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WEIGHTED SOBOLEV SPACES
ON A WEDGE
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WEIGHTED SOBOLEV SPACES IN DOMAINS WITH CORNERS
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Vé(ﬂ) = set of all functions on Q € R? such that (ou € H*(Q) and
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x"/g(Q) = {u € VE(Q) : uloa = 0}

C'! FINITE ELEMENTS

The Argyris element: 21 degrees of freedom:

u e Values of 0, 1°* and 2"¢ dertiva-
tives the three vertices.

e Values of the normal derivatives at
midpoints of the edge

Theorem 1 Let1<6; < (B+a; —1)7',i=1,...,d. The on an
appropriately graded mesh we obtain optimal convergence rate:

lu —unl|3(Q) < CR™RE=29} - g = mind; (B +a; — 1)

THE POISSON PROBLEM IN VE(Q)

Q € R?, bounded domain with corners z!,..., 2%, with interigr an-
gles a; € (0,27), j =1,...,d. Given f € L, E(Q)’ find u € VE(Q)
such that

(Au, Av)p, (@) = —(f,Av)L, ;@) Vv E ‘75(9)

Theorem 2 For any 3 = (Bi,---,B4) € RY such that 1 — 7/a; <
Bi <l+m7/aj, j=1,...,d, the weighted variational problem has a
unique solution u € YO/E(Q)

Theorem 3 Let f € L, ﬁ(Q)’ 1—7/a < B < 1. Then the varia-
tional problem has a unique solution in VE(Q) that coincides with

the solution of the traditional H' variational problem.

TEST AGAINST EXACT SOLUTION

Exact solution with singularity: u = 2(1 = z2)(1 — y2)r2/3 sin %9
—Au=fin 2, w=0ondN
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THE NAVIER-STOKES EQUATIONS

Fluid flow in a domain Q C R? governed by:

u; + (Vu)u+ Vp=vAu+f inQx(0,7T)

divu =0 in Q x (0,7)
u=20 on 90 x (0,T)
u(0) = uo in Q x {0}

u: fluid velocity
p: pressure

v: kinematic viscosity
f: external force per unit volume

NAVIER-STOKES IN WEIGHTED SPACES

Algorithm: Given and approximation u” € Vﬂg (92) to the velocity

at the nt" time step, determine p™ € V§1 (22) from
(Vp", V(/))Lm(g) = (f"—(Vu™)u"+rvAu" —vV(divu"), Vo) Ly 5()

. 1
then determine u”+! € V§2 (©) from: Vo € Vz(Q),
1

n+1
u , AW + ok w) L, 5()
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V¥ € VZ(Q)

COMPUTATIONAL RESULTS: BACKSTEP FLOW

Made with umbcposter: http://wwww/math.umbc.edu/~rouben/umbcposter/



