
Maximum Likelihood Estimation of the Random-Clumped
Multinomial Model using High Performance Computing

Andrew M. Raim†, Matthias K. Gobbert†, Nagaraj K. Neerchal†, Jorge G. Morel∗
† Department of Mathematics and Statistics, University of Maryland, Baltimore County
∗ Regulatory and Clinical Development, Procter & Gamble Company

• Parallel computing has become popular in statistics
• But tends to focus on “embarassingly parallel” problems

– Split problems into smaller subproblems, which can be solved independently
– For example: repeating a simulation many times
– Easy to do, e.g. using the SNOW package for R by Tierney et al

• How could we use high performance computing (HPC) in a more sophisticated way?
• We consider maximum likelihood estimation (MLE) for a special multinomial model
• We show that HPC is very useful for improving computation time, for large problems

PROJECT SUMMARY

• Consider the model

X1, . . . , Xn
iid∼ f(x | θθθ), θθθ = (θ1, . . . , θk) ∈ Θ, x ∈ X

• f(x | Θ) is the density of eachXi
• The joint likelihood function is

L(θθθ | xxx) =

nY
i=1

f(xi | θθθ), xxx = (x1, . . . , xn)

• A standard inference problem — parametric point estimation:

– f is a known function, but parameters θθθ are unknown
– We’ve got data x1, . . . , xn generated by the model
– Use the data to estimate θθθ

• Maximum likelihood estimation (MLE) — choose the estimator

bθθθ(xxx) := arg max
θθθ
L(θθθ | xxx)

»
≡ arg max

θθθ
logL(θθθ | xxx)

–

BACKGROUND

First described in [Morel and Nagaraj, Biometrika, 1993],

f(ttt | πππ, ρ) =
kX
j=1

πj g(ttt |pppj ,m), ttt = (t1, . . . , tk)

is the density for a random variableTTT = (T1, . . . , Tk), where

• πππ = (π1, . . . , πk) forms a discrete probability distribution
• g(ttt |pppj ,m) is the density of a standard multinomial
• eeej is a vector with 1 in the jth position, zeros elsewhere
• pppj = (1− ρ)πππ + ρeeej , j = 1, 2, . . . , k − 1
• pppk = (1− ρ)πππ

• There are k + 1 parameters θθθ = (π1, . . . , πk, ρ) to estimate, which live in:

Θ = {θθθ ∈ Rk+1
: π1, . . . , πk, ρ ∈ (0, 1),

kX
j=1

πj = 1}

Joint likelihood function forXXX = (T1T1T1, . . . ,TnTnTn) (iid) is

L(θθθ | xxx) =

nY
i=1

f(ttti | πππ, ρ) =

nY
i=1

8<:
kX
j=1

πj

»
m!

ti1! · · · tik!
p
ti1
j1 · · · p

tik
jk

–9=;

RANDOM-CLUMPED MULTINOMIAL MODEL

The standard multinomial model handles this scenario:

• A survey question is asked tom people
• k possible answers
• Responses are independent
• After the survey, ttt = (t1, . . . , tk) contains counts for each answer

The Random Clumped model addresses a scenario where independence doesn’t hold:

• Some of the respondents are influenced by a common leader
• Rest answer independently

MLE computation for this model makes a good test problem

• Solving by hand isn’t tractable, numerical methods must be used
• Lots of theoretical results for efficient computation are available. E.g. [Liu, PhD Thesis

2005], [Neerchal and Morel, Computational Statistics & Data Analysis, 2005]
• We’ve used the model for a test problem, but not much of the theory
• Also, easy to generate samples from this distribution

WHY CONSIDER THIS MODEL?

• MLE solution coded in C++ using PGI compiler & OpenMPI
• Used the Toolkit for Advanced Optimization (TAO) library from Argonne National Lab

– contains parallel algorithms for constrained & unconstrained optimization
– built on top of PETSc and MPI
– See www.mcs.anl.gov/tao

• Used unconstrained optimization in Rk+1 , even though Θ is a constrained subset

– Let the optimizer work in Rk+1

– Use logit transformation on each parameter

logit(x) =
1

1 + e−x
, logit : R→ (0, 1)

– Then normalize πj ’s so that
Pk
i=j πi = 1

• Use lgamma_r C function to compute log [Γ(x)] instead of naive x! calculation

Optimization method: Limited-Memory, Variable-Metric (LMVM)

