Maximum Likelihood Estimation of the Random-Clumped Multinomial Model using High Performance Computing

Andrew M. Raim[†], Matthias K. Gobbert[†], Nagaraj K. Neerchal[†], Jorge G. Morel^{*} [†] Department of Mathematics and Statistics, University of Maryland, Baltimore County ^{*} Regulatory and Clinical Development, Procter & Gamble Company

PROJECT SUMMARY

- Parallel computing has become popular in statistics
- · But tends to focus on "embarassingly parallel" problems
 - Split problems into smaller subproblems, which can be solved independently
 - For example: repeating a simulation many times
 - Easy to do, e.g. using the SNOW package for R by Tierney et al
- How could we use high performance computing (HPC) in a more sophisticated way?
- We consider maximum likelihood estimation (MLE) for a special multinomial model
- · We show that HPC is very useful for improving computation time, for large problems

BACKGROUND

Consider the model

 $X_1, \ldots, X_n \stackrel{iid}{\sim} f(x \mid \boldsymbol{\theta}), \quad \boldsymbol{\theta} = (\theta_1, \ldots, \theta_k) \in \Theta, \quad x \in \mathcal{X}$

- $f(x \mid \Theta)$ is the *density* of each X_i
- The joint likelihood function is

$$L(\boldsymbol{\theta} \mid \boldsymbol{x}) = \prod_{i=1}^{n} f(x_i \mid \boldsymbol{\theta}), \quad \boldsymbol{x} = (x_1, \dots, x_n)$$

- A standard inference problem parametric point estimation:
 - f is a known function, but parameters $\boldsymbol{\theta}$ are unknown
 - We've got data x_1, \ldots, x_n generated by the model
 - Use the data to estimate $\boldsymbol{\theta}$
- Maximum likelihood estimation (MLE) choose the estimator

$$\widehat{\boldsymbol{\theta}}(\boldsymbol{x}) := \arg \max_{\boldsymbol{\theta}} L(\boldsymbol{\theta} \mid \boldsymbol{x}) \qquad \left[\equiv \arg \max_{\boldsymbol{\theta}} \log L(\boldsymbol{\theta} \mid \boldsymbol{x}) \right]$$

 $\boldsymbol{x})$

RANDOM-CLUMPED MULTINOMIAL MODEL

First described in [Morel and Nagaraj, Biometrika, 1993],

$$f(\boldsymbol{t} \mid \boldsymbol{\pi}, \rho) = \sum_{j=1}^{k} \pi_j g(\boldsymbol{t} \mid \boldsymbol{p}_j, m), \qquad \boldsymbol{t} = (t_1, \dots, t_k)$$

is the density for a random variable $T = (T_1, \ldots, T_k)$, where

- $\boldsymbol{\pi} = (\pi_1, \ldots, \pi_k)$ forms a discrete probability distribution
- $g(t | p_i, m)$ is the density of a standard multinomial
- *e_i* is a vector with 1 in the *j*th position, zeros elsewhere
- $\mathbf{p}_{j} = (1 \rho)\mathbf{\pi} + \rho \mathbf{e}_{j}, \quad j = 1, 2, \dots, k 1$
- $p_k = (1 \rho)\pi$
- There are k + 1 parameters $\boldsymbol{\theta} = (\pi_1, \dots, \pi_k, \rho)$ to estimate, which live in:

$$\Theta = \{ \boldsymbol{\theta} \in \mathbb{R}^{k+1} : \pi_1, \dots, \pi_k, \rho \in (0, 1), \sum_{j=1}^k \pi_j = 1 \}$$

Joint likelihood function for $X = (T_1, \ldots, T_n)$ (iid) is

$$L(\boldsymbol{\theta} \mid \boldsymbol{x}) = \prod_{i=1}^{n} f(\boldsymbol{t}_i \mid \boldsymbol{\pi}, \rho) = \prod_{i=1}^{n} \left\{ \sum_{j=1}^{k} \pi_j \left[\frac{m!}{t_{i1}! \cdots t_{ik}!} p_{j1}^{t_{i1}} \cdots p_{jk}^{t_{ik}} \right] \right\}$$

'hy Consider Ti	his Model'
-----------------	------------

The standard multinomial model handles this scenario:

- A survey question is asked to *m* people
- k possible answers
- Responses are independent
- After the survey, $\boldsymbol{t} = (t_1, \ldots, t_k)$ contains counts for each answer

