by the model
— Use the data to estimate 6

o Maximum likelihood estimation (MLE) — choose the estimator

a(z) := argmax L6 | x) [E arg max log L(0 | a:):|

First described in [Morel and Nagaraj, Biometrika, 1993],
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is the density for a random variable T' = (T, . . ., T} ), where
e m = (my,...,my) formsa discrete probability distribution
e g(t|p;, m) is the density of a standard multinomial

® e; is a vector with 1 in the jth position, zeros elsewhere

e p;=(1—-p)r+pe;, j=1,2,...,k—1

e pr=(1—-p)w

e There are k + 1 parameters @ = (my, ..., 7k, p) to estimate, which live in:
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Joint likelihood function for X = (T4, ..., Ty) (iid) is
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The standard multinomial model handles this scenario:

e A survey question is asked to m people
® K possible answers

e Responses are independent
e After the survey,t = (ty, ..., t)) contains counts for each answer

The Random Clumped model addresses a scenario where independence doesn’t hold:

e Some of the respondents are influenced by a common leader
e Rest answer independently

MLE computation for this model makes a good test problem

e Solving by hand isn’t tractable, numerical methods must be used

o Lots of theoretical results for efficient computation are available. E.g. [Liu, PhD Thesis
2005], [Neerchal and Morel, Computational Statistics & Data Analysis, 2005]

o We’ve used the model for a test problem, but not much of the theory

e Also, easy to generate samples from this distribution

o MLE solution coded in C++ using PGI compiler & OpenMPI
e Used the Toolkit for Advanced Optimization (TAO) library from Argonne National Lab

— contains parallel algorithms for constrained & unconstrained optimization
— built on top of PETSc and MPI
- Seewww.mcs.anl.gov/tao

o Used unconstrained optimization in RF+1 , even though © is a constrained subset

— Let the optimizer work in RF+*
— Use logit transformation on each parameter

1

logit(z) = Tre=’

logit : R — (0, 1)
~ Then normalize 7;’s so that Zf:j T, =1
e Use lgamma_r C function to compute log [I'(x)] instead of naive x! calculation
Optimization method: Limited-Memory, Variable-Metric (LMVM)
e [Iteratively searches for a maximum
e Only objective and gradient functions /(@) and V h(0) need to be specified

e h(0) first transforms @ (see above), then computes the likelihood L

Compute gradient vector numerically, using finite differences
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Key point for parallel computing

e Evaluating L (@ | ) is very expensive
® Must be evaluated many times in our finite difference scheme
Oh(8) oh(8)
¢ Bm( 96, ' 06y
o We can split computation of the k + 1 components among p < k -+ 1 parallel processes

) components can be computed independently
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Estimation experiment:

e Select true parameters @ = (7, ..., Tk, p) as a function of k

k
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. , t,, ) from the random clumped distribution given
o Initial guess for algorithm: 8(®) = (7‘(%0) = %, ey 77,(60) = %, p = %)
e Optimize, record the estimate, elapsed time, memory usage, etc
e Parallel performance is measured by speedup and efficiency

Generate a sample (£, . . .

Repeat the experiment many times, varying number of processes p along with

e number of categories k (shown below), sample size n, and cluster size m

Parallel performance varying k (# of 7;’s)
Walltime, speedup, and efficiency varying k, for n = 128, rn = 256, r = 1. Tests were performed with 4 processes per node, except for

p = 1 which uses | process per node, and p = 2 which uses 2 processes per node.
(a) Wall clock time in seconds
k

p=1 p=2 p=4 p=8 p=16 p=232 p=264 p=128
1 0.004 0.005 — — — — — —
3 0.058 0.036 0.025 — — — — —
7 0471 0.255 0.148 0.151 — — — —
15 4913 2,507 1.375 0.824 0.599 — — —
31 41.724 21414 11.010 5912 3394 5.165 — -
63 390.403 197.000 99.962 51.808 27.544 14.721 9.063
127 2513.446 1259.716 635.585 306.806 167.395 92.008 49.710 30.367
(b) Observed speedup 5,
k p=1 p=2 p=4 p=8 p=16 p=232 p=064 p=128
T .00 087 — - — - -
3 1.00 1.59 228 — — — — —
7 1.00 1.85 318 311 — — — —
15 1.00 1.96 357 5.96 8.20 — — -
31 1.00 1.95 379 7.06 1229 8.08 — —
63 1.00 1.98 391 754 14.17 2652 43.08 —
127 1.00 2.00 3.95 8.19 15.02 27.32 50.56 82.77
(c) Observed efficiency B,
k p=1 p=2 p=4 p=8 p=16 p=232 p=064 p= 128
1 1.00 0.44 — — — — —
3 1.00 0.80 0.57 — — — — —
7 1.00 0.92 0.79 039 - — — —
15 1.00 0.98 0.89 0.74 0.51 — — —
31 1.00 0.97 0.95 0.88 0.77 025 — —
63 1.00 0.99 0.98 0.94 0.89 0.83 0.67 —
127 1.00 1.00 0.99 1.02 0.94 0.85 0.79 0.65
Speedup varying number of categories Efficiency varying number of categories
forn =128, m=256,r=1 forn=128,m=256,r=1
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e Experiments were run on the cluster hpc at the UMBC High Performance Computing Facility
e Sece [Raim, Gobbert, Tech Report HPCF-2009-8] at http: //www.umbc.edu/hpcf for full results
® Good parallel performance for fixed k, if k large enough
e Future work: take advantage of the computational theory for the Random Clumped model
® Also: could this be done in a more statistician-friendly language like R?