• Iteratively searches for a maximum
• Only objective and gradient functions h(θθθ) and∇h(θθθ) need to be specified
• h(θθθ) first transforms θθθ (see above), then computes the likelihoodL

Compute gradient vector numerically, using finite differences

∇h(θθθ) =

 
∂h(θθθ)

∂θ1
, . . . ,

∂h(θθθ)

∂θk+1

!
,

∂h(θθθ)

∂θi
≈
h(θθθ + δeeei)− h(θθθ)

δ
, δ = 10

−8

Key point for parallel computing

• EvaluatingL(θθθ | xxx) is very expensive
• Must be evaluated many times in our finite difference scheme

• But
“
∂h(θθθ)
∂θ1

, . . . , ∂h(θθθ)
∂θk+1

”
components can be computed independently

• We can split computation of the k+1 components among p ≤ k+1 parallel processes

IMPLEMENTATION DETAILS

Estimation experiment:

• Select true parameters θθθ = (π1, . . . , πk, ρ) as a function of k

v := (1, 2, 3, . . . , 3, 2, 1) so that v ∈ Nk, let πi = vi/

0@ kX
j=1

vj

1A
• Generate a sample (ttt1, . . . , tttn) from the random clumped distribution given θθθ
• Initial guess for algorithm: θθθ(0) = (π

(0)
1 = 1

k
, . . . , π

(0)
k = 1

k
, ρ = 1

2
)

• Optimize, record the estimate, elapsed time, memory usage, etc
• Parallel performance is measured by speedup and efficiency

Repeat the experiment many times, varying number of processes p along with

• number of categories k (shown below), sample size n, and cluster sizem

PERFORMANCE STUDY

Parallel performance varying k (# of πi’s)
Walltime, speedup, and efficiency varying k, for n = 128, m = 256, r = 1. Tests were performed with 4 processes per node, except for

p = 1 which uses 1 process per node, and p = 2 which uses 2 processes per node.
(a) Wall clock time in seconds

k p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
1 0.004 0.005 — — — — — —
3 0.058 0.036 0.025 — — — — —
7 0.471 0.255 0.148 0.151 — — — —

15 4.913 2.507 1.375 0.824 0.599 — — —
31 41.724 21.414 11.010 5.912 3.394 5.165 — —
63 390.403 197.000 99.962 51.808 27.544 14.721 9.063 —

127 2513.446 1259.716 635.585 306.806 167.395 92.008 49.710 30.367
(b) Observed speedupSp

k p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
1 1.00 0.87 — — — — — —
3 1.00 1.59 2.28 — — — — —
7 1.00 1.85 3.18 3.11 — — — —

15 1.00 1.96 3.57 5.96 8.20 — — —
31 1.00 1.95 3.79 7.06 12.29 8.08 — —
63 1.00 1.98 3.91 7.54 14.17 26.52 43.08 —

127 1.00 2.00 3.95 8.19 15.02 27.32 50.56 82.77
(c) Observed efficiencyEp

k p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
1 1.00 0.44 — — — — — —
3 1.00 0.80 0.57 — — — — —
7 1.00 0.92 0.79 0.39 — — — —

15 1.00 0.98 0.89 0.74 0.51 — — —
31 1.00 0.97 0.95 0.88 0.77 0.25 — —
63 1.00 0.99 0.98 0.94 0.89 0.83 0.67 —

127 1.00 1.00 0.99 1.02 0.94 0.85 0.79 0.65

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

Speedup varying number of categories
 for n = 128, m = 256, r = 1

Processes p

S
pe

ed
up

●●

●

Number of categories k

1
3
7
15

31
63
127

0 20 40 60 80 100 120

0.
0

0.
5

1.
0

1.
5

Efficiency varying number of categories
 for n = 128, m = 256, r = 1

Processes p

E
ffi

ci
en

cy ●

●

●

Number of categories k

1
3
7
15

31
63
127

• Experiments were run on the cluster hpc at the UMBC High Performance Computing Facility
• See [Raim, Gobbert, Tech Report HPCF-2009-8] at http://www.umbc.edu/hpcf for full results
• Good parallel performance for fixed k, if k large enough
• Future work: take advantage of the computational theory for the Random Clumped model
• Also: could this be done in a more statistician-friendly language like R?

RESULTS