The Random Clumped model addresses a scenario where independence doesn't hold:

- · Some of the respondents are influenced by a common leader
- Rest answer independently

MLE computation for this model makes a good test problem

- · Solving by hand isn't tractable, numerical methods must be used
- Lots of theoretical results for efficient computation are available. E.g. [Liu, PhD Thesis 2005], [Neerchal and Morel, Computational Statistics & Data Analysis, 2005]
- We've used the model for a test problem, but not much of the theory
- Also, easy to generate samples from this distribution

IMPLEMENTATION DETAILS

- MLE solution coded in C++ using PGI compiler & OpenMPI
- Used the Toolkit for Advanced Optimization (TAO) library from Argonne National Lab
 - contains parallel algorithms for constrained & unconstrained optimization
 - built on top of PETSc and MPI
 - See www.mcs.anl.gov/tao
- Used unconstrained optimization in \mathbb{R}^{k+1} , even though Θ is a constrained subset
 - Let the optimizer work in \mathbb{R}^{k+1}
 - Use logit transformation on each parameter

$$\operatorname{logit}(x) = \frac{1}{1 + e^{-x}}, \quad \operatorname{logit} : \mathbb{R} \to (0, 1)$$

- Then normalize π_j 's so that $\sum_{i=j}^k \pi_i = 1$
- Use lgamma_r C function to compute $\log [\Gamma(x)]$ instead of naive x! calculation

Optimization method: Limited-Memory, Variable-Metric (LMVM)

- Iteratively searches for a maximum
- Only objective and gradient functions $h(\boldsymbol{\theta})$ and $\nabla h(\boldsymbol{\theta})$ need to be specified
- $h(\boldsymbol{\theta})$ first transforms $\boldsymbol{\theta}$ (see above), then computes the likelihood L

Compute gradient vector numerically, using finite differences

$$\nabla h(\boldsymbol{\theta}) = \left(\frac{\partial h(\boldsymbol{\theta})}{\partial \theta_1}, \dots, \frac{\partial h(\boldsymbol{\theta})}{\partial \theta_{k+1}}\right), \quad \frac{\partial h(\boldsymbol{\theta})}{\partial \theta_i} \approx \frac{h(\boldsymbol{\theta} + \delta \boldsymbol{e}_i) - h(\boldsymbol{\theta})}{\delta}, \quad \delta = 10^{-b}$$

Key point for parallel computing

- Evaluating $L(\boldsymbol{\theta} \mid \boldsymbol{x})$ is very expensive
- Must be evaluated many times in our finite difference scheme
- But $\left(\frac{\partial h(\boldsymbol{\theta})}{\partial \theta_1}, \ldots, \frac{\partial h(\boldsymbol{\theta})}{\partial \theta_{k+1}}\right)$ components can be computed independently
- We can split computation of the k+1 components among $p \le k+1$ parallel processes

Estimation experiment:

• Select true parameters $\boldsymbol{\theta} = (\pi_1, \dots, \pi_k, \rho)$ as a function of k

$$v := (1, 2, 3, \dots, 3, 2, 1)$$
 so that $v \in \mathbb{N}^k$, let $\pi_i = v_i / \left(\sum_{j=1}^k v_j \right)$

• Generate a sample (t_1, \ldots, t_n) from the random clumped distribution given θ

PERFORMANCE STUDY

- Initial guess for algorithm: $\boldsymbol{\theta}^{(0)} = (\pi_1^{(0)} = \frac{1}{h}, \dots, \pi_k^{(0)} = \frac{1}{h}, \rho = \frac{1}{2})$
- Optimize, record the estimate, elapsed time, memory usage, etc
- Parallel performance is measured by speedup and efficiency

Repeat the experiment many times, varying number of processes p along with

• number of categories k (shown below), sample size n, and cluster size m

RESULTS

Parallel performance varying k (# of π_i 's)

Walltime, speedup, and efficiency varying k, for n = 128, m = 256, r = 1. Tests were performed with 4 processes per node, except for p = 1 which uses 1 process per node, and p = 2 which uses 2 processes per node.

- Experiments were run on the cluster hpc at the UMBC High Performance Computing Facility
- See [Raim, Gobbert, Tech Report HPCF-2009-8] at http://www.umbc.edu/hpcf for full results
- Good parallel performance for fixed k, if k large enough
- Future work: take advantage of the computational theory for the Random Clumped model
- Also: could this be done in a more statistician-friendly language like R?